1
|
Mishra VK, Rodriguez-Lecompte JC, Ahmed M. Nanoparticles mediated folic acid enrichment. Food Chem 2024; 456:139964. [PMID: 38876059 DOI: 10.1016/j.foodchem.2024.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Folate is an essential component of many metabolic processes, and folate deficiency is known to cause various disorders. Folate and folic acid, a synthetic and chemically stable form of folate, enriched diet are typically used to overcome this deficiency. Folic acid and folate however, are susceptible to harsh environment and folates enrichment using nanoparticles is an intensively studied strategy in food industry. This review highlights the current methods and types of matrices utilized to develop folic acid/folate carrying nanoparticles. The folic acid/folate loaded nanoparticles prevent cargo degradation during gut absorption and under harsh food processing conditions including, high temperatures, UV light, and autoclaving. The data demonstrates that nanofortifcation of folates using proteins and biopolymers effectively enhances the bioavailability of the cargo. The encapsulation of folic acid in biopolymers by emulsion, spray drying and ionic gelation represent simplistic methods that can be easily scaled up with applications in food industry.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
2
|
Soliman TN, Karam-Allah AA, Abo-Zaid EM, Mohammed DM. Efficacy of nanoencapsulated Moringa oleifera L. seeds and Ocimum tenuiflorum L. leaves extracts incorporated in functional soft cheese on streptozotocin-induced diabetic rats. PHYTOMEDICINE PLUS 2024; 4:100598. [DOI: 10.1016/j.phyplu.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
3
|
Gvozdenko A, Blinov A, Golik A, Rekhman Z, Nagdalian A, Filippov D, Askerova A, Bocharov N, Kastarnova E, Hassan FA, AL-Farga A, Shariati MA. Harnessing the Power of a Novel Triple Chelate Complex in Fermented Probiotic Dairy Products: A Promising Solution for Combating Iron Deficiency Anemia. ACS OMEGA 2024; 9:28594-28610. [PMID: 38973905 PMCID: PMC11223220 DOI: 10.1021/acsomega.4c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
This study discovered and examined novel triple chelate complexes involving iron, ascorbic acid, and essential amino acids (AsA-Fe-AmA triple chelate complexes) for the first time. The mechanism of complex formation was studied using FTIR spectroscopy and quantum chemical modeling. The produced complexes were shown to be suitable for fortifying food items with a pH of 3-7 that have not been exposed to heat treatment at temperatures over 75 °C for more than 15 min. Thus, it can be said that the concentration for milk fortification should be 0.005 mol/L or less. In vivo experiments in rats models revealed that the synthesized complexes increased serum iron levels after a single application to reference values within 24 h of oral administration. The iron level increased by 14.0 mmol/L at 2 mL dose of the complex. This fact makes it possible to consider the use of developed complexes and developed fermented dairy products for the prevention of iron deficiency and iron deficiency anemia. Research on the effect of discovered compounds on the physicochemical and organoleptic qualities of milk was conducted. Furthermore, iron ascorbate threoninate, iron ascorbate methioninate, iron ascorbate lysinate, and iron ascorbate tryptophanate all had a beneficial effect on Lacticaseibacillus rhamnosus at concentrations as low as 0.0005 mol/L, which is significant for milk fermentation. A study of fermented milk products revealed that the most effective AsA-Fe-AmA triple chelate complex is iron ascorbate lysinate, which might be further investigated as a viable molecule for dietary fortification in iron deficiency anemia. It was found that fortified fermented milk products had a titratable acidity of 67 ± 1°T, pH of 4.38 ± 0.05, and a viscosity of 2018 ± 142 Pa·s.
