1
|
Munteanu C, Galaction AI, Turnea M, Blendea CD, Rotariu M, Poștaru M. Redox Homeostasis, Gut Microbiota, and Epigenetics in Neurodegenerative Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:1062. [PMID: 39334720 PMCID: PMC11429174 DOI: 10.3390/antiox13091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases encompass a spectrum of disorders marked by the progressive degeneration of the structure and function of the nervous system. These conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Multiple sclerosis (MS), often lead to severe cognitive and motor deficits. A critical component of neurodegenerative disease pathologies is the imbalance between pro-oxidant and antioxidant mechanisms, culminating in oxidative stress. The brain's high oxygen consumption and lipid-rich environment make it particularly vulnerable to oxidative damage. Pro-oxidants such as reactive nitrogen species (RNS) and reactive oxygen species (ROS) are continuously generated during normal metabolism, counteracted by enzymatic and non-enzymatic antioxidant defenses. In neurodegenerative diseases, this balance is disrupted, leading to neuronal damage. This systematic review explores the roles of oxidative stress, gut microbiota, and epigenetic modifications in neurodegenerative diseases, aiming to elucidate the interplay between these factors and identify potential therapeutic strategies. We conducted a comprehensive search of articles published in 2024 across major databases, focusing on studies examining the relationships between redox homeostasis, gut microbiota, and epigenetic changes in neurodegeneration. A total of 161 studies were included, comprising clinical trials, observational studies, and experimental research. Our findings reveal that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, with gut microbiota composition and epigenetic modifications significantly influencing redox balance. Specific bacterial taxa and epigenetic markers were identified as potential modulators of oxidative stress, suggesting novel avenues for therapeutic intervention. Moreover, recent evidence from human and animal studies supports the emerging concept of targeting redox homeostasis through microbiota and epigenetic therapies. Future research should focus on validating these targets in clinical settings and exploring the potential for personalized medicine strategies based on individual microbiota and epigenetic profiles.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| |
Collapse
|
2
|
Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants (Basel) 2024; 13:985. [PMID: 39199231 PMCID: PMC11351922 DOI: 10.3390/antiox13080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Juárez-Mercado KE, Avellaneda-Tamayo JF, Villegas-Quintero H, Chávez-Hernández AL, López-López CD, Medina-Franco JL. Food Chemicals and Epigenetic Targets: An Epi Food Chemical Database. ACS OMEGA 2024; 9:25322-25331. [PMID: 38882162 PMCID: PMC11170626 DOI: 10.1021/acsomega.4c03321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
There is increasing awareness of epigenetics's importance in understanding disease etiologies and developing novel therapeutics. An increasing number of publications in the past few years reflect the renewed interest in epigenetic processes and their relationship with food chemicals. However, there needs to be a recent study that accounts for the most recent advances in the area by associating the chemical structures of food and natural product components with their biological activity. Here, we analyze the status of food chemicals and their intersection with natural products in epigenetic research. Using chemoinformatics tools, we compared quantitatively the chemical contents, structural diversity, and coverage in the chemical space of food chemicals with reported epigenetic activity. As part of this work, we built and curated a compound database of food and natural product chemicals annotated with structural information, an epigenetic target activity profile, and the main source of the food chemical or natural product, among other relevant features. The compounds are cross-linked with identifiers from other major public databases such as FooDB and the collection of open natural products, COCONUT. The compound database, the "Epi Food Chemical Database", is accessible in HTML and CSV formats at https://github.com/DIFACQUIM/Epi_food_Chemical_Database.
