1
|
Wang L, Lv Z, Ning X, Yue Z, Wang P, Liu C, Jin S, Li X, Yin Q, Zhu Q, Chang J. The effects of compound probiotics on production performance, rumen fermentation and microbiota of Hu sheep. Front Vet Sci 2024; 11:1440432. [PMID: 39545259 PMCID: PMC11560882 DOI: 10.3389/fvets.2024.1440432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal probiotics have the potential as feed additives, but less has been explored in ruminant feed up to date. This study aimed to determine the effect of compound probiotics (CPs) with Aspergillus oryzae 1, Aspergillus oryzae 2 and Candida utilis on Hu sheep's growth performance, rumen fermentation and microbiota. A total of 120 male Hu sheep, aged 2 months and with the body weight of 16.95 ± 0.65 kg were divided into 4 groups. Each group consisted of 5 replicates, with 6 sheep per replicate. Group A was the control group fed with the basal diet. Group B, C and D was supplemented with the basal diet by adding 400, 800 and 1,200 grams per ton (g/t) CPs, respectively. The feeding trial lasted for 60 days after a 10-day adaptation period. The results showed that the average daily gain (ADG) of sheep in the CPs groups were significantly higher, the feed/gain were significantly lower than those in group A in the later stage and the overall period. The addition of CPs increased the economic benefit. The levels of CD4+ and the CD4+/CD8+ ratio in the CPs groups were higher than those in Group A. The levels of GSH, IgG, IL-2, IL-6, and IFN-γ in group C were significantly elevated compared with group A. Group B showed a significant increase in rumen NH3-N and cellulase activity. There was no difference in VFAs content between group A and group B, however, with the increasing addition of CPs, the butyric acid and isobutyric acid content tended to decrease. The rumen microbiota analysis indicated that the CPs addition increased the Firmicutes and Proteobacteria abundances, decreased the Bacteroidetes abundance. The correlation analysis showed that Prevotella was negatively correlated with ADG, and the addition of 400 CPs in group B reduced Prevotella's relative abundance, indicating CPs increased sheep growth by decreasing Prevotella abundance. The CPs addition reduced caspase-3, NF-κB and TNF-α expression in liver, jejunum and rumen tissues. In conclusion, the addition of CPs increased the sheep production performance, reduced inflammation, improved rumen and intestinal health. Considering the above points and economic benefits, the optimal addition of CPs as an additive for Hu sheep is 800 g/t.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhanqi Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | | | - Zhiguang Yue
- Henan Anjin Biotechnology Co., Ltd., Xinxiang, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Li F, Lv B, Zuo J, Nawaz S, Wang Z, Lian L, Yin H, Chen S, Han X, Wang H. Effect of Solid-State Fermentation Products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans on Growth Performance of Broilers and Prevention of Avian Colibacillosis. Vet Sci 2024; 11:468. [PMID: 39453060 PMCID: PMC11511520 DOI: 10.3390/vetsci11100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigates the impact of the solid-state fermentation products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans (LCBs) on the growth characteristics, immune function, intestinal morphology, cecum microbial community, and prevention of avian colibacillosis in broilers. One hundred and twenty Hyland Brown broilers (aged one day) were divided randomly into three groups (four replicates of ten broilers per group). (1) The CON group was fed a basal diet. (2) The MOD group was fed a basal diet. On day 40, APEC strain SX02 (1.1 × 105 CFU/g) was administered to the breasts of chickens in this group. (3) The LCBs group was fed a basal diet supplemented with fermentation products (98.5% basal diet + 0.5% Lactobacillus plantarum and Candida utilis solid-state fermentation products + 1.0% Bacillus coagulans solid-state fermentation products). On day 40, the LCBs group received the same treatment as the MOD group. The experiment lasted 43 days. This study found that the average daily gain (ADG) of the LCBs group was significantly higher than that of the MOD group (p < 0.05), indicating that LCBs can significantly increase the ADG of broilers and improve the feed conversion ratio. Furthermore, compared to the MOD group, the heart bacterial load was significantly reduced in the LCBs group (p < 0.05), and the lesions less severe in the heart, liver, and jejunum were observed (p < 0.05). Additionally, the detection of intestinal flora showed a significant increase in the abundance of beneficial bacteria in the cecum of the LCBs group, while the number of Escherichia coli and Shigella decreased significantly. In conclusion, the solid fermentation of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans can improve the growth performance of broilers while also protecting against avian pathogenic Escherichia coli infection. This demonstrates the potential usefulness of these LCBs in feed production.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Bing Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Liyan Lian