Collapse
Affiliation(s)
- Alexey Gvozdenko
- Physical
and Technical Faculty, North-Caucasus Federal
University, Stavropol 355017, Russia
| | - Andrey Blinov
- Physical
and Technical Faculty, North-Caucasus Federal
University, Stavropol 355017, Russia
| | - Alexey Golik
- Physical
and Technical Faculty, North-Caucasus Federal
University, Stavropol 355017, Russia
| | - Zafar Rekhman
- Physical
and Technical Faculty, North-Caucasus Federal
University, Stavropol 355017, Russia
| | - Andrey Nagdalian
- Laboratory
of Food and Industrial Biotechnology, North-Caucasus
Federal University, Stavropol 355017, Russia
| | - Dionis Filippov
- Physical
and Technical Faculty, North-Caucasus Federal
University, Stavropol 355017, Russia
| | - Alina Askerova
- Laboratory
of Food and Industrial Biotechnology, North-Caucasus
Federal University, Stavropol 355017, Russia
| | - Nikita Bocharov
- Physical
and Technical Faculty, North-Caucasus Federal
University, Stavropol 355017, Russia
| | - Elena Kastarnova
- Eterinary
Faculty, Stavropol Sate Agrarian University, Zootechnicheskiy Street 9, Stavropol 355017, Russia
| | - Faten Abdo Hassan
- Faculty
of Science, Department of Microbiology, Taiz University, Taiz 9674, Yemen
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Science, University
of Jeddah, Jeddah 21577, Saudi Arabia
| | - Mohammad Ali Shariati
- Scientific
Department, Semey Branch of the Kazakh Research
Institute of Processing and Food Industry, Gagarin Avenue 238G, Almaty 050060, Kazakhstan
| |
Collapse
|
4
|
Taha HAIM, Agamy NFM, Soliman TN, Younes NM, El-Enshasy HA, Darwish AMG. Preparation and characterization of vitamin E/calcium/soy protein isolate nanoparticles for soybean milk beverage fortification. PeerJ 2024; 12:e17007. [PMID: 38584941 PMCID: PMC10998632 DOI: 10.7717/peerj.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Soybean milk is a rich plant-based source of protein, and phenolic compounds. This study compared the nutritional value of soybean milk, flour, soy protein isolate (SPI) and evaluated the impact of prepared vitamin E/calcium salt/soy protein isolate nanoparticles (ECSPI-NPs) on fortification of developed soybean milk formulations. Results indicated that soybean flour protein content was 40.50 g/100 g, that fulfills 81% of the daily requirement (DV%), the unsaturated fatty acids (USFs), oleic and linoleic content was 21.98 and 56.7%, respectively, of total fatty acids content. In soybean milk, essential amino acids, threonine, leucine, lysine achieved 92.70, 90.81, 77.42% of amino acid scores (AAS) requirement values respectively. Ferulic acid was the main phenolic compound in soybean flour, milk and SPI (508.74, 13.28, 491.78 µg/g). Due to the moisture content of soybean milk (88.50%) against (7.10%) in soybean flour, the latest showed higher nutrients concentrations. The prepared calcium (20 mM/10 g SPI) and vitamin E (100 mg/g SPI) nanoparticles (ECSPI-NPs) exhibited that they were effectively synthesized under transmission electron microscope (TEM), stability in the zeta sizer analysis and safety up to IC50 value (202 ug/mL) on vero cell line. ECSPI-NPs fortification (NECM) enhanced significantly phenolic content (149.49 mg/mL), taste (6.10), texture (6.70) and consumer overall acceptance (6.54). Obtained results encourage the application of the prepared ECSPI-NPs for further functional foods applications.
