1
|
Mahboobipour AA, Bitaraf A, Mohammadi P, Khosravifar M, Babaei H, Shahidolahi A. Effects of synbiotics on necrotizing enterocolitis and full enteral feeding in very low birth weight infants: A double-blind, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39647. [PMID: 39287261 PMCID: PMC11404903 DOI: 10.1097/md.0000000000039647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a multifactorial disease primarily affecting infants with very low birth weight (VLBW). Research has shown that the pathogenesis of NEC is associated with abnormal bacterial colonization. Synbiotics, dietary supplements containing probiotics (beneficial bacteria) and prebiotics (non-digestible food), can alter the gut microbiome. METHODS A double-blind, randomized controlled trial was conducted to assess the efficacy of PediLact®, an oral drop multi-strain synbiotic containing Lactobacillus rhamnosus, Lactobacillus reuteri, and Bifidobacterium infantis, on nutritional parameters and the occurrence of NEC in VLBW neonates. In this study, 118 VLBW neonates from neonatal intensive care units were randomly allocated in a 1:1 ratio to receive either a synbiotic or a placebo. The synbiotic administration continued until the infant was fully fed. The primary outcomes were the occurrence of NEC and the number of days required to achieve full enteral feeding. Log-binomial regression and ANOVA/ANCOVA models were used for analysis. RESULTS In the group that received the synbiotic, the incidence of NEC decreased significantly (adjusted RR = 0.22, 95% CI: 0.07-0.72, P value = .01; adjusted RD = -0.22, 95% CI: -0.33 to -0.12, P value < .001; NNT = 5). Additionally, feeding intolerance was less frequent in this group (adjusted RR = 0.27, 95% CI: 0.14-0.51, P value < .001; NNT = 3). Furthermore, consumption of the synbiotic was associated with significant weight gain (approximately 40 g) in infants (adjusted SMD = 0.63; 95% CI: 0.26-1.00, P value < .001). The duration of hospitalization and the time required to reach full enteral feeding were also significantly shorter in the synbiotic group (by approximately 3 days). No serious side effects were reported. CONCLUSION Prescribing multi-strain synbiotics reduces the incidence of NEC in VLBW infants and has beneficial effects on breastfeeding tolerance and weight gain velocity. Therefore, physicians may consider prescribing synbiotics to VLBW neonates.
Collapse
Affiliation(s)
- Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Bitaraf
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pourang Mohammadi
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mina Khosravifar
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Homa Babaei
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Shahidolahi
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Donadio JLS, Fabi JP. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct 2024; 15:6825-6846. [PMID: 38847603 DOI: 10.1039/d4fo01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The gut microbiota is essential in human health, influencing various physiological processes ranging from digestion and metabolism to immune function and mental health. Dietary fiber pectins and prebiotics have emerged as key modulators of gut microbiota composition and function, offering potential therapeutic implications for promoting gut health and preventing intestinal inflammatory diseases. In this review, we explore the modulation of gut microbiota by dietary fiber pectins and prebiotics in infants and adults. We begin with an overview of the gut microbiota composition and function in different age groups, highlighting the factors in shaping microbial communities in both age groups, especially the effect of diet. We then delve into the impact of dietary fiber pectins and prebiotics on gut microbiota composition and function, examining their effects on digestive health, intestinal barrier integrity, immune function, metabolic health, and mental health across different life stages. We further compare how aging affects the gut function and immune system, and we discuss the main health outcomes associated with dietary fiber intake and prebiotics, including the impact on digestive health, improvement in immune function, improvement in cholesterol and glucose metabolism, weight management, mental health, and prevention of diseases. Finally, we highlight the challenges and future directions for research. By advancing the understanding of gut microbiota dynamics and translating scientific insights into clinical practice, it could harness the full potential of dietary fiber pectins and prebiotics to optimize gut health, improve overall well-being across the lifespan, and increase longevity.
Collapse
Affiliation(s)
- Janaina Lombello Santos Donadio
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Vievermanns K, Dierikx TH, Oldenburger NJ, Jamaludin FS, Niemarkt HJ, de Meij TGJ. Effect of probiotic supplementation on the gut microbiota in very preterm infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2024:fetalneonatal-2023-326691. [PMID: 38925919 DOI: 10.1136/archdischild-2023-326691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE There is increasing evidence that probiotic supplementation in very preterm infants decreases the risk of necrotising enterocolitis (NEC), sepsis and mortality. The underlying mechanisms, including effects on the gut microbiota, are largely unknown. We aimed to systematically review the available literature on the effects of probiotic supplementation in very preterm infants on gut microbiota development. DESIGN A systematic review in Medline, Embase, Cochrane Library, CINAHL and Web of Science. SETTING Neonatal intensive care unit. PATIENTS Premature infants. INTERVENTION Probiotic supplementation. MAIN OUTCOME MEASURES Gut microbiota. RESULTS A total of 1046 articles were screened, of which 29 were included. There was a large heterogeneity in study design, dose and type of probiotic strains, timepoints of sample collection and analysing techniques. Bifidobacteria and lactobacilli were the most used probiotic strains. The effects of probiotics on alpha diversity were conflicting; however, beta diversity was significantly different between probiotic-supplemented infants and controls in the vast majority of studies. In most studies, probiotic supplementation led to increased relative abundance of the supplemented strains and decreased abundance of genera such as Clostridium, Streptococcus, Klebsiella and Escherichia. CONCLUSIONS Probiotic supplementation to preterm infants seems to increase the relative abundance of the supplemented strains with a concurrent decrease of potentially pathogenic species. These probiotic-induced microbial alterations may contribute to the decreased risk of health complications such as NEC. Future trials, including omics technologies to analyse both microbiota composition and function linked to health outcomes, are warranted to identify the optimal mixture and dosing of probiotic strains. PROSPERO REGISTRATION NUMBER CRD42023385204.