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China;
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China;
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
| |
Collapse
|
3
|
Fan X, Xiao X, Yu W, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wu A, Wang Q, Wang H, Mao X. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions. Carbohydr Polym 2024; 326:121613. [PMID: 38142074 DOI: 10.1016/j.carbpol.2023.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 → 3)-β-ᴅ-Galp-(1→3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-β-ᴅ-Galp-(1→, →3,4)-β-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jiangping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
4
|
Qi H, Wang R, Wang C, Wang R, Shen J, Fang H, Zhang J. Integrated Microbiome and Metabolomics Analysis of the Effects of Dietary Supplementation with Corn-Steep-Liquor-Derived Candida utilis Feed on Black Pigs. Animals (Basel) 2024; 14:306. [PMID: 38254475 PMCID: PMC10812819 DOI: 10.3390/ani14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In this experiment, glucose master liquor and corn steep liquor were used as carbon and nitrogen sources, and Candida utilis was used as a strain to ferment yeast feed. The OD value and number of yeast cells were used as response values to optimize the medium components of the yeast feed through a response surface methodology. The optimal medium components were a glucose master liquor concentration of 8.3%, a corn steep liquor concentration of 1.2%, and a KH2PO4 concentration of 0.14%. Under this condition of fermentation, the OD value was 0.670 and the number of yeast cells was 2.72 × 108/mL. Then, we fed Candida utilis feed to Dongliao black piglets, and the effects of the yeast feed on the piglets' growth performance, fecal microbiota, and plasma metabolic levels were investigated through 16S rDNA sequencing and metabolomics. In total, 120 black piglets with an average initial weight of 6.90 ± 1.28 kg were randomly divided into two groups. One group was fed the basic diet (the CON group), and the other was supplemented with 2.5% Candida utilis add to the basic diet (the 2.5% CU group). After a pre-feeding period, the formal experiments were performed for 21 days. The results showed that the addition of Candida utilis to the diet did not affect growth performance compared with the control group. Meanwhile, no significant differences were observed in the serum biochemical indices. However, piglets in the 2.5% CU group had a significantly altered fecal microbiota, with an increased abundance of Clostridium_sensu_stricto_1, Lactobacillus, and Muribaculaceae_unclassified. Regarding the plasma metabolome, the 12 differential metabolites detected were mainly enriched in the histidine, tryptophan, primary bile acid, and caffeine metabolic pathways. Regarding the integrated microbiome-metabolome analysis, differential metabolites correlated with fecal flora to variable degrees, but most of them were beneficial bacteria of Firmicutes. Collectively, dietary Candida utilis feed had no adverse effect on growth performance; however, it played an important role in regulating fecal flora and maintaining metabolic levels.
Collapse
Affiliation(s)
| | | | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | | | | | | | - Jing Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Deng Z, Wu B, Yi X, Ma J, Liu Y, Nussio LG, Meng Q, Zhou Z, Wu H. The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics. Metabolites 2024; 14:58. [PMID: 38248861 PMCID: PMC10818960 DOI: 10.3390/metabo14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study was conducted to explore the potential effect of Yucca schidigera extract (YSE) on the metabolism of beef cattle. Thirty Angus crossbreed steers were selected, with an initial mean body weight of 506.6 ± 33.3 kg, and assigned to two treatments: a diet with no additives (CON group) and a diet supplemented with 1.75 g/kg of YSE (YSE group) (on a dry matter basis). The experiment lasted for 104 days, with 14 days for adaptation. The results showed that adding YSE could significantly improve the average daily gain (ADG) from 1 to 59 d (15.38%) (p = 0.01) and 1 to 90 d (11.38%) (p < 0.01), as well as dry matter digestibility (DMD) (0.84%) (p < 0.05). The contents of alanine aminotransferase, aspartate aminotransferase, and bilirubin and the total antioxidant capacity were increased and blood urea was reduced in the YSE group, compared to the CON group (p < 0.05). Both the glycerophospholipids and bile acids, including phosphocholine, glycerophosphocholine, PC(15:0/18:2(9Z,12Z)), PE(18:0/20:3(5Z,8Z,11Z)), PE(18:3(6Z,9Z,12Z)/P-18:0), LysoPC(15:0), LysoPC(17:0), LysoPC(18:0), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)), deoxycholic acid, glycocholic acid, and cholic acid, were upregulated by the addition of YSE. In summary, YSE may improve the ADG by increasing the blood total antioxidant capacity and glycerophospholipid synthesis, maintaining steers under a healthy status that is beneficial for growth. Furthermore, YSE may also increase the expression of bile acid synthesis, thereby promoting DMD, which, in turn, offers more nutrients available for growth.
