1
|
Holt D, Contu L, Wood A, Chadwick H, Alborelli I, Insilla AC, Crea F, Hawkes CA. Both Maternal High-Fat and Post-Weaning High-Carbohydrate Diets Increase Rates of Spontaneous Hepatocellular Carcinoma in Aged-Mouse Offspring. Nutrients 2024; 16:2805. [PMID: 39203941 PMCID: PMC11357072 DOI: 10.3390/nu16162805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Both maternal obesity and postnatal consumption of obesogenic diets contribute to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). However, there is no consensus as to whether diets that are high in fat or carbohydrates/sugars differentially influence the development of HCC. Moreover, the long-term effects of prenatal HF exposure on HCC and whether this is influenced by postnatal diet has not yet been evaluated. C57BL/6 dams were fed either a low-fat, high-carbohydrate control (C) or low-carbohydrate, high-fat (HF) diet. At weaning, male and female offspring were fed the C or HF diet, generating four diet groups: C/C, C/HF, HF/C and HF/HF. Tissues were collected at 16 months of age and livers were assessed for MASLD and HCC. Glucose regulation and pancreatic morphology were also evaluated. Liver tissues were assessed for markers of glycolysis and fatty acid metabolism and validated using a human HCC bioinformatic database. Both C/HF and HF/HF mice developed obesity, hyperinsulinemia and a greater degree of MASLD than C/C and HF/C offspring. However, despite significant liver and pancreas pathology, C/HF mice had the lowest incidence of HCC while tumour burden was highest in HF/C male offspring. The molecular profile of HCC mouse samples suggested an upregulation of the pentose phosphate pathway and a downregulation of fatty acid synthesis and oxidation, which was largely validated in the human dataset. Both pre-weaning HF diet exposure and post-weaning consumption of a high-carbohydrate diet increased the risk of developing spontaneous HCC in aged mice. However, the influence of pre-weaning HF feeding on HCC development appeared to be stronger in the context of post-weaning obesity. As rates of maternal obesity continue to rise, this has implications for the future incidence of HCC and possible dietary manipulation of offspring carbohydrate intake to counteract this risk.
Collapse
Affiliation(s)
- Daniel Holt
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Laura Contu
- School of Psychological Sciences, Bristol University, Bristol BS8 1QU, UK;
| | - Alice Wood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Hannah Chadwick
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Ilaria Alborelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland;
| | - Andrea Cacciato Insilla
- Morphological Diagnostic and Biomolecular Characterization Area, Complex Unit of Pathological Anatomy Empoli and Prato, Usl Toscana Centro, 50122 Florence, Italy
| | - Francesco Crea
- Cancer Research Group, Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK;
| | - Cheryl A. Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| |
Collapse
|
2
|
Zhang QR, Zhang JB, Shen F, Xue R, Yang RX, Ren TY, Fan JG. Loss of NAT10 alleviates maternal high-fat diet-induced hepatic steatosis in male offspring of mice. Obesity (Silver Spring) 2024; 32:1349-1361. [PMID: 38816990 DOI: 10.1002/oby.24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an escalating health problem in pediatric populations. This study aimed to investigate the role of N-acetyltransferase 10 (NAT10) in maternal high-fat diet (HFD)-induced MASLD in offspring at early life. METHODS We generated male hepatocyte-specific NAT10 knockout (Nat10HKO) mice and mated them with female Nat10fl/fl mice under chow or HFD feeding. Body weight, liver histopathology, and expression of lipid metabolism-associated genes (Srebp1c, Fasn, Pparα, Cd36, Fatp2, Mttp, and Apob) were assessed in male offspring at weaning. Lipid uptake assays were performed both in vivo and in vitro. The mRNA stability assessment and RNA immunoprecipitation were performed to determine NAT10-regulated target genes. RESULTS NAT10 deletion in hepatocytes of male offspring alleviated perinatal lipid accumulation induced by maternal HFD, decreasing expression levels of Srebp1c, Fasn, Cd36, Fatp2, Mttp, and Apob while enhancing Pparα expression. Furthermore, Nat10HKO male mice exhibited reduced lipid uptake. In vitro, NAT10 promoted lipid uptake by enhancing the mRNA stability of CD36 and FATP2. RNA immunoprecipitation assays exhibited direct interactions between NAT10 and CD36/FATP2 mRNA. CONCLUSIONS NAT10 deletion in offspring hepatocytes ameliorates maternal HFD-induced hepatic steatosis through decreasing mRNA stability of CD36 and FATP2, highlighting NAT10 as a potential therapeutic target for pediatric MASLD.
