1
|
Xue X, Chen Y, Yu Z, Feng Y, Zhang L, Han C, Yin X, Lu B, Shu H. Effects of Diet Supplemented With Hydrolyzable Tannin on the Growth Performance, Antioxidant Capacity, and Muscle Nutritional Quality of Juvenile Mastacembelus armatus. AQUACULTURE NUTRITION 2024; 2024:8266189. [PMID: 39555515 PMCID: PMC11554411 DOI: 10.1155/2024/8266189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
In this study, four groups of diet were prepared, with eel commercial diet without hydrolyzable tannin (HT) as the control group (H0), and the other three groups were fed with diet containing 0.05% (H1), 0.1% (H2), and 0.2% (H3) doses of HT to juvenile Mastacembelus armatus with an initial body weight of (0.40 ± 0.005) g. Juvenile fish in all groups were fed continuously for 60 days. Growth indices, hepatopancreatic antioxidant enzymes, biochemical indices (including total superoxide dismutase [T-SOD], catalase [CAT], malondialdehyde [MDA], total antioxidant capacity [T-AOC], alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [AKP], and triglyceride [TG]), the content of muscle amino acids and fatty acids, stomach and intestine enzyme activities (pepsin, amylase, lipase), and genes expressions were evaluated. The results showed that 0.1% HT significantly improved the growth performance, hepatopancreatic antioxidant capacity, as well as muscle quality and lipase activity of juvenile M. armatus. In summary, the optimal addition level of HT in the diet of juvenile M. armatus is 0.1%, which helps to improve aquaculture efficiency and improve the muscle quality of M. armatus. However, the long-term effects of feeding HT on M. armatus and its physiological reaction mechanism need to be further explored.
Collapse
Affiliation(s)
- Xiaowen Xue
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yiman Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhide Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuwei Feng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Linan Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoli Yin
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Seong Wei L, Mohamad Sukri SA, Tahiluddin AB, Abdul Kari Z, Wee W, Kabir MA. Exploring beneficial effects of phytobiotics in marine shrimp farming: A review. Heliyon 2024; 10:e31074. [PMID: 39113972 PMCID: PMC11304020 DOI: 10.1016/j.heliyon.2024.e31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/10/2024] Open
Abstract
Marine shrimp farming, mainly Penaeus monodon and Litopenaeus vannamei, is an important component of the aquaculture industry. Marine shrimp farming helps produce a protein source for humans, provides job opportunities, and generates lucrative profits for investors. Intensification farming practices can lead to poor water quality, stress, and malnutrition among the farmed marine shrimp, resulting in disease outbreaks and poor production, impeding the development of marine shrimp farming. Antibiotics are the common short-term solution to treat diseases in marine shrimp farming. Moreover, the negative impacts of using antibiotics on public health and the environment erode consumer confidence in aquaculture products. Recently, research on using phytobiotics as a prophylactic agent in aquaculture has become a hot topic. Various phytobiotics have been explored to reveal their beneficial effects on aquaculture species. In this review paper, the sources and modes of action of phytobiotics are presented. The roles of phytobiotics in improving growth performance, increasing antioxidant capacity, enhancing the immune system, stimulating disease resistance, and mitigating stress due to abiotic factors in marine shrimp culture are recapitulated and discussed.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao, Tawi-Tawi, 7500, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Turkey
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
3
|
Jia X, Yu H, Du B, Shen Y, Gui L, Xu X, Li J. Incorporating Lycium barbarum residue in diet boosts survival, growth, and liver health in juvenile grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109573. [PMID: 38636742 DOI: 10.1016/j.fsi.2024.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.