Collapse
Affiliation(s)
- Ziqi Deng
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Baoyun Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Xin Yi
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Jinglei Ma
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Yue Liu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Luiz Gustavo Nussio
- Department of Animal Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo, Av. Pádua Dias, 11- 13416490, Piracicaba 13418-900, SP, Brazil
| | - Qingxiang Meng
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Zhenming Zhou
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Hao Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| |
Collapse
|
6
|
Zeng Y, Yin H, Zhou X, Wang C, Zhou B, Wang B, Tang B, Huang L, Chen X, Zou X. Effect of replacing inorganic iron with iron-rich microbial preparations on growth performance, serum parameters and iron metabolism of weaned piglets. Vet Res Commun 2023; 47:2017-2025. [PMID: 37402083 DOI: 10.1007/s11259-023-10162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
This study aimed to investigate the effects of replacing of dietary inorganic iron with iron-rich Lactobacillus plantarum and iron-rich Candida utilis on the growth performance, serum parameters, immune function and iron metabolism of weaned piglets. Fifty-four 28-day-old healthy Duroc × Landrace × Yorkshire castrated male weanling piglets of similar body weight were randomly and equally divided into three groups. The piglets were kept in three pens per group, with six pigs in each pen. The dietary treatments were (1) a basal diet + ferrous sulfate preparation containing 120 mg/kg iron (CON); (2) a basal diet + iron-rich Candida utilis preparation containing 120 mg/kg iron (CUI); and (3) a basal diet + iron-rich Lactobacillus plantarum preparation containing 120 mg/kg iron (LPI). The entire feeding trial lasted for 28 days, after which blood, viscera, and intestinal mucosa were collected. The results showed no significant difference in growth parameters and organ indices of the heart, liver, spleen, lung, and kidney of weaned piglets when treated with CUI and LPI compared with the CON group (P > 0.05). However, CUI and LPI significantly reduced the serum contents of AST, ALP, and LDH (P < 0.05). Serum ALT content was significantly lower in the LPI treatment compared to the CON group (P < 0.05). Compared to CON, CUI significantly increased the contents of serum IgG and IL-4 (P < 0.05), and CUI significantly decreased the content of IL-2. LPI significantly increased the contents of serum IgA, IgG, IgM and IL-4 (P < 0.05), while LPI significant decreased the levels of IL-1β, IL-2, IL-6, IL-8, and TNF-α compared to CON (P < 0.05). CUI led to a significant increase in ceruloplasmin activity and TIBC (P < 0.05). LPI significantly increased the contents of serum Fe and ferritin, and increased the serum ceruloplasmin activity and TIBC compared to CON (P < 0.05). Furthermore, CUI resulted in a significant increase in the relative mRNA expression of FPN1 and DMT1 in the jejunal mucosa (P < 0.05). LPI significantly increased the relative mRNA expression of TF, FPN1, and DMT1 in the jejunal mucosa (P < 0.05). Based on these results, the replacement of dietary inorganic iron with an iron-rich microbial supplement could improve immune function, iron absorption and storage in piglets.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Hongmei Yin
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xiaoling Zhou
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Chunping Wang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, 410009, China
- College of Pharmacy, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha Medical University, Changsha, 410219, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bingxuan Tang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Lihong Huang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xian Chen
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xiaoyan Zou
- College of Pharmacy, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
7
|
Qiao L, Dou X, Song X, Chang J, Zeng X, Zhu L, Yi H, Xu C. Replacing dietary sodium selenite with biogenic selenium nanoparticles improves the growth performance and gut health of early-weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:99-113. [PMID: 38023380 PMCID: PMC10665811 DOI: 10.1016/j.aninu.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 12/01/2023]
