1
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Zhong L, Huang R, Gao L, Yue J, Zhao B, Nie L, Li L, Wu A, Zhang K, Meng Z, Cao G, Zhang H, Zang H. A Novel Variable Selection Method Based on Binning-Normalized Mutual Information for Multivariate Calibration. Molecules 2023; 28:5672. [PMID: 37570642 PMCID: PMC10419756 DOI: 10.3390/molecules28155672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Variable (wavelength) selection is essential in the multivariate analysis of near-infrared spectra to improve model performance and provide a more straightforward interpretation. This paper proposed a new variable selection method named binning-normalized mutual information (B-NMI) based on information entropy theory. "Data binning" was applied to reduce the effects of minor measurement errors and increase the features of near-infrared spectra. "Normalized mutual information" was employed to calculate the correlation between each wavelength and the reference values. The performance of B-NMI was evaluated by two experimental datasets (ideal ternary solvent mixture dataset, fluidized bed granulation dataset) and two public datasets (gasoline octane dataset, corn protein dataset). Compared with classic methods of backward and interval PLS (BIPLS), variable importance projection (VIP), correlation coefficient (CC), uninformative variables elimination (UVE), and competitive adaptive reweighted sampling (CARS), B-NMI not only selected the most featured wavelengths from the spectra of complex real-world samples but also improved the stability and robustness of variable selection results.
Collapse
Affiliation(s)
- Liang Zhong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Ruiqi Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Lele Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Jianan Yue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Bing Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Kefan Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan 250103, China; (Z.M.); (G.C.)
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan 250103, China; (Z.M.); (G.C.)
| | - Hui Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
- Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
3
|
Geng Q, Zhang Y, Song M, Zhou X, Tang Y, Wu Z, Chen H. Allergenicity of peanut allergens and its dependence on the structure. Compr Rev Food Sci Food Saf 2023; 22:1058-1081. [PMID: 36624611 DOI: 10.1111/1541-4337.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
Food allergies are a global food safety problem. Peanut allergies are common due, in part, to their popular utilization in the food industry. Peanut allergy is typically an immunoglobulin E-mediated reaction, and peanuts contain 17 allergens belonging to different families in peanut. In this review, we first introduce the mechanisms and management of peanut allergy, followed by the basic structures of associated allergens. Subsequently, we summarize methods of epitope localization for peanut allergens. These methods can be instrumental in speeding up the discovery of allergenicity-dependent structures. Many attempts have been made to decrease the allergenicity of peanuts. The structures of hypoallergens, which are manufactured during processing, were analyzed to strengthen the desensitization process and allergen immunotherapy. The identification of conformational epitopes is the bottleneck in both peanut and food allergies. Further, the identification and modification of such epitopes will lead to improved strategies for managing and preventing peanut allergy. Combining traditional wet chemistry research with structure simulation studies will help in the epitopes' localization.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Min Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Huan F, Gao S, Han TJ, Liu M, Li MS, Yang Y, Chen YY, Lai D, Cao MJ, Liu GM. Identification of the Immunoglobulin E Epitope of Arginine Kinase, an Important Allergen from Crassostrea angulata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13419-13430. [PMID: 36205062 DOI: 10.1021/acs.jafc.2c05420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arginine kinase (AK) was identified as an allergen in Crassostrea angulata. However, little information is available about its epitopes. In this study, AK from C. angulata was registered to the World Health Organization/International Union of Immunological Societies allergen nomenclature committee to be named as Cra a 2. The immunoglobulin G/immunoglobulin E-binding capacity of Cra a 2 was significantly reduced after chemical denaturation treatment. Further, eight linear mimotopes and five conformational mimotopes of Cra a 2 were obtained using phage panning. In addition to six linear epitopes that have been identified, two linear epitopes were verified by a synthetic peptide, of which L-Cra a 2-2 was conserved in shellfish. Four conformational epitopes were verified by site-directed mutation, among which mutation of C-Cra a 2-1 affected the structure and reduced the immunoreactivity of Cra a 2 most significantly. Overall, the identified epitopes may lay a foundation for the development of hypoallergenic oyster products through food processing.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Tian-Jiao Han
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Meng-Si Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yi-Yu Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Dong Lai
- Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, People's Republic of China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
5
|
Water as a Probe for Standardization of Near-Infrared Spectra by Mutual-Individual Factor Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186069. [PMID: 36144801 PMCID: PMC9503549 DOI: 10.3390/molecules27186069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The standardization of near-infrared (NIR) spectra is essential in practical applications, because various instruments are generally employed. However, standardization is challenging due to numerous perturbations, such as the instruments, testing environments, and sample compositions. In order to explain the spectral changes caused by the various perturbations, a two-step standardization technique was presented in this work called mutual–individual factor analysis (MIFA). Taking advantage of the sensitivity of a water probe to perturbations, the spectral information from a water spectral region was gradually divided into mutual and individual parts. With aquaphotomics expertise, it can be found that the mutual part described the overall spectral features among instruments, whereas the individual part depicted the difference of component structural changes in the sample caused by operation and the measurement conditions. Furthermore, the spectral difference was adjusted by the coefficients in both parts. The effectiveness of the method was assessed by using two NIR datasets of corn and wheat, respectively. The results showed that the standardized spectra can be successfully predicted by using the partial least squares (PLS) models developed with the spectra from the reference instrument. Consequently, the MIFA offers a viable solution to standardize the spectra obtained from several instruments when measurements are affected by multiple factors.
Collapse
|
6
|
Boukid F. Peanut protein – an underutilised by‐product with great potential: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatma Boukid
- Food safety and Functionality Programme Food Industries Institute of Agriculture and Food Research and Technology (IRTA) Finca Camps i Armet S/N Monells 17121 Spain
| |
Collapse
|