Collapse
Affiliation(s)
- Heba A. I. M. Taha
- Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Neveen F. M. Agamy
- Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Tarek N. Soliman
- Department of Dairy Sciences, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Nashwa M. Younes
- Department of Home Economics, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor, Malaysia
- Universiti Teknologi Malaysia, Johor, Malaysia
- City of Scientific Research and Technology Applications, Alexandria, Borg El Arab, Egypt
| | - Amira M. G. Darwish
- Faculty of Industrial and Energy Technology, Borg Al Arab Technological University BATU, Alexandria, Borg El Arab, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| |
Collapse
|
5
|
Turek K, Khachatryan G, Khachatryan K, Krystyjan M. An Innovative Method for the Production of Yoghurt Fortified with Walnut Oil Nanocapsules and Characteristics of Functional Properties in Relation to Conventional Yoghurts. Foods 2023; 12:3842. [PMID: 37893734 PMCID: PMC10606234 DOI: 10.3390/foods12203842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are crucial nutrients involved in a plethora of metabolic and physiological processes. PUFAs have been extensively researched for their effects on human nutrition and health. The high demand for these fatty acids offers the possibility of adding vegetable oils to dairy products such as yoghurt. The aim of this study was to produce nano/microcapsules comprising walnut oil through exclusively natural ingredients utilised in yoghurt manufacturing. Additionally, the study tested yoghurt supplemented with PUFAs using the acquired nano/microcapsules. Chemical and physiochemical properties, microbiological analysis, rheological measurements, texture analysis, scanning electron microscope (SEM) analysis, ATR-FTIR spectroscopy, and sensory and fatty acids profile analysis were performed. A physico-chemical analysis highlighted the impact of oil addition on fat and dry matter concentration, revealing an increased quantity of said components in yoghurt after oil addition. Based on the identified parameters for potential and active acidity in the yoghurts, normal lactic fermentation was observed. Furthermore, the addition of oil was found to have an impact on the pH of the yoghurt. Microbiological analysis indicated that the incorporation of nano-encapsulated walnut oil did not have any notable effect on the abundance of determined microorganisms in the yoghurt. However, it was observed that the number of Lactobacillus delbrueckii ssp. bulgaricus increased as a result of storage. The incorporation of enclosed oil in yoghurt resulted in negligible alterations in rheological and sensory characteristics when compared with the plain variant. The addition of oil had an effect on most of the analysed fatty acids. Fortified yoghurt shows a more favourable proportion of the fatty acid groups tested (SFA, MUFA, and PUFA) and lower values of fat quality factors (AI and TI).
Collapse
Affiliation(s)
- Katarzyna Turek
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland;
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Magdalena Krystyjan
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| |
Collapse
|
6
|
Naz N, Khan MR, Shabbir MA, Faisal MN. Effect of iron-fortified jamun leather on the Asunra-induced anemia in Sprague Dawley rats. Front Nutr 2023; 10:1195981. [PMID: 37384107 PMCID: PMC10293738 DOI: 10.3389/fnut.2023.1195981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Micronutrients such as minerals and vitamins are required in a minute quantity but play a pivotal role in the functioning of the body. Therefore, deficiency in one of them can lead to lethal health conditions. Iron deficiency anaemia is one of the most common micronutrient deficiencies across the world and is affecting women and children. Methods The present study aimed to investigate the anti-anaemic effect of fortified jamun leather on anaemia biomarkers and haematology in anaemic female Sprague Dawley rats. A total of 40 Sprague Dawley rats were used in 4 groups. Iron deficiency anaemia was induced by oral administration of the Asunra drug. The treatments were fed at two dosage levels i.e., 40 and 60% iron-fortified leather. All animals were treated for 60 days and the parameters including biochemical, and histopathology of the kidney and liver were examined. Results The experiment's findings showed that the group fed with iron-fortified leather (G3) succeeded significantly (P < 0.05) in restoring the serum iron (98.68 ± 2.88 μg/dL), haemoglobin (12.41 ± 0.32 g/dL), ferritin (24.54 ± 1.98 ng/mL) and haematocrit levels (39.30 ± 1.66%) at the end of the 60 days period. Additionally, the treated group's mean values for transferrin and total iron binding capacity were lower than those of the anaemic rats, indicating an improvement in iron levels. The microscopic analysis revealed that treatments had no toxic effects on the kidney and liver tissues, except in the diseased group, which had necrosis and irregular cell structure. Conclusion Conclusively, iron-fortified jamun leather helped improve iron deficiency biomarkers and imparted a non-toxic effect on tissues in rats.