Collapse
Affiliation(s)
- Kayleigh Vievermanns
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Thomas H Dierikx
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Microbiology, Maastricht UMC+, Maastricht, The Netherlands
| | | | - Faridi S Jamaludin
- Medical Library AMC, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hendrik J Niemarkt
- Neonatology, Maxima Medisch Centrum locatie Veldhoven, Veldhoven, The Netherlands
- Electrical Engineering, TU Eindhoven, Eindhoven, The Netherlands
| | - Tim G J de Meij
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Pediatric Gastroenterology, Emma children's hospital amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Calvo LN, Greenberg RG, Gray KD. Safety and Effectiveness of Probiotics in Preterm Infants with Necrotizing Enterocolitis. Neoreviews 2024; 25:e193-e206. [PMID: 38556491 DOI: 10.1542/neo.25-3-e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Although necrotizing enterocolitis is a leading cause of morbidity and mortality among preterm infants, its underlying pathophysiology is not fully understood. Gut dysbiosis, an imbalance between commensal and pathogenic microbes, in the preterm infant is likely a major contributor to the development of necrotizing enterocolitis. In this review, we will discuss the increasing use of probiotics in the NICU, an intervention aimed to mitigate alterations in the gut microbiome. We will review the existing evidence regarding the safety and effectiveness of probiotics, and their potential to reduce rates of necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Laura N Calvo
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Keyaria D Gray
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
5
|
Calvo LN, Greenberg RG, Gray KD. Safety and Effectiveness of Probiotics in Preterm Infants with Necrotizing Enterocolitis. Neoreviews 2024; 25:e193-e206. [PMID: 38556499 DOI: 10.1542/neo.25-4-e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Although necrotizing enterocolitis is a leading cause of morbidity and mortality among preterm infants, its underlying pathophysiology is not fully understood. Gut dysbiosis, an imbalance between commensal and pathogenic microbes, in the preterm infant is likely a major contributor to the development of necrotizing enterocolitis. In this review, we will discuss the increasing use of probiotics in the NICU, an intervention aimed to mitigate alterations in the gut microbiome. We will review the existing evidence regarding the safety and effectiveness of probiotics, and their potential to reduce rates of necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Laura N Calvo
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Keyaria D Gray
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
6
|
Cifuentes MP, Chapman JA, Stewart CJ. Gut microbiome derived short chain fatty acids: Promising strategies in necrotising enterocolitis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100219. [PMID: 38303965 PMCID: PMC10831176 DOI: 10.1016/j.crmicr.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Necrotising enterocolitis (NEC) is a devastating condition that poses a significant risk of morbidity and mortality, particularly among preterm babies. Extensive research efforts have been directed at identifying optimal treatment and diagnostic strategies but results from such studies remain unclear and controversial. Among the most promising candidates are prebiotics, probiotics and their metabolites, including short chain fatty acids (SCFAs). Such metabolites have been widely explored as possible biomarkers of gut health for different clinical conditions, with overall positive effects on the host observed. This review aims to describe the role of gut microbiome derived SCFAs in necrotising enterocolitis. Until now, information has been conflicting, with the primary focus on the main three SCFAs (acetic acid, propionic acid, and butyric acid). While numerous studies have indicated the relationship between SCFAs and NEC, the current evidence is insufficient to draw definitive conclusions about the use of these metabolites as NEC biomarkers or their potential in treatment strategies. Ongoing research in this area will help enhance both our understanding of SCFAs as valuable indicators of NEC and their practical application in clinical settings.