Collapse
Affiliation(s)
- Qian-Ren Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Bin Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xue
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xu Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yi Ren
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
3
|
Wang JX, Qiao F, Zhang ML, Chen LQ, Du ZY, Luo Y. Double-edged effect of sodium citrate in Nile tilapia ( Oreochromis niloticus): Promoting lipid and protein deposition vs. causing hyperglycemia and insulin resistance. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:303-314. [PMID: 37635932 PMCID: PMC10447919 DOI: 10.1016/j.aninu.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 08/29/2023]
Abstract
Citrate is an essential substrate for energy metabolism that plays critical roles in regulating glucose and lipid metabolic homeostasis. However, the action of citrate in regulating nutrient metabolism in fish remains poorly understood. Here, we investigated the effects of dietary sodium citrate on growth performance and systematic energy metabolism in juvenile Nile tilapia (Oreochromis niloticus). A total of 270 Nile tilapia (2.81 ± 0.01 g) were randomly divided into three groups (3 replicates per group, 30 fish per replicate) and fed with control diet (35% protein and 6% lipid), 2% and 4% sodium citrate diets, respectively, for 8 weeks. The results showed that sodium citrate exhibited no effect on growth performance (P > 0.05). The whole-body crude protein, serum triglyceride and hepatic glycogen contents were significantly increased in the 4% sodium citrate group (P < 0.05), but not in the 2% sodium citrate group (P > 0.05). The 4% sodium citrate treatment significantly increased the serum glucose and insulin levels at the end of feeding trial and also in the glucose tolerance test (P < 0.05). The 4% sodium citrate significantly enhanced the hepatic phosphofructokinase activity and inhibited the expression of pyruvate dehydrogenase kinase isozyme 2 and phosphor-pyruvate dehydrogenase E1 component subunit alpha proteins (P < 0.05). Additionally, the 4% sodium citrate significantly increased hepatic triglyceride and acetyl-CoA levels, while the expressions of carnitine palmitoyl transferase 1a protein were significantly down-regulated by the 4% sodium citrate (P < 0.05). Besides, the 4% sodium citrate induced crude protein deposition in muscle by activating mTOR signaling and inhibiting AMPK signaling (P < 0.05). Furthermore, the 4% sodium citrate significantly suppressed serum aspartate aminotransferase and alanine aminotransferase activities, along with the lowered expression of pro-inflammatory genes, such as nfκb, tnfα and il8 (P < 0.05). Although the 4% sodium citrate significantly increased phosphor-nuclear factor-kB p65 protein expression (P < 0.05), no significant tissue damage or inflammation occurred. Taken together, dietary supplementation of sodium citrate could exhibit a double-edged effect in Nile tilapia, with the positive aspect in promoting nutrient deposition and the negative aspect in causing hyperglycemia and insulin resistance.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Kim J, Han D, Lee MS, Lee J, Kim IH, Kim Y. Green Tea and Java Pepper Mixture Prevents Obesity by Increasing Energy Expenditure and Modulating Hepatic AMPK/MicroRNA-34a/370 Pathway in High-Fat Diet-Fed Rats. Antioxidants (Basel) 2023; 12:antiox12051053. [PMID: 37237919 DOI: 10.3390/antiox12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to evaluate the anti-obesity effects of green tea and java pepper mixture (GJ) on energy expenditure and understand the regulatory mechanisms of AMP-activated protein kinase (AMPK), microRNA (miR)-34a, and miR-370 pathways in the liver. Sprague-Dawley rats were divided into four groups depending on the following diets given for 14 weeks: normal chow diet (NR), 45% high-fat diet (HF), HF + 0.1% GJ (GJL), and HF + 0.2% GJ (GJH). The results revealed that GJ supplementation reduced body weight and hepatic fat accumulation, improved serum lipids, and increased energy expenditure. In the GJ-supplemented groups, the mRNA levels of genes related to fatty acid syntheses, such as a cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) were downregulated, and mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα), carnitine/palmitoyl-transferase 1 (CPT1), and uncoupling protein 2 (UCP2), which participate in fatty acid oxidation, were upregulated in the liver. GJ increased the AMPK activity and decreased the miR-34a and miR-370 expression. Therefore, GJ prevented obesity by increasing energy expenditure and regulating hepatic fatty acid synthesis and oxidation, suggesting that GJ is partially regulated through AMPK, miR-34a, and miR-370 pathways in the liver.