Abstract
Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lixu Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
8
|
Verstrepen L, Calatayud-Arroyo M, Duysburgh C, De Medts J, Ekmay RD, Marzorati M. Amino Acid Digestibility of Different Formulations of Torula Yeast in an In Vitro Porcine Gastrointestinal Digestion Model and Their Protective Effects on Barrier Function and Inflammation in a Caco-2/THP1Co-Culture Model. Animals (Basel) 2023; 13:2812. [PMID: 37760211 PMCID: PMC10526019 DOI: 10.3390/ani13182812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Single-cell protein from torula yeast (Cyberlindnera jadinii) grown on lignocellulosic biomass has been proven to be an excellent alternative protein source for animal feed. This study aimed to evaluate the amino acid (AA) digestibility by estimating intestinal absorption from three yeast-based ingredients, produced by cultivating C. jadinii on hydrolysate, using either mixed woody species (drum- (WDI) or spray-dried (WSI)) or corn dextrose (drum-dried (DDI)) as the carbon source. Further, the protective effect of intestinal digests on activated THP1-Blue™-induced epithelial damage and cytokine profile was evaluated. Total protein content from these three ingredients ranged from 34 to 45%, while the AA dialysis showed an estimated bioaccessibility between 41 and 58%, indicating good digestibility of all test products. A protective effect against epithelial-induced damage was observed for two of the three tested products. Torula yeast cultivated on wood and drum-dried (WDI) and torula yeast cultivated on wood and spray-dried (WSI) significantly increased transepithelial electrical resistance (TEER) values (111-147%, p < 0.05), recovering the epithelial barrier from the inflammation-induced damage in a dose-dependent manner. Further, WSI digests significantly reduced IL8 (250.8 ± 28.1 ng/mL), IL6 (237.9 ± 1.8 pg/mL) and TNF (2797.9 ± 216.3 pg/mL) compared to the blank control (IL8 = 485.7 ± 74.4 ng/mL, IL6 = 478.7 ± 58.9 pg/mL; TNF = 4273.5 ± 20.9 pg/mL) (p < 0.05). These results align with previous in vivo studies, supporting torula yeast-based ingredients as a high-quality protein source for pigs, protecting the intestinal barrier from inflammatory damage, and reducing the pro-inflammatory response. We provided novel insights into the mechanisms behind the health improvement of pigs fed on torula yeast-based ingredients, with potential applications for designing nutritional interventions to recover intestinal homeostasis during critical production periods, such as weaning.
Collapse
Affiliation(s)
- Lynn Verstrepen
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
| | - Marta Calatayud-Arroyo
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Spanish National Research Council, 46980 Valencia, Spain
| | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
| | - Jelle De Medts
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
| | | | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Jin X, Li QH, Sun J, Zhang M, Xiang YQ. Porcine β-defensin-2 alleviates AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115161. [PMID: 37356398 DOI: 10.1016/j.ecoenv.2023.115161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin contaminant, which is widely present in crops and poses a major safety hazard to animal and human health. To alleviate the cytotoxic effects of AFB1 on the intestine, we tested the protective effects of porcine β-defensin-2 (pBD-2). Results demonstrated that pBD-2 inhibited oxidative stress induced by AFB1 via decreasing the levels of ROS and enhancing the expression of antioxidant factors SOD-2 and NQO-1. In addition, pBD-2 attenuated AFB1-induced intestinal porcine epithelial cell line-J2 (IPEC-J2) injury through blocking mitochondria-mediated apoptosis. In vivo, pBD-2 treatment restored the intestinal mucosal structure and reduced the expression levels of apoptosis factors caspase-3 and Bax/Bcl-2. In conclusion, these results indicated that pBD-2 can alleviate AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and mitochondria-mediated apoptosis. This study provides an effective strategy in developing pBD-2 as green feed additive to prevent AFB1 damage to animals.