Collapse
Affiliation(s)
- Nosheen Naz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Ciont C, Mesaroș A, Pop OL, Vodnar DC. Iron oxide nanoparticles carried by probiotics for iron absorption: a systematic review. J Nanobiotechnology 2023; 21:124. [PMID: 37038224 PMCID: PMC10088223 DOI: 10.1186/s12951-023-01880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND One-third of the world's population has anemia, contributing to higher morbidity and death and impaired neurological development. Conventional anemia treatment raises concerns about iron bioavailability and gastrointestinal (GI) adverse effects. This research aims to establish how iron oxide nanoparticles (IONPs) interact with probiotic cells and how they affect iron absorption, bioavailability, and microbiota variation. METHODS Pointing to the study of the literature and developing a review and critical synthesis, a robust search methodology was utilized by the authors. The literature search was performed in the PubMed, Scopus, and Web of Science databases. Information was collected between January 2017 and June 2022 using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) protocols for systematic reviews and meta-analyses. We identified 122 compatible research articles. RESULTS The research profile of the selected scientific articles revealed the efficacy of IONPs treatment carried by probiotics versus conventional treatment. Therefore, the authors employed content assessment on four topics to synthesize previous studies. The key subjects of the reviewed reports are the characteristics of the IONPs synthesis method, the evaluation of cell absorption and cytotoxicity of IONPs, and the transport of IONPs with probiotics in treating anemia. CONCLUSIONS To ensure a sufficient iron level in the enterocyte, probiotics with the capacity to attach to the gut wall transport IONPs into the enterocyte, where the maghemite nanoparticles are released.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania
| | - Amalia Mesaroș
- Physics and Chemistry Department, C4S Centre, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Moscoso-Mujica G, Mujica Á, Chávez J, Peña C, Begazo N, Estrella J, Estrada Z, Tello L, Ramos Y, Rivera D, Inocente C, Huarca F. Antianemic activity of quinoa (Chenopodium quinoa Willd) Collana Negra variety and kanihua (Chenopodium pallidicaule Aellen) Ramis variety seed flour in anemic rats. SN APPLIED SCIENCES 2022; 4:318. [DOI: 10.1007/s42452-022-05202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractThe Andean grains from the Peruvian Altiplano, quinoa (Chenopodium quinoa Willd) and kanihua (Chenopodium pallidicaule Aellen) have high protein content and an optimal balance of essential amino acids and minerals such as iron (19.8 mg/100 g y 17.6 mg/100 g, respectively). The objective of this research was to evaluate the antianemic activity of extruded flour from quinoa seeds variety Negra Collana and kanihua variety Ramis in anemic Holtzman strain rats. The results of the proximal analysis showed high protein content in quinoa at 22% and kanihua at 16.2%, and the acute toxicity test showed harmlessness up to the dose of 15000 mg/Kg in both flours confirmed with the anatomopathological observation of organs such as liver, stomach, lung, kidneys, and brain. In the evaluation of the antianemic activity, a basal average of 29.3 ± 0.2% of hematocrit was observed in the group of anemic rats treated with quinoa flour, and in twelve weeks, it increased to 53.8 ± 0.3% of hematocrit (p ≤ 0.05). A group of anemic rats treated with kanihua flour had a basal average of 29.5 ± 0.3%, and in twelve weeks, it increased to 51.7 ± 0.3% (p ≤ 0.05). A group of rats without anemia treated with quinoa and kanihua flour showed a basal average of 50.2 ± 0.2% and 49.3 ± 0.3%; in twelve weeks, it increased to 55.2 ± 0.2% and 54.8 ± 0.1%, respectively. It was concluded that oral administration of 360 mg/Kg every 24 h of quinoa flour and kanihua flour increased hematocrit levels by 24.5 ± 0.5% and 22.2 ± 0.3%; weight 65.8 ± 0.3 g and 59.2 ± 0.1 g; height 6.8 ± 0.1 cm and 5.7 ± 0.5 cm, respectively (p ≤ 0.05). In rats without anemia increased hematocrit levels by 5.3 ± 0.0% and 5.5 ± 0.0%; weight 37.7 ± 0.1 g and 21.7 ± 0.05 g; height 4 ± 0.0 cm and 3.9 ± 0.0 cm, respectively (p ≤ 0.05).