Collapse
Affiliation(s)
- María P Cifuentes
- Translational and Clinical Research Institute, Newcastle University, Newcastle. UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle. UK
| | | |
Collapse
|
7
|
Giannì ML, Morniroli D, Mosca F, Rescigno M. Can Postbiotics Represent a New Strategy for NEC? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:43-57. [PMID: 39060730 DOI: 10.1007/978-3-031-58572-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Intestinal bacteria, also known as gut microbiota, are a rich ecology of microorganisms found in the human digestive tract. Extensive study has highlighted their critical relevance in preserving human health. New research has revealed that bacterial viability is not invariably necessary to induce health benefits. Postbiotics (defined soluble substances produced as a byproduct of the metabolic processes of living microbes) have thus emerged as an important topic of research. They contribute to shaping the gut microbiota, exert immune-modulation activity, and improve the integrity of the gut barrier.Alterations in preterm gut colonization associated with intestinal barrier immaturity and the increased reactivity of the intestinal mucosa to colonizing bacteria have been implicated in the pathogenesis of necrotizing enterocolitis. Postbiotics have shown promising outcomes in reducing the risk of developing NEC, lowering inflammation, encouraging the development of good bacteria, and strengthening the intestinal barrier. This is an important advancement in newborn care and highlights the potential of postbiotics to avoid severe intestinal disorders.
Collapse
Affiliation(s)
- Maria Lorella Giannì
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Daniela Morniroli
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Fabio Mosca
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy.
| | | |
Collapse
|
8
|
Lou YC, Rubin BE, Schoelmerich MC, DiMarco KS, Borges AL, Rovinsky R, Song L, Doudna JA, Banfield JF. Infant microbiome cultivation and metagenomic analysis reveal Bifidobacterium 2'-fucosyllactose utilization can be facilitated by coexisting species. Nat Commun 2023; 14:7417. [PMID: 37973815 PMCID: PMC10654741 DOI: 10.1038/s41467-023-43279-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Benjamin E Rubin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland
| | - Kaden S DiMarco
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Rachel Rovinsky
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Leo Song
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Svabova T, Jelinkova A, Gautam UK. Gut microbiota and Lactobacillus species maintain the small intestine stem cell niche and ameliorate the severity of necrotizing enterocolitis. Allergy 2023; 78:3038-3040. [PMID: 37610035 DOI: 10.1111/all.15856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Tereza Svabova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Umesh Kumar Gautam
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
11
|
Mahdally SM, Izquierdo M, Viscardi RM, Magder LS, Crowley HM, Bafford AC, Drachenberg CB, Farfan MJ, Fasano A, Sztein MB, Salerno-Goncalves R. Secretory-IgA binding to intestinal microbiota attenuates inflammatory reactions as the intestinal barrier of preterm infants matures. Clin Exp Immunol 2023; 213:339-356. [PMID: 37070830 PMCID: PMC10570995 DOI: 10.1093/cei/uxad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Previous work has shown that Secretory-IgA (SIgA) binding to the intestinal microbiota is variable and may regulate host inflammatory bowel responses. Nevertheless, the impact of the SIgA functional binding to the microbiota remains largely unknown in preterm infants whose immature epithelial barriers make them particularly susceptible to inflammation. Here, we investigated SIgA binding to intestinal microbiota isolated from stools of preterm infants <33 weeks gestation with various levels of intestinal permeability. We found that SIgA binding to intestinal microbiota attenuates inflammatory reactions in preterm infants. We also observed a significant correlation between SIgA affinity to the microbiota and the infant's intestinal barrier maturation. Still, SIgA affinity was not associated with developing host defenses, such as the production of mucus and inflammatory calprotectin protein, but it depended on the microbiota shifts as the intestinal barrier matures. In conclusion, we reported an association between the SIgA functional binding to the microbiota and the maturity of the preterm infant's intestinal barrier, indicating that the pattern of SIgA coating is altered as the intestinal barrier matures.
Collapse
Affiliation(s)
- Sarah M Mahdally
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mariana Izquierdo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rose M Viscardi
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helena M Crowley
- Division of Pediatric Surgery and Urology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea C Bafford
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mauricio J Farfan
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rosangela Salerno-Goncalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Beharry KD, Latkowska M, Valencia AM, Allana A, Soto J, Cai CL, Golombek S, Hand I, Aranda JV. Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms 2023; 11:2528. [PMID: 37894186 PMCID: PMC10608807 DOI: 10.3390/microorganisms11102528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Maturational changes in the gut start in utero and rapidly progress after birth, with some functions becoming fully developed several months or years post birth including the acquisition of a full gut microbiome, which is made up of trillions of bacteria of thousands of species. Many factors influence the normal development of the neonatal and infantile microbiome, resulting in dysbiosis, which is associated with various interventions used for neonatal morbidities and survival. Extremely low gestational age neonates (<28 weeks' gestation) frequently experience recurring arterial oxygen desaturations, or apneas, during the first few weeks of life. Apnea, or the cessation of breathing lasting 15-20 s or more, occurs due to immature respiratory control and is commonly associated with intermittent hypoxia (IH). Chronic IH induces oxygen radical diseases of the neonate, including necrotizing enterocolitis (NEC), the most common and devastating gastrointestinal disease in preterm infants. NEC is associated with an immature intestinal structure and function and involves dysbiosis of the gut microbiome, inflammation, and necrosis of the intestinal mucosal layer. This review describes the factors that influence the neonatal gut microbiome and dysbiosis, which predispose preterm infants to NEC. Current and future management and therapies, including the avoidance of dysbiosis, the use of a human milk diet, probiotics, prebiotics, synbiotics, restricted antibiotics, and fecal transplantation, for the prevention of NEC and the promotion of a healthy gut microbiome are also reviewed. Interventions directed at boosting endogenous and/or exogenous antioxidant supplementation may not only help with prevention, but may also lessen the severity or shorten the course of the disease.