Collapse
Affiliation(s)
- Jibin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dahye Han
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Monirujjaman M, Renani LB, Isesele P, Dunichand-Hoedl AR, Mazurak VC. Increased Expression of Hepatic Stearoyl-CoA Desaturase (SCD)-1 and Depletion of Eicosapentaenoic Acid (EPA) Content following Cytotoxic Cancer Therapy Are Reversed by Dietary Fish Oil. Int J Mol Sci 2023; 24:ijms24043547. [PMID: 36834959 PMCID: PMC9962117 DOI: 10.3390/ijms24043547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cancer treatment evokes impediments to liver metabolism that culminate in fatty liver. This study determined hepatic fatty acid composition and expression of genes and mediators involved in lipid metabolism following chemotherapy treatment. Female rats bearing the Ward colon tumor were administered Irinotecan (CPT-11) +5-fluorouracil (5-FU) and maintained on a control diet or a diet containing eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (2.3 g/100 g fish oil). Healthy animals provided with a control diet served as a reference group. Livers were collected one week after chemotherapy. Triacylglycerol (TG), phospholipid (PL), ten lipid metabolism genes, leptin, and IL-4 were measured. Chemotherapy increased TG content and reduced EPA content in the liver. Expression of SCD1 was upregulated by chemotherapy, while dietary fish oil downregulated its expression. Dietary fish oil down-regulated expression of the fatty acid synthesis gene FASN, while restoring the long chain fatty acid converting genes FADS2 and ELOVL2, and genes involved in mitochondrial β-oxidation (CPT1α) and lipid transport (MTTP1), to values similar to reference animals. Neither leptin nor IL-4 were affected by chemotherapy or diet. Depletion of EPA is associated with pathways evoking enhanced TG accumulation in the liver. Restoring EPA through diet may pose a dietary strategy to attenuate chemotherapy-associated impediments in liver fatty acid metabolism.
Collapse
|
6
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Non-coding RNAs: The link between maternal malnutrition and offspring metabolism. Front Nutr 2022; 9:1022784. [DOI: 10.3389/fnut.2022.1022784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Early life nutrition is associated with the development and metabolism in later life, which is known as the Developmental Origin of Health and Diseases (DOHaD). Epigenetics have been proposed as an important explanation for this link between early life malnutrition and long-term diseases. Non-coding RNAs (ncRNAs) may play a role in this epigenetic programming. The expression of ncRNAs (such as long non-coding RNA H19, microRNA-122, and circular RNA-SETD2) was significantly altered in specific tissues of offspring exposed to maternal malnutrition. Changes in these downstream targets of ncRNAs lead to abnormal development and metabolism. This review aims to summarize the existing knowledge on ncRNAs linking the maternal nutrition condition and offspring metabolic diseases, such as obesity, type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD).
Collapse
|
7
|
Fouda S, Vennikandam MM, Pappachan JM, Fernandez CJ. Pregnancy and Metabolic-associated Fatty Liver Disease: A Clinical Update. J Clin Transl Hepatol 2022; 10:947-954. [PMID: 36304500 PMCID: PMC9547252 DOI: 10.14218/jcth.2022.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The intricate relationship between metabolic-associated fatty liver disease (MAFLD) and maternal complications has rapidly become a significant health threat in pregnant women. The presence of MAFLD in pregnancy increases the maternal risk of metabolic complications and comorbidities for both mother and baby. The preexistence or development of MAFLD in pregnancy is a complex multifactorial disorder that can lead to further complications for mother and baby. Therefore, as pregnant women are severely underrepresented in clinical research, there is a great need for a fair inclusion of this group in clinical trials. This review aims to explore the effects of MAFLD during pregnancy in the context of maternal complications and outcomes and explore the effects of pregnancy on the development and progression of MAFLD within the context of maternal obesity, altered metabolic profiles, gestational diabetes and altered hormonal profiles. We also addressed potential implications for the presence of MAFLD during pregnancy and its management in the clinical setting.