Collapse
Affiliation(s)
- K Eurídice Juárez-Mercado
- DIFACQUIM Research Group. Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Juan F Avellaneda-Tamayo
- DIFACQUIM Research Group. Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Hassan Villegas-Quintero
- DIFACQUIM Research Group. Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Ana L Chávez-Hernández
- DIFACQUIM Research Group. Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | | | - José L Medina-Franco
- DIFACQUIM Research Group. Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| |
Collapse
|
4
|
Panghal A, Jena G. Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance. Curr Diabetes Rev 2024; 20:e220823220204. [PMID: 37608613 DOI: 10.2174/1573399820666230822151740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| |
Collapse
|
5
|
Gaskell C, Sarada P, Aleem E, Bendriss G. Identifying lifestyle factors associated to co-morbidity of obesity and psychiatric disorders, a pilot study. Front Public Health 2023; 11:1132994. [PMID: 37206863 PMCID: PMC10188954 DOI: 10.3389/fpubh.2023.1132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Obesity and psychiatric disorders are linked through a bidirectional association. Obesity rates have tripled globally in the past decades, and it is predicted that by 2025, one billion people will be affected by obesity, often with a co-morbidity such as depression. While this co-morbidity seems to be a global health issue, lifestyle factors associated to it differ between countries and are often attributed to more than one factor. Prior obesity studies were performed in Western populations; this is the first study that investigates lifestyle factors relating to obesity and mental health of the diverse population in Qatar, a country that has witnessed tremendous lifestyle change in a short time. In this pilot study, we surveyed 379 respondents to assess and compare the lifestyles of Qatar residents to the global population. However due to the high proportion of responses from the United Kingdom (UK) residents, we have made comparisons between Qatar residents and UK residents. We used chi-square analysis, spearman rank correlation and logistic regression to compare the lifestyle factors of individuals suffering from both increased BMI and mental health conditions. The types of food consumed, stress, exercise frequency and duration, alcohol and tobacco consumption, and sleep duration, were explored and results argue that different lifestyle factors can contribute to the same health condition, suggesting different mechanisms involved. We found that both groups reported similar sleep durations (p = 0.800), but that perception of sleep (p = 0.011), consumption of alcohol (p = 0.001), consumption of takeaway food (p = 0.007), and physical activity significantly varied between the groups (p = 0.0001). The study examined the predictors of comorbidity in Qatar as well as UK populations using multivariate logistic regression analysis. The result of the study showed no statistical association between comorbidity and the predictors drinking habit, smoking, physical activity, vegetable consumption, eat outs, and sleep perception for the Qatar population, and for the combined population. This study, however showed a significant association (p = 0.033) between sleep perception and comorbidity for the UK population. We conclude that further analysis is needed to understand the relationship between specific lifestyle factors and multimorbidity in each country.
Collapse
Affiliation(s)
| | | | - Eiman Aleem
- Biomedical Science, London South Bank University, London, United Kingdom
| | - Ghizlane Bendriss
- Premedical Division, Weill Cornell Medicine, Ar-Rayyan, Qatar
- *Correspondence: Ghizlane Bendriss,
| |
Collapse
|
6
|
Paul P, Kaul R, Chaari A. Renal Health Improvement in Diabetes through Microbiome Modulation of the Gut-Kidney Axis with Biotics: A Systematic and Narrative Review of Randomized Controlled Trials. Int J Mol Sci 2022; 23:14838. [PMID: 36499168 PMCID: PMC9740604 DOI: 10.3390/ijms232314838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetes mellitus is the most common endocrine disorder worldwide, with over 20% of patients ultimately developing diabetic kidney disease (DKD), a complex nephropathic complication that is a leading cause of end-stage renal disease. Various clinical trials have utilized probiotics, prebiotics, and synbiotics to attempt to positively modulate the gut microbiome via the gut-kidney axis, but consensus is limited. We conducted a multi-database systematic review to investigate the effect of probiotics, prebiotics, and synbiotics on various biomarkers of renal health in diabetes, based on studies published through 10 April 2022. Adhering to the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, relevant articles were systematically screened and extracted by independent reviewers; subsequently, results were systematically compiled, analyzed, and expanded through a narrative discussion. A total of 16 publications encompassing 903 diabetic individuals met the inclusion criteria. Our findings show that some studies report statistically significant changes in common renal markers, such as serum creatinine, estimated glomerular filtration rate, blood urea nitrogen/urea, microalbuminuria, and uric acid, but not on serum albumin, sodium, potassium, phosphorous, or total urine protein. Interestingly, these nutraceuticals seem to increase serum uric acid concentrations, an inflammatory marker usually associated with decreased renal health. We found that probiotics from the Lactobacillus and Bifidobacterium families were the most investigated, followed by Streptococcus thermophilus. Prebiotics including inulin, galacto-oligosaccharide, and resistant dextrin were also examined. The single-species probiotic soymilk formulation of Lactobacillus plantarum A7 possessed effects on multiple renal biomarkers in DKD patients without adverse events. We further investigated the optimum nutraceutical formulation, discussed findings from prior studies, described the gut-kidney axis in diabetes and DKD, and finally commented on some possible mechanisms of action of these nutraceuticals on renal health in diabetics. Although probiotics, prebiotics, and synbiotics have shown some potential in ameliorating renal health degradation in diabetes via gut-kidney axis crosstalk, larger and more convincing trials with focused objectives and next-generation nutraceutical formulations are required to investigate their possible role as adjunct therapy in such patients.