Collapse
Affiliation(s)
- Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Arwin M. Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Medical Center, Laguna Hills, CA 92653, USA;
| | - Ahreen Allana
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Jatnna Soto
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Sergio Golombek
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kings County Hospital Center, Brooklyn, NY 11203, USA;
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| |
Collapse
|
13
|
Zhao K, Pang H, Shao K, Yang Z, Li S, He N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct 2023; 14:7780-7798. [PMID: 37575049 DOI: 10.1039/d3fo02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gut inflammation seriously affects the healthy life of patients, and has a trend of increasing incidence rate. However, the current methods for treating gut inflammation are limited to surgery and drugs, which can cause irreversible damage to patients, especially infants. As natural oligosaccharides in human breast milk, human milk oligosaccharides (HMOs) function as probiotics in treating and preventing gut inflammation: improving the abundance of the gut microbiota, increasing the gut barrier function, and reducing the gut inflammatory reaction. Meanwhile, due to the complexity and high cost of their synthesis, people are searching for functional oligosaccharides that can replace HMOs as a food additive in infants milk powder and adjuvant therapy for chronic inflammation. The purpose of this review is to summarize the therapeutic and preventive effects of HMOs and their substitute functional oligosaccharides as probiotics in gut inflammation, and to summarize the prospect of their application in infant breast milk replacement in the future.
Collapse
Affiliation(s)
- Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
14
|
Golubkova A, Hunter CJ. Development of the Neonatal Intestinal Barrier, Microbiome, and Susceptibility to NEC. Microorganisms 2023; 11:1247. [PMID: 37317221 PMCID: PMC10221463 DOI: 10.3390/microorganisms11051247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The function of the intestinal barrier is partially dependent on host maturity and the colonization patterns of the microbiome to which it is exposed. Premature birth and stressors of neonatal intensive care unit (NICU)-related support (e.g., antibiotics, steroids, etc.) can alter the host internal environment resulting in changes in the intestinal barrier. Pathogenic microbial proliferation and breach of the immature intestinal barrier are proposed to be crucial steps in the development of neonatal diseases such as necrotizing enterocolitis. This article will review the current literature on the intestinal barrier in the neonatal gut, the consequences of microbiome development for this defense system, and how prematurity can influence neonatal susceptibility to gastrointestinal infection.
Collapse
Affiliation(s)
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
16
|
Zhu Y, Zhang J, Zhang W, Mu W. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3'-sialyllactose and 6'-sialyllactose. Biotechnol Adv 2023; 62:108058. [PMID: 36372185 DOI: 10.1016/j.biotechadv.2022.108058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs), the third major solid component in breast milk, are recognized as the first prebiotics for health benefits in infants. Sialylated HMOs are an important type of HMOs, accounting for approximately 13% of total HMOs. 3'-Sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) are two simplest sialylated HMOs. Both SLs display promising prebiotic effects, especially in promoting the proliferation of bifidobacteria and shaping the gut microbiota. SLs exhibit several health effects, including antiadhesive antimicrobial ability, antiviral activity, prevention of necrotizing enterocolitis, immunomodulatory activity, regulation of intestinal epithelial cell response, promotion of brain development, and cognition improvement. Both SLs have been approved as "Generally Recognized as Safe" by the American Food and Drug Administration and are commercially added to infant formula. The biosynthesis of SLs using enzymatic or microbial approaches has been widely studied. The enzymatic synthesis of SLs can be realized by two types of enzymes, sialidases with trans-sialidase activity and sialyltransferases. Microbial synthesis can be achieved by the multiple recombinant bacteria in one-pot reaction, which express the enzymes involved in SL synthesis pathways separately or in combination, or by metabolically engineered strains in a fermentation process. In this article, the physiological properties of 3'-SL and 6'-SL are summarized in detail and the biosynthesis of these SLs via enzymatic and microbial synthesis is comprehensively reviewed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
DeVeaux A, Ryou J, Dantas G, Warner BB, Tarr PI. Microbiome-targeting therapies in the neonatal intensive care unit: safety and efficacy. Gut Microbes 2023; 15:2221758. [PMID: 37358104 PMCID: PMC10294772 DOI: 10.1080/19490976.2023.2221758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Microbiome-targeting therapies have received great attention as approaches to prevent disease in infants born preterm, but their safety and efficacy remain uncertain. Here we summarize the existing literature, focusing on recent meta-analyses and systematic reviews that evaluate the performance of probiotics, prebiotics, and/or synbiotics in clinical trials and studies, emphasizing interventions for which the primary or secondary outcomes were prevention of necrotizing enterocolitis, late-onset sepsis, feeding intolerance, and/or reduction in hospitalization length or all-cause mortality. Current evidence suggests that probiotics and prebiotics are largely safe but conclusions regarding their effectiveness in the neonatal intensive care unit have been mixed. To address this ambiguity, we evaluated publications that collectively support benefits of probiotics with moderate to high certainty evidence in a recent comprehensive network meta-analysis, highlighting limitations in these trials that make it difficult to support with confidence the routine, universal administration of probiotics to preterm infants.