Collapse
Affiliation(s)
- Xin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Qing-Hao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Juan Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Man Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China.
| | - Yu-Qiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China.
| |
Collapse
|
10
|
Zhao D, Zhang H, Liu K, Wu Y, Zhang B, Ma C, Liu H. Effect of Cyberlindnera jadinii supplementation on growth performance, serum immunity, antioxidant status, and intestinal health in winter fur-growing raccoon dogs ( Nyctereutes procyonoides). Front Vet Sci 2023; 10:1154808. [PMID: 37252386 PMCID: PMC10213726 DOI: 10.3389/fvets.2023.1154808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction This study aimed to investigate the effects of Cyberlindnera jadinii supplementation on the growth performance, nutrient utilization, serum biochemistry, immunity, antioxidant status, and intestinal microbiota of raccoon dogs during the winter fur-growing period. Methods Forty-five 135 (±5) day-old male raccoon dogs were randomly assigned to three dietary groups supplemented with 0 (group N), 1 × 109 (group L) and 5 × 109 CFU/g (group H) Cyberlindnera jadinii, with 15 raccoon dogs per group. Results The results showed that Cyberlindnera jadinii in groups L and H improved average daily gain (ADG) and decreased feed-to-weight ratio (F/G) (P < 0.05). No significant difference was found in nutrient digestibility and nitrogen metabolism among the three groups (P > 0.05). Compared with group N, serum glucose levels were lower in groups L and H (P < 0.05). The levels of serum immunoglobulins A and G in group L were higher than those in the other two groups (P < 0.05), and the levels of serum immunoglobulins A and M in group H were higher than those in group N (P < 0.05). Supplementation with Cyberlindnera jadinii in groups L and H increased serum superoxide dismutase activity, and the total antioxidant capacity in group H increased compared with group N (P < 0.05). The phyla Bacteroidetes and Firmicutes were dominant in raccoon dogs. The results of principal coordinate analysis (PCoA) showed that the composition of microbiota in the three groups changed significantly (P < 0.05). The relative abundance of Campylobacterota was increased in the H group compared to the N and L groups (P < 0.05). The relative abundance of Sarcina was increased in group L compared with the other two groups (P < 0.05), while the relative abundance of Subdoligranulum and Blautia were decreased in group H compared with the other two groups (P < 0.05). Also, the relative abundance of Prevotella, Sutterella and Catenibacterium was higher in group L (P < 0.05) compared with group H. Discussion In conclusion, dietary supplementation with Cyberlindnera jadinii improved growth performance, antioxidant activity, immune status, and improved intestinal microbiota in winter fur-growing raccoon dogs. Among the concentrations tested, 1 × 109 CFU/g was the most effective level of supplementation.
Collapse
Affiliation(s)
- Dehui Zhao
- College of Agriculture, Chifeng University, Chifeng, China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yan Wu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Borui Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Cuiliu Ma
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hanlu Liu
- College of Agriculture, Chifeng University, Chifeng, China
| |
Collapse
|
11
|
Tao W, Zhu W, Nabi F, Li Z, Liu J. Penthorum chinense Pursh compound flavonoids supplementation alleviates Aflatoxin B1-induced liver injury via modulation of intestinal barrier and gut microbiota in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114805. [PMID: 36958264 DOI: 10.1016/j.ecoenv.2023.114805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a commonly occurring toxicant in animal and human diets, leading to hazardous effects on health. AFB1 is known to be a hepato-toxicant, and the intestinal barrier may play a crucial role in reversing AFB1-induced liver injury. This study aimed to optimize the extraction conditions of Penthorum chinense Pursh Compound Flavonoids (PCPCF) by the response surface method with a Box-Behnken design and investigate the effects of PCPCF on AFB1-induced liver injury in broilers. A total of 164 one-day-old