Collapse
|
9
|
Ghorbani S, Shekarforoush SS, Niakousari M, Gheisari HR, Janipour R. Formulation and assessing characteristics of probiotic ice cream fortified with free and encapsulated iron. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Soliman TN, Nasser SA. Characterization of carotenoids double-encapsulated and incorporate in functional stirred yogurt. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.979252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carrot industry processing outputs 50% waste from raw materials; this waste contains polyphenols and carotenoids, which are a significant natural source of pro-vitamin A. Also, yogurt's high consumption globally allows for designing a new functional product. So the goal is to enhance the functionality of fortified stirred yogurt by incorporating carotenoid beads. The carotenoids were extracted from carrot waste using ultrasonication. Then nanoemulsion carotenoids incorporating with alginate to produce beads by extrusion technique. Measurement of carotenoid stability to nanoemulsion and beads. Manufactured five treatments of orange-flavored stirred yogurt and investigated its physicochemical properties, LAB survival, viscosity, and sensory acceptability. Findings – Carrot waste extract had about 44.75 ± 3.15 mg/g of β-carotene. The mean particle size of the nanoemulsion decreased with the increasing carotenoid addition (0.5%, 1%, and 1.5%) of carrot waste extract. The mean diameters of the alginate beads with nanoemulsions were 1.498 ± 0.245, 1.654 ± 0.310, and 1.792 ± 0.454 mm, respectively. The highest chemical stability of carotenoids showed with the alginate beads after Storage at 55°C to 14 days, compared with free or nanoemulsion carotenoids. Yogurt's physicochemical properties, viscosity, and LAB count improve when double-encapsulated carotenoids are added. Carotenoid double-encapsulation appeared to have a high ability to protect carotenoids from degradation and the ability to be applied in dairy and pharmaceutical products. Also, the resultant stirred yogurt with carotenoids-loaded beads gave carotenoids high stability and sensory acceptability.
Collapse
|
11
|
Nanofortification of vitamin B-complex in food matrix: Need, regulations, and prospects. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100100. [PMID: 35769403 PMCID: PMC9235048 DOI: 10.1016/j.fochms.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Overview of nanomaterials to fortify food with vitamin B-complex. Nanofortification of food with vitamin B-complex to overcome conventional fortification challenges. Regulatory aspects, prospects, and upcoming trends of this indispensable technology are also discussed.
Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern in the growing population. Vitamin B-complex plays an essential role in many body functions. With the introduction of nanotechnology in the food industry, new and innovative techniques have started to develop, which holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 (UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and composites along with their applications, are discussed in detail. Among various nanomaterials, organic nanomaterials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also highlighted in this review.
Collapse
|
12
|
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS OMEGA 2022; 7:20441-20456. [PMID: 35755397 PMCID: PMC9219084 DOI: 10.1021/acsomega.2c01833] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 05/04/2023]
Abstract
Iron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.
Collapse
Affiliation(s)
- Elif Piskin
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Danila Cianciosi
- Faculty of Medicine, Department of Clinical Sciences, Polytechnic University of Marche, via Pietro Ranieri, 60131 Ancona, Italy
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, 35430 Urla, İzmir
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
13
|
Gomaa MAE, Allam MG, Haridi AAIM, Eliwa AEM, Darwish AMG. High-Protein Concentrated Pro-Yogurt (Pro-WPI) Enriched With Whey Protein Isolate Improved Athletic Anemia and Performance in a Placebo-Controlled Study. Front Nutr 2022; 8:788446. [PMID: 35127786 PMCID: PMC8811298 DOI: 10.3389/fnut.2021.788446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Upcoming developments are attracting attention to both high-protein and probiotics supplementation for the sports community to promote good health and exercise performance. This study aimed at the production of high-protein concentrated pro-yogurt (Pro-WPI) enriched with 10 and 20% whey protein isolate (WPI) and investigation of the response of daily consumption on anthropometric, hematology parameters, and athletic performance in parallel with safety consideration assessment. Twenty-four athletes (19.6 ± 1.45 years; 175.96 ± 5.24 cm; 73.16 ± 8.65 kg) were participated in a randomized placebo-control study. They consumed Pro-WPI products with 10 (T1) and 20% (T2) WPI for treatments G1 (Pro-WPI30) and G2 (Pro-WPI60), respectively, 3 times per day/5 days per week/9 weeks. The taste of Pro-WPI products was sour and cheesy, while mouthfeel was described as soft and thick because of the increased protein content in T1 and T2 (14.15 and 22.58%). The hemoglobin of the athletes increased significantly from a baseline of 12.69 g/dl to 16 and 16.66 g/dl in G1 and G2, respectively. Furthermore, the athletic performance was enhanced in vertical jump, long jump, sprinting velocity, half squats, and pushups, which reached 58.75 cm, 255 cm, 3.5 m/s, 218.75 counts, and 85 counts, respectively in G2. The healthy gut microbiome (probiotics) in parallel with increased iron bioavailability by mineral binding (whey bioactive peptides), influenced iron status and can represent a healthy practice to improve athletic anemia and performance. On the other hand, urinary albumin exceeded the border of reference range (<30 mg/g) and reached 38.25 and 44.13 mg/g in G1 and G2, while urine pH was in the normal range (4.5–8). Increased urinary albumin might be due to high rates of protein metabolism that follow high protein intake. This study provided preliminary information on metabolic responses to high protein concentrated yogurt intake in athletes who engaged in daily exercise. Further studies are needed to determine the recommended intensity of 10 and 20% Pro-WPI product consumption to achieve its benefits and avoid implications on kidney function.