Collapse
Affiliation(s)
- Anna DeVeaux
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Ryou
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara B. Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I. Tarr
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023; 15:2186098. [PMID: 36896934 PMCID: PMC10012958 DOI: 10.1080/19490976.2023.2186098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The significance of Bifidobacterium to human health can be appreciated from its early colonization of the neonatal gut, where Bifidobacterium longum represents the most abundant species. While its relative abundance declines with age, it is further reduced in several diseases. Research into the beneficial properties of B. longum has unveiled a range of mechanisms, including the production of bioactive molecules, such as short-chain fatty acids, polysaccharides, and serine protease inhibitors. From its intestinal niche, B. longum can have far-reaching effects in the body influencing immune responses in the lungs and even skin, as well as influencing brain activity. In this review, we present the biological and clinical impacts of this species on a range of human conditions beginning in neonatal life and beyond. The available scientific evidence reveals a strong rationale for continued research and further clinical trials that investigate the ability of B. longum to treat or prevent a range of diseases across the human lifespan.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Co Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Brown BE, Huisman E, Miller MR, Ulrich C, Reid G, da Silva O. Enteral supplementation with probiotics in preterm infants: A retrospective cohort study and 6-year follow-up. Front Nutr 2022; 9:1063121. [PMID: 36643974 PMCID: PMC9835551 DOI: 10.3389/fnut.2022.1063121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The objective of this retrospective cohort study was to assess the impact of an enteral probiotics supplementation protocol on the incidence of necrotizing enterocolitis (NEC) in infants born <33 weeks gestational age (GA) or birth weight (BW) <1,500 g. In addition, a 6-year follow-up is presented after instigation of probiotic use. In October 2014, our NICU introduced an enteral probiotics supplementation protocol for infants born <33 weeks GA or BW <1,500 g. Infants received 0.5 g of Bifidobacterium breve HA-129, Lacticaseibacillus rhamnosus HA-111, Bifidobacterium bifidum HA-132, Bifidobacterium longum subsp. infantis HA-116, and Bifidobacterium longum subsp. longum HA-135 (FloraBABYⓇ) daily until discharge or transfer from hospital. The incidence of NEC was compared among infants for 2 years pre- and post implementation of the protocol then 6-years following continuous implementation of the probiotic use. In total, 370 infants not treated with probiotics between 2012 and 2014 were included with an incidence of NEC at 4.9%. In comparison, the 367 infants who received had a 67% reduction (4.9-1.6%, p = 0.01) in our Neonatal Intensive Care Unit (NICU). The results remained significant (aOR = 0.26; 95% CI: 0.09, 0.72; p < 0.01) after adjusting for GA, small for gestational age, and antenatal corticosteroid use. Data from the Canadian Neonatal Network not only showed a consistently high rate of NEC in October 2014, but also identified exceedingly high rates (8.7-15.6%) in some hospitals up to 2021, while our rates have been consistently low with using the probiotic as standard therapy for low BW premature babies, with no serious side effects reported. In conclusion, the introduction of a five-strain probiotic natural health product has coincided with a reduced incidence and complications of NEC in our NICU setting.