Collapse
Affiliation(s)
- Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Wang Y, Wu J, Li L, Yao Y, Chen C, Hong Y, Chai Y, Liu W. Effects of Tannic Acid Supplementation of a High-Carbohydrate Diet on the Growth, Serum Biochemical Parameters, Antioxidant Capacity, Digestive Enzyme Activity, and Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides. AQUACULTURE NUTRITION 2024; 2024:6682798. [PMID: 38274322 PMCID: PMC10810693 DOI: 10.1155/2024/6682798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/27/2024]
Abstract
We investigated the effects of dietary tannic acid (TA) supplementation of a high-carbohydrate diet on growth, feed utilization, whole-body proximate composition, serum biochemical indicators, antioxidant capacity, digestive enzyme activity, and liver and intestinal health of juvenile largemouth bass, Micropterus salmoides (initial mean weight: 8.08 ± 0.08 g). Five diets were prepared, including a positive control (dietary carbohydrate level, 16%, LC0), a negative control (dietary carbohydrate level, 21%, HC0), and three TA-supplementation diets based on the negative control diet with TA addition at 200, 400, and 800 mg/kg, respectively. After 8 weeks of feeding, the results showed that compared with the LC0 diet, 400-800 mg/kg dietary TA significantly improved the survival rate of largemouth bass (P < 0.05) while significantly reducing its weight-gain rate and specific growth rate (P < 0.05). Compared with the HC0 diet, 400 mg/kg dietary TA significantly increased serum catalase activity (P < 0.05), and significantly decreased serum malondialdehyde, liver glycogen, lightness (L ∗), and yellowness (b ∗) (P < 0.05). Moreover, compared with the HC0 diet, 200-400 mg/kg dietary TA effectively improved the vacuolation of hepatocytes caused by the high-carbohydrate diet and reduced the occurrence of intestinal epithelial cell vacuolation and necrosis. In turn, 800 mg/kg dietary TA significantly inhibited protease activity in the pyloric caecum and intestine (P < 0.05). In conclusion, dietary supplementation with TA inhibited protease activity, which resulted in decreased growth performance in largemouth bass. However, it was also found that 200-400 mg/kg TA enhanced the antioxidant capacity of largemouth bass in the case of the high-carbohydrate diet, reduced liver glycogen levels, and improved liver and intestinal health. Finally, it should be noted that, when the dietary TA level exceeded 800 mg/kg, TA appeared to play a pro-oxidation role in the liver, which may cause oxidative stress in the liver.
Collapse
Affiliation(s)
- Yi Wang
- The College of Agriculture/College of Animal Sciences, Yangtze University, Jingzhou 434020, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Jianjun Wu
- Wuhan SunHY Biology, Wuhan 430074, Hubei, China
| | - Luoxin Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Yuanfeng Yao
- Wufeng Chicheng Biotech Co. Ltd., Yichang, Hubei, China
| | - Chiqing Chen
- Wufeng Chicheng Biotech Co. Ltd., Yichang, Hubei, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, Guangdong, China
| | - Yi Chai
- The College of Agriculture/College of Animal Sciences, Yangtze University, Jingzhou 434020, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| |
Collapse
|
5
|
Wang J, Zhang G, Lai H, Li Z, Shen M, Li C, Kwan P, O'Brien TJ, Wu T, Yang S, Zhang X, Zhang L. Characterizing Gut Microbiota in Older Chinese Adults with Cognitive Impairment: A Cross-Sectional Study. J Alzheimers Dis 2024; 101:761-771. [PMID: 39213074 DOI: 10.3233/jad-240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.
Collapse
Affiliation(s)
- Jing Wang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Gong Zhang
- MOE Key Laboratory of Tumour Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Lai
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Zengbin Li
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Mingwang Shen
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Patrick Kwan
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Yang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| |
Collapse
|
6
|
Zhen BX, Cai Q, Li F. Chemical components and protective effects of Atractylodes japonica Koidz. ex Kitam against acetic acid-induced gastric ulcer in rats. World J Gastroenterol 2023; 29:5848-5864. [PMID: 38074916 PMCID: PMC10701307 DOI: 10.3748/wjg.v29.i43.5848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Atractylodes japonica Koidz. ex Kitam. (A. japonica, Chinese name: Guan-Cangzhu, Japanese name: Byaku-jutsu), a perennial herb, which is mainly distributed in northeast area of China, it’s often used to treat digestive system diseases such as gastric ulcer (GU). However, the mechanism of its potential protective effects against GU remains unclear.
AIM To investigate the protective effects of A. japonica on acetic acid-induced GU rats.
METHODS The chemical constituents of A. japonica were determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The rat model of GU was simulated by acetic acid method. The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain, the levels of epidermal growth factor (EGF), EGF receptor (EGFR), nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), IL-10, Na+-K+-ATPase (NKA) in serum and gastric tissues were determined by enzyme-linked immunosorbent assay, and the mRNA expressions of EGFR, NF-κBp65, IkappaBalpha (IκBα) and Zonula Occludens-1 (ZO-1) in gastric tissues were determined by real-time reverse transcription polymerase chain reaction, and the efficacy was observed. Then, plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers, metabolic pathways and to explore the possible mechanisms.
RESULTS 48 chemical constituents were identified. Many of them have strong pharmacological activity, the results also revealed that A. japonica significantly improved the pathological damage of gastric tissues, increased the expression levels of IL-10, IκBα related to anti-inflammatory factors, decreased the expression levels of IL-1β, NF-κB, NF-κBp65, related to proinflammatory factors, restored the levels of factors about EGF, EGFR, ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism. Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways.
CONCLUSION These findings contribute to the understanding of the potential mechanism of A. japonica to improve acetic acid-induced GU, and will be of great importance for the development and clinical application of natural drugs related to A. japonica.