Collapse
Affiliation(s)
- Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Madhu Mathew Vennikandam
- Department of Gastroenterology and Hepatology, Sparrow Hospital, Michigan State University College of Human Medicine, Lansing, MI, USA
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston, UK
- Faculty of Science, Manchester Metropolitan University, Manchester, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Correspondence to: Joseph M Pappachan, Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK. ORCID: https://orcid.org/0000-0003-0886-5255. Tel/Fax: +44-1-7725-22092, E-Mail:
| | | |
Collapse
|
8
|
Tian H, Niu H, Luo J, Yao W, Gao W, Wen Y, Cheng M, Lei A, Hua J. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10:e13945. [PMID: 36124130 PMCID: PMC9482360 DOI: 10.7717/peerj.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Lipid synthesis is an indispensable process during embryo and growth development. Abnormal lipid synthesis metabolism can cause multiple metabolic diseases including obesity and hyperlipidemia. Stearoyl-Coenzyme A desaturase 1 (SCD1) is responsible for catalyzing the synthesis of monounsaturated fatty acids (MUFA) and plays an essential role in lipid metabolism. The aim of our study was to evaluate the effects of SCD1 on embryo development and lipid synthesis in a knockout mice model. Methods We used the CRISPR/Cas9 system together with microinjection for the knockout mouse model generation. Ten-week-old female C57BL/6 mice were used for zygote collection. RNase-free water was injected into mouse zygotes at different cell phases in order to select the optimal time for microinjection. Five sgRNAs were designed and in vitro transcription was performed to obtain sgRNAs and Cas9 mRNA. RNase-free water, NC sgRNA/Cas9 mRNA, and Scd1 sgRNA/Cas9 mRNA were injected into zygotes to observe the morula and blastocyst formation rates. Embryos that were injected with Scd1 sgRNA/Cas9 mRNA and developed to the two-cell stage were used for embryo transfer. Body weight, triacylglycerol (TAG), and cholesterol in Scd1 knockout mice serum were analyzed to determine the effects of SCD1 on lipid metabolism. Results Microinjection performed during the S phase presented with the highest zygote survival rate (P < 0.05). Of the five sgRNAs targeted to Scd1, two sgRNAs with relatively higher gene editing efficiency were used for Scd1 knockout embryos and mice generation. Genome sequence modification was observed at Scd1 exons in embryos, and Scd1 knockout reduced blastocyst formation rates (P < 0.05). Three Scd1 monoallelic knockout mice were obtained. In mice, the protein level of SCD1 decreased (P < 0.05), and the body weight and serum TAG and cholesterol contents were all reduced (P < 0.01).
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Yang L, Li JZ, Li MR. Progress in research of lipogenesis inhibitors for treatment of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2022; 30:735-742. [DOI: 10.11569/wcjd.v30.i16.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease. At present, the main clinical treatment for NAFLD is diet adjustment, exercise, and weight loss, but the effect is poor, and there is still a lack of recognized drugs with significant efficacy in NAFLD. In recent years, with the in-depth study of the pathogenesis of NAFLD, it has been found that the core enzymes that inhibit intrahepatic de novo lipogenesis (DNL), including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1), can improve hepatic steatosis and provide a new method for the treatment of NAFLD. This article reviews the research progress of five different types of lipogenesis inhibitors for treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jin-Zhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Min-Ran Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
10
|
de Groot JM, Geurtsen ML, Santos S, Jaddoe VWV. Ethnic disparities in liver fat accumulation in school-aged children. Obesity (Silver Spring) 2022; 30:1472-1482. [PMID: 35785476 PMCID: PMC9546249 DOI: 10.1002/oby.23478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) has a different prevalence in adults from different ethnic groups. This study examined whether these ethnic differences originate in early life and could be explained by early-life factors. METHODS This observational study was embedded in a population-based prospective cohort study from fetal life onward among 2,570 children born in Rotterdam, the Netherlands. Information about prepregnancy, pregnancy, and childhood factors, as well as childhood BMI, was obtained from questionnaires and physical examinations. Liver fat was assessed by magnetic resonance imaging at age 10 years. RESULTS Median liver fat fraction was 2.0% (95% CI: 1.2%-5.3%), and NAFLD prevalence was 2.8%. Children from a Turkish background had the highest median liver fat percentage (2.5%, 95% CI: 1.2%-10.7%) and NAFLD prevalence (9.1%). Children of Cape Verdean, Dutch Antillean, Surinamese-Creole, or Turkish background had a higher total liver fat fraction compared with children with a Dutch background (p < 0.05). After controlling for early-life factors, these differences persisted only in children with a Turkish background. CONCLUSIONS Prevalence of liver fat accumulation and NAFLD differs between ethnic subgroups living in the Netherlands, especially for those with a Turkish background. Early-life factors have a strong influence on these associations and may hold clues for future preventive strategies.