Collapse
Affiliation(s)
- Beth Ellen Brown
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Western Ontario, London, ON, Canada
| | - Esther Huisman
- Department of Pediatrics, Division of Neonatology, McMaster University, Hamilton, ON, Canada
| | - Michael R. Miller
- Department of Pediatrics, The Children's Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Cindy Ulrich
- Neonatal Intensive Care Unit, Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Gregor Reid
- Departments of Microbiology and Immunology, and Surgery, University of Western Ontario, London, ON, Canada,Canadian Centre for Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada,*Correspondence: Gregor Reid
| | - Orlando da Silva
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Sowden M, van Weissenbruch MM, Bulabula ANH, van Wyk L, Twisk J, van Niekerk E. Effect of a Multi-Strain Probiotic on the Incidence and Severity of Necrotizing Enterocolitis and Feeding Intolerances in Preterm Neonates. Nutrients 2022; 14:nu14163305. [PMID: 36014810 PMCID: PMC9415863 DOI: 10.3390/nu14163305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a multifactorial disease, causing inflammation of the bowel. The exact root of NEC is still unknown, but a low weight and gestational age at birth are known causes. Furthermore, antibiotic use and abnormal bacterial colonization of the premature gut are possible causes. Premature neonates often experience feeding intolerances that disrupts the nutritional intake, leading to poor growth and neurodevelopmental impairment. Methods: We conducted a double-blind, placebo-controlled, randomized clinical trial to investigate the effect of a multi-strain probiotic formulation (LabinicTM) on the incidence and severity of NEC and feeding intolerances in preterm neonates. Results: There were five neonates in the placebo group who developed NEC (Stage 1A−3B), compared to no neonates in the probiotic group. Further, the use of probiotics showed a statistically significant reduction in the development of feeding intolerances, p < 0.001. Conclusion: A multi-strain probiotic is a safe and cost-effective way of preventing NEC and feeding intolerances in premature neonates.
Collapse
Affiliation(s)
- Marwyn Sowden
- Department of Global Health, Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Correspondence: ; Tel.: +27-21-938-9474
| | - Mirjam Maria van Weissenbruch
- Amsterdam UMC, Department of Pediatrics-Neonatology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | - Lizelle van Wyk
- Department of Paediatrics and Child Health, Stellenbosch University, Cape Town 7505, South Africa
| | - Jos Twisk
- Department of Epidemiology and Data Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Evette van Niekerk
- Department of Global Health, Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
21
|
Chang CM, Tsai MH, Liao WC, Yang PH, Li SW, Chu SM, Huang HR, Chiang MC, Hsu JF. Effects of Probiotics on Gut Microbiomes of Extremely Preterm Infants in the Neonatal Intensive Care Unit: A Prospective Cohort Study. Nutrients 2022; 14:3239. [PMID: 35956415 PMCID: PMC9370381 DOI: 10.3390/nu14153239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background: Probiotics have been previously reported to reduce the incidence of necrotizing enterocolitis (NEC) in extremely preterm infants, but the mechanisms by which the probiotics work remain unknown. We aimed to investigate the effects of probiotics on the gut microbiota of extremely preterm infants. Methods: A prospective cohort study was conducted on 120 extremely preterm neonates (gestational age ≤ 28 weeks) between August 2019 and December 2021. All neonates were divided into the study (receiving probiotics) and the control (no probiotics) groups. Multivariate logistic regression analysis was performed to investigate the significantly different compositions of gut microbiota between these two groups. The effects of probiotics on the occurrence of NEC and late-onset sepsis were also investigated. Results: An increased abundance of Lactobacillus was noted in neonates who received the probiotics (AOR 4.33; 95% CI, 1.89-9.96, p = 0.009) when compared with the control group. Subjects in the probiotic group had significantly fewer days of total parenteral nutrition (median [interquartile range, IQR]) 29.0 (26.8-35.0) versus 35.5 (27.8-45.0), p = 0.004) than those in the control group. The probiotic group had a significantly lower rate of late-onset sepsis than the control group (47.1% versus 70.0%, p = 0.015), but the rate of NEC, duration of hospitalization and the final in-hospital mortality rates were comparable between these two groups. Conclusions: Probiotic supplementation of extremely preterm infants soon after the initiation of feeding increased the abundance of Lactobacillus. Probiotics may reduce the risk of late-onset sepsis, but further randomized controlled trials are warranted in the future.
Collapse
Affiliation(s)
- Ching-Min Chang
- Division of Pediatric Gastrointestinal Disease, Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
| | - Peng-Hong Yang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
| | - Shih-Ming Chu
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Hsuan-Rong Huang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Ming-Chou Chiang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Jen-Fu Hsu
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| |
Collapse
|
22
|
Neonatal Microbiome, Intestinal Inflammation, and Necrotizing Enterocolitis. Microorganisms 2022; 10:microorganisms10071382. [PMID: 35889101 PMCID: PMC9320150 DOI: 10.3390/microorganisms10071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Necrotizing enterocolitis (NEC), the most common gastrointestinal emergency in the neonatal intensive care unit (NICU), is a leading cause of preterm infant morbidity and mortality [...].
Collapse
|
23
|
Dramowski A, Aucamp M, Beales E, Bekker A, Cotton MF, Fitzgerald FC, Labi AK, Russell N, Strysko J, Whitelaw A, Coffin S. Healthcare-Associated Infection Prevention Interventions for Neonates in Resource-Limited Settings. Front Pediatr 2022; 10:919403. [PMID: 35874586 PMCID: PMC9301049 DOI: 10.3389/fped.2022.919403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Healthcare-associated infections (HAIs) and antimicrobial-resistant (AMR) infections are leading causes of neonatal morbidity and mortality, contributing to an extended hospital stay and increased healthcare costs. Although the burden and impact of HAI/AMR in resource-limited neonatal units are substantial, there are few HAI/AMR prevention studies in these settings. We reviewed the mechanism of action and evidence supporting HAI/AMR prevention interventions, including care bundles, for hospitalized neonates in low- and middle-income countries (LMIC).