Collapse
Affiliation(s)
- Bi-Xian Zhen
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Qian Cai
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Feng Li
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| |
Collapse
|
7
|
Wang Z, Li S, Zhou Q, Zhang J, Li Y, Li Y, Yuan Z, Huang G. Effects of different protein and lipid levels on the growth performance and intestinal microflora of loach (Paramisgurnus dabryanus). ANIMAL NUTRITION 2023; 13:229-239. [PMID: 37168447 PMCID: PMC10164773 DOI: 10.1016/j.aninu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
The aim of this study was to examine the effects of dietary protein and lipid levels on the growth performance and homeostasis of the intestinal flora in Paramisgurnus dabryanus. An 8-wk 3 × 3 two-factorial experiment was conducted to investigate the interaction between dietary crude protein (CP: 30%, 35%, 40%) and ether extract (EE: 6%, 10%, 14%) on the growth rate and the intestinal microflora of P. dabryanus. A total of 2,160 fish (5.19 ± 0.01 g) were randomly allotted to 36 aquariums each with 60 fish. Fish were fed the experimental diet twice daily. Results revealed that weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio and net protein utilization significantly increased when increasing protein levels from 30% to 40% (P < 0.05). Both WGR and SGR enhanced first but reduced thereafter with maximum value at 10% lipid level as dietary lipid increased from 6% to 14% (P < 0.05). Significant interactions between protein and lipid were found with feed conversion rate, lipid efficiency ratio and net lipid utilization (P < 0.05). At the phylum level, Proteobacteria and Actinobacteria were the dominant bacteria; at the genus level, Burkholderia-Caballeronia-Paraburkholderia was the dominant bacteria. Fish fed the diet containing 10% lipid had a higher abundance of Proteobacteria and unclassified_f_Eenterobacteriaceae than those fed the 14% lipid diet, and a higher abundance of Rhodobacter than those fed the 6% lipid diet (P < 0.05). Analysis of the predicted functions showed that metabolism in the intestine of fish in the CP40EE10 group was more active than that in CP30EE14 group. Polynomial regression analysis found that a diet containing 40.87% protein and 9.88% lipid can be considered optimal for P. dabryanus.
Collapse
|
8
|
Dietary supplementation Eucommia ulmoides extract at relative low level affect the nutrition, flavor, and crispness of grass carp (Ctenopharyngodon idella) by gut bacterial mediation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Yao J, Hang Y, Hua X, Li N, Li X. Hepatopancreas-Intestinal Health in Grass Carp ( Ctenopharyngodon idella) Fed with Hydrolyzable Tannin or Rapeseed Meal. AQUACULTURE NUTRITION 2022; 2022:6746201. [PMID: 36860431 PMCID: PMC9973129 DOI: 10.1155/2022/6746201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
This study evaluated the effect of dietary rapeseed meal (RM) and hydrolyzable tannin on grass carp (Ctenopharyngodon idella) and determined the possible role of tannin on health when RM was added to the diet. Eight diets were formulated. Four were semipurified-diets with 0, 0.75, 1.25, and 1.75% hydrolyzable tannin (T0, T1, T2, and T3), and the other four were practical diets containing 0, 30, 50, and 70% RM (R0, R30, R50, and R70), which had similar tannin contents as semipurified-diets. After the 56 d feeding trial, the antioxidative enzymes and relative biochemical indexes showed a similar tendency in practical and semipurified groups. In hepatopancreas, superoxide dismutase (SOD) and catalase (CAT) activities increased with RM and tannin levels, respectively, while glutathione (GSH) content and glutathione peroxidase (GPx) activity increased. Malondialdehyde (MDA) content increased and decreased in T3 and R70, respectively. In the intestine, MDA content and SOD activity increased with RM and tannin levels, while GSH content and GPx activity decreased. The expression levels of interleukin 8 (IL-8) and interleukin 10 (IL-10) were upregulated with RM and tannin levels, and the Kelch-like ECH-associated protein 1 (Keap1) expression was upregulated in T3, whereas it was downregulated in R50. This study demonstrated that 50% of RM and 0.75% of tannin induced oxidative stress, injured hepatic antioxidant ability, and resulted in intestinal inflammation in grass carp. Therefore, the tannin in rapeseed meal cannot be neglected in aquatic feeding.
Collapse
Affiliation(s)
- Jingting Yao
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ying Hang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ningyu Li
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiang Li
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Yao J, Liu N, Li N, Li X, Hua X. Different metabolomic responses of grass carp (Ctenopharyngodon idellus) to dietary tannin and rapeseed meal. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|