broilers were divided into seven groups, including Control, PCPCF (400 mg PCPCF/kg feed), AFB1 (3 mg AFB1/kg feed), and YCHT (Yin-Chen-Hao-Tang extract, 3 mg AFB1 +10 mL YCHT/kg feed) and low, medium, and high dose groups (PCPCF at 3 mg AFB1 +200, 400, 600 mg respectively). Samples of serum, liver, duodenum, and cecum contents were collected at 14th and 28th days for further analysis. The results showed that the maximum extraction rate of PCPCF was 8.15 %. PCPCF was rich in rutin, quercetin, liquiritin and kaempferol, and significantly inhibited the growth of Aspergillus flavus. The addition of PCPCF improved the growth performance of AFB1-injury broilers, modulated liver function, and increased serum immunoglobulin levels. PCPCF also alleviated liver pathological and oxidative stress damages caused by AFB1 and decreased AFB1-DNA and AFB1-lysine content in the liver. Furthermore, PCPCF supplementation ameliorated intestinal pathological damage, improved intestinal permeability of duodenum in the AFB1-induced broilers, and repaired the intestinal mucosal and mechanical barrier associated with the Notch signaling pathway. Meanwhile, PCPCF improved the intestinal flora structure of AFB1-damaged broilers and increased the abundance of beneficial bacteria. In conclusion, PCPCF ameliorated the adverse effects of AFB1 on growth performance and alleviated liver damage by repairing the intestinal barrier and improving intestinal health of broiler chicken.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
12
|
Wang Y, Zhang Y, Ren H, Fan Z, Yang X, Zhang C, Jiang Y. Dietary yucca extract and Clostridium butyricum promote growth performance of weaned rabbits by improving nutrient digestibility, intestinal development, and microbial composition. Front Vet Sci 2023; 10:1088219. [PMID: 36861006 PMCID: PMC9968931 DOI: 10.3389/fvets.2023.1088219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/27/2023] [Indexed: 03/03/2023] Open
Abstract
Yucca has abundant amounts of polyphenolics, steroidal saponins, and resveratrol and its extract can be used as a feed additive in the animal husbandry, which might contribute to the improvement in the growth and productivity in rabbit production. Hence, the current study aimed to examine the effects of yucca extract alone and in combination with Clostridium butyricum (C. butyricum) on growth performance, nutrient digestibility, muscle quality, and intestinal development of weaned rabbits. A total of 400 40-day-old male rabbits were randomly divided into 4 treatment groups for 40 days: (1) basal diet group, (2) basal diet contained 300 mg/kg of yucca extract, (3) basal diet supplemented with 0.4 × 1010 colony-forming units (CFU)/kg of C. butyricum, and (4) the blend of 0.4 × 1010/kg CFU of C. butyricum and 300 mg/kg of yucca extract. The supplementation of yucca extract or C. butyricum increased body weight (BW) of rabbits depending on the age, the combined addition of yucca extract and C. butyricum significantly increased BW, weight gain, and feed intake, companying with increased the digestibility of crud protein, fiber, phosphorous, and calcium as compared to control diet (P < 0.05). Furthermore, yucca extract and C. butyricum treatment alone and in combination notably increased the villus high and the ratio of villus high to crypt depth of rabbits (P < 0.05). The combined supplementation of yucca extract and C. butyricum altered the intestinal microbiota of rabbits, as demonstrated by increased the abundance of beneficial bacteria Ruminococcaceae and decreased the proportion of pathogenic bacteria such as Pseudomonadaceae and S24-7. In addition, the rabbits fed the diet with yucca extract and the blend of yucca extract and C. butyricum had significantly increased pH45min, decreased pressing loss, drip loss, and shears force when compared with rabbits received control diet (P < 0.05). Diet with C. butyricum or its mixture with yucca extract increased the fat content of meat, while the combined addition of yucca extract and C. butyricum declined the content of fiber in meat (P < 0.05). Collectively, the combined use of yucca extract and C. butyricum showed better results on growth performance and meat quality, which might be closely associated with the improved intestinal development and cecal microflora of the rabbits.