Collapse
Affiliation(s)
- Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| | - Ridhima Kaul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| |
Collapse
|
7
|
Paul P, Kaul R, Abdellatif B, Arabi M, Upadhyay R, Saliba R, Sebah M, Chaari A. The Promising Role of Microbiome Therapy on Biomarkers of Inflammation and Oxidative Stress in Type 2 Diabetes: A Systematic and Narrative Review. Front Nutr 2022; 9:906243. [PMID: 35711547 PMCID: PMC9197462 DOI: 10.3389/fnut.2022.906243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background One in 10 adults suffer from type 2 diabetes (T2D). The role of the gut microbiome, its homeostasis, and dysbiosis has been investigated with success in the pathogenesis as well as treatment of T2D. There is an increasing volume of literature reporting interventions of pro-, pre-, and synbiotics on T2D patients. Methods Studies investigating the effect of pro-, pre-, and synbiotics on biomarkers of inflammation and oxidative stress in T2D populations were extracted from databases such as PubMed, Scopus, Web of Science, Embase, and Cochrane from inception to January 2022. Results From an initial screening of 5,984 hits, 47 clinical studies were included. Both statistically significant and non-significant results have been compiled, analyzed, and discussed. We have found various promising pro-, pre-, and synbiotic formulations. Of these, multistrain/multispecies probiotics are found to be more effective than monostrain interventions. Additionally, our findings show resistant dextrin to be the most promising prebiotic, followed closely by inulin and oligosaccharides. Finally, we report that synbiotics have shown excellent effect on markers of oxidative stress and antioxidant enzymes. We further discuss the role of metabolites in the resulting effects in biomarkers and ultimately pathogenesis of T2D, bring attention toward the ability of such nutraceuticals to have significant role in COVID-19 therapy, and finally discuss few ongoing clinical trials and prospects. Conclusion Current literature of pro-, pre- and synbiotic administration for T2D therapy is promising and shows many significant results with respect to most markers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pradipta Paul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ridhima Kaul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Basma Abdellatif
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maryam Arabi
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Rohit Upadhyay
- Department of Medicine—Nephrology and Hypertension, Tulane University, School of Medicine, New Orleans, LA, United States
| | - Reya Saliba
- Distributed eLibrary, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Majda Sebah
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
8
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
9
|
Wu R, Li S, Hudlikar R, Wang L, Shannar A, Peter R, Chou PJ, Kuo HCD, Liu Z, Kong AN. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radic Biol Med 2022; 179:328-336. [PMID: 33359432 PMCID: PMC8222414 DOI: 10.1016/j.freeradbiomed.2020.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023]
Abstract
Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
11
|
Tsai YW, Dong JL, Jian YJ, Fu SH, Chien MW, Liu YW, Hsu CY, Sytwu HK. Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms 2021; 9:microorganisms9091930. [PMID: 34576825 PMCID: PMC8466726 DOI: 10.3390/microorganisms9091930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity is a complex and multifaceted process that contributes to widespread functional decline that affects multiple organs and tissues. The pandemic of autoimmune diseases, which are a global health concern, augments in both the prevalence and incidence of autoimmune diseases, including type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. The development of autoimmune diseases is phenotypically associated with gut microbiota-modulated features at the molecular and cellular levels. The etiology and pathogenesis of autoimmune diseases comprise the alterations of immune systems with the innate and adaptive immune cell infiltration into specific organs and the augmented production of proinflammatory cytokines stimulated by commensal microbiota. However, the relative importance and mechanistic interrelationships between the gut microbial community and the immune system during progression of autoimmune diseases are still not well understood. In this review, we describe studies on the profiling of gut microbial signatures for the modulation of immunological homeostasis in multiple inflammatory diseases, elucidate their critical roles in the etiology and pathogenesis of autoimmune diseases, and discuss the implications of these findings for these disorders. Targeting intestinal microbiome and its metabolomic associations with the phenotype of autoimmunity will enable the progress of developing new therapeutic strategies to counteract microorganism-related immune dysfunction in these autoimmune diseases.
Collapse
Affiliation(s)
- Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, No.222, Maijin Road, Keelung 204, Taiwan;
- College of Medicine, Chang-Gung University, No.259, Wenhua 1st Road, Guishan Dist., Taoyuan City 333, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
| | - Jia-Ling Dong
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
| | - Yun-Jie Jian
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
| | - Yu-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chao-Yuan Hsu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- Correspondence: (C.-Y.H.); (H.-K.S.); Tel.: +886-2-8792-3100 (ext. 18535 (C.-Y.H.)/18539 (H.-K.S.)); Fax: +886-2-8792-1774 (H.-K.S.)
| | - Huey-Kang Sytwu
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Correspondence: (C.-Y.H.); (H.-K.S.); Tel.: +886-2-8792-3100 (ext. 18535 (C.-Y.H.)/18539 (H.-K.S.)); Fax: +886-2-8792-1774 (H.-K.S.)