Collapse
Affiliation(s)
- Jasmin M. de Groot
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Madelon L. Geurtsen
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Susana Santos
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Vincent W. V. Jaddoe
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
11
|
Xing T, Liu Y, Cheng H, Bai M, Chen J, Ji H, He M, Chen K. Ligature induced periodontitis in rats causes gut dysbiosis leading to hepatic injury through SCD1/AMPK signalling pathway. Life Sci 2022; 288:120162. [PMID: 34813797 DOI: 10.1016/j.lfs.2021.120162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
AIMS Previous studies have demonstrated that chronic periodontitis (CP) is closely associated with the occurrence and development of a variety of systemic diseases. In this study, we successfully constructed a rat CP model through dental silk ligation, and the corresponding inflammatory reactions and fatty lesions were observed in the liver. MAIN METHODS Sprague-Dawley rats (n = 6) underwent tooth ligation at the bilateral first molars with silk thread to induce CP and were sacrificed 8 weeks later and compared to non-ligated rats (n = 6). RNA sequencing and 16S rRNA analysis were performed to determine the molecular mechanisms of CP involved in inducing liver disease. Alveolar bone loss, liver enzymes, mandible and liver histopathology, and inflammatory responses were compared between groups. KEY FINDINGS RNA sequencing of liver tissue showed that the expression of SCD1 increased significantly in CP rats compared to controls. KEGG enrichment analysis showed that the AMPK signalling pathway may be involved in liver steatosis. The intestinal flora of faecal samples of rats were analysed by 16S rRNA sequencing, and the results indicated that the intestinal flora of the CP group was evidently imbalanced. The expression levels of tight junction proteins (ZO-1, occludin, and claudin-1) were significantly reduced in CP rats. Meanwhile, increases in serum IL-1β and lipopolysaccharide in CP rats reflected a systemic inflammatory response. SIGNIFICANCE CP may be involved in the occurrence and development of hepatic injury and liver steatosis, and its mechanism may be related to the oral-gut-liver axis and SCD1/AMPK signal activation in the liver.
Collapse
Affiliation(s)
- Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yajing Liu
- Department of Public Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Huixin Cheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Miaomiao Bai
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Jingning Chen
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Hefei 230032, China
| | - Huafeng Ji
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Hefei 230032, China
| | - Maozhang He
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei 230022, China.
| | - Keyang Chen
- Department of Public Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China.
| |
Collapse
|
12
|
Gallego-Durán R, Montero-Vallejo R, Maya-Miles D, Lucena A, Martin F, Ampuero J, Romero-Gómez M. Analysis of Common Pathways and Markers From Non-Alcoholic Fatty Liver Disease to Immune-Mediated Diseases. Front Immunol 2021; 12:667354. [PMID: 34899679 PMCID: PMC8652219 DOI: 10.3389/fimmu.2021.667354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most prevalent form of liver disease worldwide, accounting for a high liver-related mortality and morbidity with extensive multi-organ involvement. This entity has displaced viral hepatitis as the main cause of severe forms of hepatic diseases, although the onset and transition of MAFLD stages still remains unclear. Nevertheless, innate and adaptive immune responses seem to play an essential role in the establishment and further progression of this disease. The immune system is responsible of safeguard and preserves organs and systems function, and might be altered under different stimuli. Thus, the liver suffers from metabolic and immune changes leading to different injuries and loss of function. It has been stablished that cell-cell crosstalk is a key process in the hepatic homeostasis maintenance. There is mounting evidence suggesting that MAFLD pathogenesis is determined by a complex interaction of environmental, genetic and host factors that leads to a full plethora of outcomes. Therefore, herein we will revisit and discuss the interplay between immune mechanisms and MAFLD, highlighting the potential role of immunological markers in an attempt to clarify its relationship.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Lucena
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Franz Martin
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
13
|
Maternal high-fat diet consumption programs male offspring to mitigate complications in liver regeneration. J Dev Orig Health Dis 2021; 13:575-582. [PMID: 34857059 DOI: 10.1017/s2040174421000659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last decades, obesity and nonalcoholic fatty liver disease (NAFLD) have become increasingly prevalent in wide world. Fatty liver can be detrimental to liver regeneration (LR) and offspring of obese dams (HFD-O) are susceptible to NAFLD development. Here we evaluated LR capacity in HFD-O after partial hepatectomy (PHx). HFD-O re-exposed or not to HFD in later life were evaluated for metabolic parameters, inflammation, proliferation, tissue repair markers and survival rate after PHx. Increasing adiposity and fatty liver were observed in HFD-O. Despite lower IL-6 levels, Ki67 labeling, cells in S phase and Ciclin D1/PCNA protein content, a lower impact on survival rate was found after PHx, even when re-exposed to HFD. However, no difference was observed between offspring of control dams (SC-O) and HFD-O after surgery. Although LR impairment is dependent of steatosis development, offspring of obese dams are programmed to be protected from the damage promoted by HFD.