Collapse
Affiliation(s)
- Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Marwa G. Allam
- Department of Food Science, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Abdallah A. I. M. Haridi
- Department of Sport Medicine, Russian State University for Physical Education, Sport, Youth and Tourism (SCOLIPE), Moscow, Russia
- Department of Biological Sciences and Sports Health, Faculty of Physical Education for Men, Alexandria University, Alexandria, Egypt
| | - Alaa-Eldin M. Eliwa
- Department of Biological Sciences and Sports Health, Faculty of Physical Education for Men, Alexandria University, Alexandria, Egypt
| | - Amira M. G. Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Center District, Alexandria, Egypt
- *Correspondence: Amira M. G. Darwish
| |
Collapse
|
14
|
Oh S, Cave G, Lu C. Vitamin B 12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. FRONTIERS IN PLANT SCIENCE 2021; 12:668819. [PMID: 34497618 PMCID: PMC8419335 DOI: 10.3389/fpls.2021.668819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 06/01/2023]
Abstract
It is necessary to develop a resilient food supply that will withstand unexpected future shocks and deliver the required amounts of nutrients to consumers. By increasing the sustainability of food and agriculture, the food system will be able to handle challenges such as climate change, declining agricultural resources, growing population/urbanization, pandemics, and recessions/shortages. Micronutrient deficiency, otherwise called hidden hunger, is one of the major malnutrition consequences worldwide, particularly in middle- or low- income countries. Unlike essential mineral or nutrient compounds, micronutrients could be less of a priority due to their small levels of requirement. However, insufficient micronutrients caused critical adverse health symptoms and are excessively vital for young children's development. Therefore, there have been numerous attempts to enhance minerals and nutrients in food crops, including biofortification, food fortification, and supplementation. Based on several interventions involving micronutrients, modern technology, such as nanotechnology, can be applied to enhance sustainability and to reduce the food system's environmental impact. Previous studies have addressed various strategies or interventions to mitigate major micronutrient deficiency including iron, iodine, zinc, and vitamin A. Comparably small amounts of studies have addressed vitamin B12 deficiency and its fortification in food crops. Vitamin B12 deficiency causes serious adverse health effects, including in the nervous or blood systems, and occurs along with other micronutrient deficiencies, such as folate, iron, and zinc, worldwide, particularly in middle- and low-income countries. Mitigation for B12 deficiency has mainly focused on developing pharmacological and medical treatments such as vitamin B12 serum or supplements. Further studies are required to undertake a sustainable approach to fortify vitamin B12 in plant-based food sources for public health worldwide. This review paper highlights nanoparticle application as a promising technology for enhancing vitamin B12 without conventional genetic modification requirements. The nanoparticle can efficiently deliver the mineral/nutrient using coating techniques to targeted sites into the plant. This is mainly because nanoparticles have better solubility and permeability due to their nano size with high surface exposure. Vitamin B12-coated nanoparticles would be absorbed, translocated, and accumulated by the plant and eventually enhance the bioavailability in food crops. Furthermore, by reducing adverse environmental effects, such as leaching issues that mainly occur with conventional fertilizer usage, it would be possible to develop more sustainable food fortification.
Collapse
Affiliation(s)
- Soojin Oh
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Gareth Cave
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|