Collapse
Affiliation(s)
- Yuyan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongjie Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zubo Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,*Correspondence: Yibao Jiang ✉
| |
Collapse
|
13
|
Sun X, Wang Z, Li X, Du S, Lin D, Shao Y. Effects of Yucca schidigera extract on serum biochemical parameters, humoral immune response, and intestinal health in young pigeons. Front Vet Sci 2023; 9:1077555. [PMID: 36713856 PMCID: PMC9878700 DOI: 10.3389/fvets.2022.1077555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction It is of great importance to find antibiotic alternatives that can improve poultry performance and enhance immunity. Plant-derived extracts and their concentrates are natural bioactive compounds that are widely and effectively applied as the antibiotic alternatives in animal industries. This study was conducted to investigate the effects of Yucca schidigera extract (YSE) on growth performance, serum biochemical parameters, immune function, intestinal morphology, and microbiota diversity of young pigeons. Methods A total of 120 healthy White King pigeons (28 days old) with similar weight were randomly assigned to 4 treatments with six replicate cages. Each of the pigeons from 4 treatments was orally administrated with 0 (control), 5, 10, and 15 mg YSE per day, respectively. Results The results showed that orally supplemental YSE had no significant effects (P > 0.05) on the growth performance and immune organ index of pigeons. The serum total protein and IgM contents in the 10 mg YSE group were significantly higher (P < 0.05) than those in the control group. Supplemental 10 and 15 mg YSE significantly lowered the level of serum total cholesterol (P < 0.05) and increased (P < 0.05) the villi height in the jejunum compared with the control group. Supplemental 5 and 10 mg YSE significantly decreased (P < 0.05) the level of serum alanine aminotransferase and the crypt depth in the ileum compared with the control group. The beta diversity showed a distinct difference in the ileum microbial composition between the control and the 10 mg YES group. YSE supplementation enriched the bacterial genera Sulfurospirillum, Solobacterium, Desulfovibrio, Desulfobulbus, Lactococcus, Parabacteroides, Acidaminococcus, Acetobacter, and Streptococcus. Additionally, Enterococcus genus showed a significantly negative correlation with serum alanine aminotransferase (R = -0.618, P = 0.043). Actinomyces genus showed a significantly negative correlation with cholesterol (R = -0.633, P = 0.036). Turicibacter genus showed a significantly positive correlation with villi height in the jejunum (R = 0.751, P = 0.008). Discussion In conclusion, orally supplemental YSE could improve serum biochemistry, immunoglobulin contents, and intestinal morphology by regulating the composition of microbial community in the ileum of young pigeons.
Collapse
Affiliation(s)
- Xiaoshan Sun
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zheng Wang
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xing Li
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Shaohua Du
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongmei Lin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China,*Correspondence: Dongmei Lin ✉
| | - Yuxin Shao
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,Yuxin Shao ✉
| |
Collapse
|
14
|
Jin X, Su M, Liang Y, Li Y. Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp ( Carassius auratus). Front Microbiol 2023; 13:1084500. [PMID: 36699591 PMCID: PMC9868665 DOI: 10.3389/fmicb.2022.1084500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, with the harm caused by the abuse of antibiotics and the increasing demand for green and healthy food, people gradually began to look for antibiotic alternatives for aquaculture. As a Chinese herbal medicine, leaf extract chlorogenic acid (CGA) of Eucommia ulmoides Oliver can improve animal immunity and antioxidant capacity and can improve animal production performance. In this study, crucian carp (Carassius auratus) was fed with complete feed containing 200 mg/kg CGA for 60 days to evaluate the antioxidant, immuno-enhancement, and regulation of intestinal microbial activities of CGA. In comparison to the control, the growth performance indexes of CGA-added fish were significantly increased, including final body weight, weight gain rate, and specific growth rate (P < 0.01), while the feed conversion rate was significantly decreased (P < 0.01). Intestinal digestive enzyme activity significantly increased (P < 0.01); the contents of triglyceride in the liver (P < 0.01) and muscle (P > 0.05) decreased; and the expression of lipid metabolism-related genes in the liver was promoted. Additionally, the non-specific immune enzyme activities of intestinal and liver tissues were increased, but the expression level of the adenylate-activated protein kinase gene involved in energy metabolism was not affected. The antioxidant capacity of intestinal, muscle, and liver tissues was improved. Otherwise, CGA enhanced the relative abundance of intestinal microbes, Fusobacteria and Firmicutes and degraded the relative abundance of Proteobacteria. In general, our data showed that supplementation with CGA in dietary had a positive effect on Carassius auratus growth, immunity, and balance of the bacteria in the intestine. Our findings suggest that it is of great significance to develop and use CGA as a natural non-toxic compound in green and eco-friendly feed additives.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Su