| |
Collapse
|
12
|
Laswi I, Shafiq A, Al-Ali D, Burney Z, Pillai K, Salameh M, Mhaimeed N, Zakaria D, Chaari A, Yousri NA, Bendriss G. A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle. Microorganisms 2021; 9:741. [PMID: 33918112 PMCID: PMC8065742 DOI: 10.3390/microorganisms9040741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal disorders (GIDs) are a common comorbidity in patients with neurodevelopmental disorders (NDDs), while anxiety-like behaviors are common among patients with gastrointestinal diseases. It is still unclear as to which microbes differentiate these two groups. This pilot study aims at proposing an answer by exploring both the bacteriome and the mycobiome in a cohort of 55 volunteers with NDD, GID or controls, while accounting for additional variables that are not commonly included such as probiotic intake and diet. Recruited participants answered a questionnaire and provided a stool sample using the Fisherbrand collection kit. Bacterial and fungal DNA was extracted using the Qiagen Stool minikit. Sequencing (16sRNA and ITS) and phylogenetic analyses were performed using the PE300 Illumina Miseq v3 sequencing. Statistical analysis was performed using the R package. Results showed a significant decrease in bacterial alpha diversity in both NDD and GID, but an increased fungal alpha diversity in NDD. Data pointed at a significant bacterial dysbiosis between the three groups, but the mycobiome dysbiosis is more pronounced in NDD than in GID. Fungi seem to be more affected by probiotics, diet and antibiotic exposure and are proposed to be the main key player in differentiation between NDD and GID dybiosis.
Collapse
Affiliation(s)
- Ibrahim Laswi
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ameena Shafiq
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dana Al-Ali
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Zain Burney
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Krishnadev Pillai
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Mohammad Salameh
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Nada Mhaimeed
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dalia Zakaria
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ali Chaari
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Noha A. Yousri
- Research Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar;
- Computers and System Engineering, Alexandria University, Alexandria 21526, Egypt
| | - Ghizlane Bendriss
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| |
Collapse
|
13
|
Cassotta M, Forbes-Hernandez TY, Cianciosi D, Elexpuru Zabaleta M, Sumalla Cano S, Dominguez I, Bullon B, Regolo L, Alvarez-Suarez JM, Giampieri F, Battino M. Nutrition and Rheumatoid Arthritis in the 'Omics' Era. Nutrients 2021; 13:763. [PMID: 33652915 PMCID: PMC7996781 DOI: 10.3390/nu13030763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Modern high-throughput 'omics' science tools (including genomics, transcriptomics, proteomics, metabolomics and microbiomics) are currently being applied to nutritional sciences to unravel the fundamental processes of health effects ascribed to particular nutrients in humans and to contribute to more precise nutritional advice. Diet and food components are key environmental factors that interact with the genome, transcriptome, proteome, metabolome and the microbiota, and this life-long interplay defines health and diseases state of the individual. Rheumatoid arthritis (RA) is a chronic autoimmune disease featured by a systemic immune-inflammatory response, in genetically susceptible individuals exposed to environmental triggers, including diet. In recent years increasing evidences suggested that nutritional factors and gut microbiome have a central role in RA risk and progression. The aim of this review is to summarize the main and most recent applications of 'omics' technologies in human nutrition and in RA research, examining the possible influences of some nutrients and nutritional patterns on RA pathogenesis, following a nutrigenomics approach. The opportunities and challenges of novel 'omics technologies' in the exploration of new avenues in RA and nutritional research to prevent and manage RA will be also discussed.
Collapse
Affiliation(s)
- Manuela Cassotta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Tamara Y. Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
| | - Maria Elexpuru Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Sandra Sumalla Cano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Irma Dominguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Beatriz Bullon
- Department of Periodontology, Dental School, University of Sevilla, 41004 Sevilla, Spain;
| | - Lucia Regolo
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
| | - Josè Miguel Alvarez-Suarez
- AgroScience & Food Research Group, Universidad de Las Américas, Quito 170125, Ecuador;
- King Fahd Medical Research Center, King Abdulaziz University, Jedda 21589, Saudi Arabia
| | - Francesca Giampieri
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Pace F, Watnick PI. The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota. Trends Microbiol 2020; 29:849-859. [PMID: 33257138 DOI: 10.1016/j.tim.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The role of sex steroids in mammalian maturation is well established. Recently, it has been increasingly appreciated that sex steroids also play an important role in the propensity of adults to develop a myriad of diseases. The exposure and responsiveness of tissues to sex steroids varies among individuals and between the sexes, and this has been correlated with gender-specific differences in the composition of the intestinal microbiota and in susceptibility to metabolic, autoimmune, and neoplastic diseases. Here we focus on recent studies that demonstrate an interplay between sex steroids, the intestinal immune response, and the intestinal microbiota. While correlations between biological sex, the intestinal innate immune response, intestinal inflammation, and intestinal microbiota have been established, many gaps in our knowledge prevent the emergence of an overarching model for this complex interaction. Such a model could aid in the development of prebiotic, probiotic, or synthetic therapeutics that decrease the risk of autoimmune, metabolic, neoplastic, and infectious diseases of the intestine and mitigate the particular health risks faced by individuals receiving sex steroid treatment.
Collapse
Affiliation(s)
- Fernanda Pace
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|