Collapse
Affiliation(s)
- Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marina Aucamp
- Infection Prevention and Control Service, Mowbray Maternity Hospital, Cape Town, South Africa
| | - Emily Beales
- Center for Neonatal and Pediatric Infection, St George's University of London, London, United Kingdom
| | - Adrie Bekker
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mark Frederic Cotton
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Felicity C. Fitzgerald
- Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Appiah-Korang Labi
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Neal Russell
- Center for Neonatal and Pediatric Infection, St George's University of London, London, United Kingdom
| | - Jonathan Strysko
- Department of Paediatric and Adolescent Health, Princess Marina Hospital, Gaborone, Botswana
- Department of Global Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Susan Coffin
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
24
|
Frazer LC, Yakah W, Martin CR. Decreased Acetic Acid in the Stool of Preterm Infants Is Associated with an Increased Risk of Bronchopulmonary Dysplasia. Nutrients 2022; 14:nu14122412. [PMID: 35745141 PMCID: PMC9230097 DOI: 10.3390/nu14122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Short-chain fatty acids (SCFAs), microbial metabolites, have been minimally studied in neonatal pathophysiology but have been associated with disease outcomes in adults. The objective of this manuscript was to determine if SCFA levels in maternal breastmilk (BM) and stool from preterm neonates impacted the risk of neonatal morbidities. Methods: SCFA levels were quantified by liquid chromatography with tandem mass spectrometry on maternal BM and neonatal stool for preterm infants < 28 weeks’ gestation (N = 72) on postnatal days 14 and 28. SCFA levels in BM and stool of infants with and without bronchopulmonary disease (BPD) and retinopathy of prematurity (ROP) were compared. Logistic regression was applied to determine the association between stool acetic acid levels and disease. Results: Acetic, propionic, isobutyric, 2-methylbutyric, and isovaleric acid levels increased in BM and neonatal stool between days 14 and 28. Logistic regression demonstrated an inverse relationship between the quartile of fecal acetic acid level and the odds of BPD but not ROP on days 14 and 28. For each quartile increase in fecal acetic acid, the odds ratio (95% CI) of BPD was 0.41 (0.18, 0.83) for day 14 and 0.28 (0.09, 0.64) for day 28. Conclusions: Low acetic acid levels in the stool of preterm infants are associated with increased odds of BPD. These findings support a relationship between intestinal and pulmonary health in preterm infants.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - William Yakah
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA;
| | - Camilia R. Martin
- Division of Newborn Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-646-697-6428
| |
Collapse
|
25
|
Bao ZK, Mi YH, Xiong XY, Wang XH. Sulforaphane Ameliorates the Intestinal Injury in Necrotizing Enterocolitis by Regulating the PI3K/Akt/GSK-3 β Signaling Pathway. Can J Gastroenterol Hepatol 2022; 2022:6529842. [PMID: 35600210 PMCID: PMC9117068 DOI: 10.1155/2022/6529842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is a serious neonatal disease; this study aims to investigate the role of sulforaphane (SFN) in NEC-induced intestinal injury. Methods An animal model of NEC was established in newborn mice and intragastrically administrated with SFN; then, the general status and survival of the mice were observed. H&E staining was used to observe the pathological changes of intestinal tissues. ELISA, immunohistochemical staining, and flow cytometry assays were used to detect the levels of inflammatory factors, including TNF-α, IL-6, and IL-17, the expression of Bax, Bcl-2, TLR4, and NF-κB, and the percentages of the Th17 and Treg cells, respectively. GSK-3β expression levels were measured by immunofluorescence. IEC-6 and FHC cells were induced with LPS to mimic NEC in vitro and coincubated with SFN; then, the inflammatory factor levels and cell apoptosis rate were detected. Finally, Western blot was used to assess the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Results SFN improved the survival rate of NEC mice during modeling, alleviated the severity of the intestinal injury, and reduced the proportion of Th17/Treg cells. SFN could inhibit TLR4 and NF-κB levels, decrease the release of inflammatory factors TNF-α and IL-6, suppress Bax expression, increase Bcl-2 expression, and inhibit apoptosis both in in vitro and in vivo models of NEC. Meanwhile, SFN regulated the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Conclusion SFN relieved the inflammatory response and apoptosis by regulating the PI3K/Akt/GSK-3β signaling pathway, thereby alleviating NEC in model mice and cells.