Collapse
|
14
|
Branco JR, Esteves AM, Leandro JGB, Demaria TM, Godoi V, Marette A, Valença HDM, Lanzetti M, Peyot ML, Farfari S, Prentki M, Zancan P, Sola-Penna M. Dietary citrate acutely induces insulin resistance and markers of liver inflammation in mice. J Nutr Biochem 2021; 98:108834. [PMID: 34371126 DOI: 10.1016/j.jnutbio.2021.108834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Citrate is widely used as a food additive being part of virtually all processed foods. Although considered inert by most of the regulatory agencies in the world, plasma citrate has been proposed to play immunometabolic functions in multiple tissues through altering a plethora of cellular pathways. Here, we used a short-term alimentary intervention (24 hours) with standard chow supplemented with citrate in amount corresponding to that found in processed foods to evaluate its effects on glucose homeostasis and liver physiology in C57BL/6J mice. Animals supplemented with dietary citrate showed glucose intolerance and insulin resistance as revealed by glucose and insulin tolerance tests. Moreover, animals supplemented with citrate in their food displayed fed and fasted hyperinsulinemia and enhanced insulin secretion during an oral glucose tolerance test. Citrate treatment also amplified glucose-induced insulin secretion in vitro in INS1-E cells. Citrate supplemented animals had increased liver PKCα activity and altered phosphorylation at serine or threonine residues of components of insulin signaling including IRS-1, Akt, GSK-3 and FoxO1. Furthermore, citrate supplementation enhanced the hepatic expression of lipogenic genes suggesting increased de novo lipogenesis, a finding that was reproduced after citrate treatment of hepatic FAO cells. Finally, liver inflammation markers were higher in citrate supplemented animals. Overall, the results demonstrate that dietary citrate supplementation in mice causes hyperinsulinemia and insulin resistance both in vivo and in vitro, and therefore call for a note of caution on the use of citrate as a food additive given its potential role in metabolic dysregulation.
Collapse
Affiliation(s)
- Jessica Ristow Branco
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Amanda Moreira Esteves
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Gabriel Bernardo Leandro
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thainá M Demaria
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vilma Godoi
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - André Marette
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Québec, Canada
| | - Helber da Maia Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marie-Line Peyot
- Molecular Nutrition Unit, Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), department of Nutrition, Université de Montréal, Montréal, Canada
| | - Salah Farfari
- Molecular Nutrition Unit, Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), department of Nutrition, Université de Montréal, Montréal, Canada
| | - Marc Prentki
- Molecular Nutrition Unit, Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), department of Nutrition, Université de Montréal, Montréal, Canada
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Mukonowenzou NC, Adeshina KA, Donaldson J, Ibrahim KG, Usman D, Erlwanger KH. Medicinal Plants, Phytochemicals, and Their Impacts on the Maturation of the Gastrointestinal Tract. Front Physiol 2021; 12:684464. [PMID: 34393812 PMCID: PMC8363294 DOI: 10.3389/fphys.2021.684464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal tract (GIT) is the first point of contact for ingested substances and thus represents a direct interface with the external environment. Apart from food processing, this interface plays a significant role in immunity and contributes to the wellbeing of individuals through the brain-gut-microbiota axis. The transition of life from the in utero environment, to suckling and subsequent weaning has to be matched by phased development and maturation of the GIT; from an amniotic fluid occupancy during gestation, to the milk in the suckling state and ultimately solid food ingestion at weaning. This phased maturation of the GIT can be affected by intrinsic and extrinsic factors, including diet. Despite the increasing dietary inclusion of medicinal plants and phytochemicals for health benefits, a dearth of studies addresses their impact on gut maturation. In this review we focus on some recent findings mainly on the positive impact of medicinal plants and phytochemicals in inducing precocious maturation of the GIT, not only in humans but in pertinent animals. We also discuss Paneth cells as mediators and potential markers of GIT maturation.
Collapse
Affiliation(s)
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Sokoto, Nigeria
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Sokoto, Nigeria
| | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Sokoto, Nigeria
| | - Kennedy Honey Erlwanger
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| |
Collapse
|