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China,Yunxiang Liang,
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China,*Correspondence: Yingjun Li,
| |
Collapse
|
15
|
Ding H, Li J, Deng F, Huang S, Zhou P, Liu X, Li Z, Li D. Ammonia nitrogen recovery from biogas slurry by SCP production using Candida utilis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116657. [PMID: 36335696 DOI: 10.1016/j.jenvman.2022.116657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The safe and robust yeast Candida utilis was employed for nitrogen recovery as single cell protein from biogas slurry. The maximum biomass of 6.2 g/L with protein content of 53.5% was produced in batch cultivation with glucose as the carbon source, C/N ratio of 3:1, NH4+-N concentration of 3000 mg/L, initial pH of 8.0, and the addition of 0.35% (w/v) Na2HPO4. It was speculated that C. utilis can grow well with free ammonia below 197 mg/L. In fed-batch fermentation, a biomass of 14.8 g/L was obtained, and the maintenance of aerobic conditions was critical to improving the production of single cell protein. The sterilized and non-sterilized biogas slurry can be used as an effective pH regulator. The obtained single cell protein was a nutritious, safe, and reliable protein source. This study provides novel insights into nitrogen recovery via C. utilis as a single cell protein from biogas slurry.
Collapse
Affiliation(s)
- Hongxia Ding
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Siyuan Huang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhidong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao D, Liu H, Zhang H, Liu K, Zhang X, Liu Q, Wu Y, Zhang T, Zhang Q. Dietary supplementation with Cyberlindnera jadinii improved growth performance, serum biochemical Indices, antioxidant status, and intestinal health in growing raccoon dogs (Nyctereutes procyonoides). Front Microbiol 2022; 13:973384. [PMID: 36212816 PMCID: PMC9532689 DOI: 10.3389/fmicb.2022.973384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate whether different dietary Cyberlindnera jadinii levels affect growth performance, serum immunity, antioxidant capacity, and intestinal microbiota in growing raccoon dogs. Forty-five healthy male raccoon dogs were randomly assigned to three treatment groups, with 15 raccoon dogs per group. Each raccoon dog was housed in an individual cage. The raccoon dogs in the three groups were fed diets supplemented with Cyberlindnera jadinii at dosages of 0 (N group), 1 × 109 (L group) and 5 × 109 CFU/g (H group). A 7-day pretest period preceded a formal test period of 30 days. The results showed that Cyberlindnera jadinii in the L and H groups improved average daily gain (ADG) (P < 0.05) and decreased the ratio of feed to weight (F/G) (P < 0.05). Serum immunoglobulins A and G levels were increased in the L and H groups compared to the N group (P < 0.05). Cyberlindnera jadinii in the L and H groups increased serum superoxide dismutase activity (P < 0.05), and serum glutathione peroxidase activity was increased in the L group compared to the N group (P < 0.05). The relative abundance of Firmicutes and Actinobacteriota were increased, and the relative abundance of Bacteroidota was decreased in the L and H groups compared to the N group (P < 0.05). The relative abundance of Proteobacteria and Cyanobacteria was increased in the H group compared to the other two groups (P < 0.05). The ratio of Firmicutes to Bacteroidetes in the Cyberlindnera jadinii supplementation groups increased compared with the N group (P < 0.05). The relative abundance of Megasphaera and Bifidobacterium were increased, and the relative abundance of Prevotella was decreased in the L and H groups compared to the N group (P < 0.05). The relative abundance of Dialister was increased, while the relative abundance of Blautia was decreased in the H group compared to the other two groups (P < 0.05). The relative abundance of Agathobacter was decreased in the H group compared to the N group (P < 0.05). In conclusion, dietary supplementation with Cyberlindnera jadinii increased growth performance, serum immunity, antioxidant capacity, and improved intestinal microbiota in growing raccoon dogs. Cyberlindnera jadinii can therefore be used as a growth promoter in raccoon dogs.
Collapse
|
18
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|