Collapse
Affiliation(s)
- Zhong-Kun Bao
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Mi
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Xiao-Yu Xiong
- Department of Neonatology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin-Hong Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
How to Improve Health with Biological Agents-Narrative Review. Nutrients 2022; 14:nu14091700. [PMID: 35565671 PMCID: PMC9103441 DOI: 10.3390/nu14091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The proper functioning of the human organism is dependent on a number of factors. The health condition of the organism can be often enhanced through appropriate supplementation, as well as the application of certain biological agents. Probiotics, i.e., live microorganisms that exert a beneficial effect on the health of the host when administered in adequate amounts, are often used in commonly available dietary supplements or functional foods, such as yoghurts. Specific strains of microorganisms, administered in appropriate amounts, may find application in the treatment of conditions such as various types of diarrhoea (viral, antibiotic-related, caused by Clostridioides difficile), irritable bowel syndrome, ulcerative colitis, Crohn’s disease, or allergic disorders. In contrast, live microorganisms capable of exerting influence on the nervous system and mental health through interactions with the gut microbiome are referred to as psychobiotics. Live microbes are often used in combination with prebiotics to form synbiotics, which stimulate growth and/or activate the metabolism of the healthy gut microbiome. Prebiotics may serve as a substrate for the growth of probiotic strains or fermentation processes. Compared to prebiotic substances, probiotic microorganisms are more tolerant of environmental conditions, such as oxygenation, pH, or temperature in a given organism. It is also worth emphasizing that the health of the host may be influenced not only by live microorganisms, but also by their metabolites or cell components, which are referred to as postbiotics and paraprobiotics. This work presents the mechanisms of action employed by probiotics, prebiotics, synbiotics, postbiotics, paraprobiotics, and psychobiotics, together with the results of studies confirming their effectiveness and impact on consumer health.
Collapse
|
27
|
Zhang P, Zhu Y, Li Z, Zhang W, Mu W. Recent Advances on Lacto- N-neotetraose, a Commercially Added Human Milk Oligosaccharide in Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4534-4547. [PMID: 35385279 DOI: 10.1021/acs.jafc.2c01101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk oligosaccharides (HMOs) act as the important prebiotics and display many unique health effects for infants. Lacto-N-neotetraose (LNnT), an abundant HMO, attracts increasing attention because of its unique beneficial effects to infants and great commercial importance. It occurs in all groups of human milk, but the concentration generally decreases gradually with the lactation period. It has superior prebiotic property for infants, and its other health effects have also been verified, including being immunomodulatory, anti-inflammatory, preventing necrotizing enterocolitis, antiadhesive antimicrobials, antiviral activity, and promoting maturation of intestinal epithelial cells. Safety evaluation and clinical trial studies suggest that LNnT is safe and well-tolerant for infants. It has been commercially added as a functional ingredient in infant formula. LNnT can be synthesized via chemical, enzymatic, or cell factory approachs, among which the metabolic engineering-based cell factory synthesis is considered to be the most practical and effective. In this article, the occurrence and physiological effects of LNnT were reviewed in detail, the safety evaluation and regulation status of LNnT were described, various approaches to LNnT synthesis were comprehensively summarized and compared, and the future perspectives of LNnT-related studies were provided.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
29
|
Cassir N, Grandvuillemin I, Boxberger M, Jardot P, Boubred F, La Scola B. Case Report: Clostridium neonatale Bacteremia in a Preterm Neonate With Necrotizing Enterocolitis. Front Pediatr 2021; 9:771467. [PMID: 34926348 PMCID: PMC8674942 DOI: 10.3389/fped.2021.771467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Necrotizing enterocolitis is a life-threatening acquired gastrointestinal disorder among preterm neonates and is associated with a high mortality rate and long-term neurodevelopmental morbidity. No etiologic agent has been definitively established; nonetheless, the most implicated bacteria include members of the Clostridium genus. We reported here on a case of Clostridium neonatale bacteremia in a preterm neonate with necrotizing enterocolitis, providing more information regarding the potential role of this bacterium in pathogenesis of necrotizing enterocolitis. We emphasized the sporulating form of C. neonatale that confers resistance to disinfectants usually applied for the hospital environmental cleaning. Further works are needed to establish the causal relationship between the occurrence of NEC and the isolation of C. neonatale, with promising perspectives in terms of diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Nadim Cassir
- Department of Clinical Microbiology, Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique des Hôpitaux de Marseille, Microbes, Evolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - Isabelle Grandvuillemin
- Department of Neonatology, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, AMU, Marseille, France
| | - Manon Boxberger
- Department of Clinical Microbiology, Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique des Hôpitaux de Marseille, Microbes, Evolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - Priscilla Jardot
- Department of Clinical Microbiology, Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique des Hôpitaux de Marseille, Microbes, Evolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - Farid Boubred
- Department of Neonatology, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, AMU, Marseille, France.,Neonatal Unit, C2 VN, Hospital University La Conception, Assistance Publique des Hôpitaux de Marseille, AMU, Marseille, France
| | - Bernard La Scola
- Department of Clinical Microbiology, Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique des Hôpitaux de Marseille, Microbes, Evolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| |
Collapse
|