1
|
Chen N, Zhang J, Yin C, Liao Y, Song L, Hu T, Pan X. Abnormal methylation of Mill1 gene regulates osteogenic differentiation involved in various phenotypes of skeletal fluorosis in rats and methionine intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117519. [PMID: 39674021 DOI: 10.1016/j.ecoenv.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Excessive fluoride intake can lead to skeletal fluorosis. Nutritional differences in the same fluoride-exposed environment result in osteosclerosis, osteoporosis, and osteomalacia. DNA methylation has been found to be involved in skeletal fluorosis and is influenced by environment and nutrition. In a previous study, we screened eight genes with differential methylation associated with various phenotypes of skeletal fluorosis. By combining gene functions, Mill1 gene was selected for subsequent experiments. First, we found that the Mill1 gene was hypomethylated and upregulated in osteosclerosis skeletal fluorosis, whereas it was hypermethylated and downregulated in osteoporosis/osteomalacia skeletal fluorosis. Similar results were obtained in the cell experiments. Subsequently, we validated the regulation of Mill1 gene methylation using DNMT1 and TET2 enzyme inhibitors. Furthermore, we knockdown and overexpression experiments confirmed its downregulation inhibited osteogenic differentiation, whereas osteogenic differentiation was promoted by its overexpression. These findings imply that abnormal methylation of the Mill1 gene triggered by fluoride under diverse nutritional conditions, regulates its expression and participates in osteogenic differentiation, potentially resulting in various phenotypes of skeletal fluorosis. Eventually, we use methionine for interventions both in vivo and in vitro. The results indicated that under normal nutrition and fluoride exposure followed by methionine intervention, the methylation levels of the Mill1 gene increased, whereas its high expression and enhanced osteogenic differentiation were restrained. This study offers a theoretical foundation for understanding the mechanism behind the various phenotypes of skeletal fluorosis through the perspective of DNA methylation and for employing nutrients to intervene in skeletal fluorosis.
Collapse
Affiliation(s)
- Niannian Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jing Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Congyu Yin
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yudan Liao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Lei Song
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Ting Hu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Xueli Pan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Li X, Zhou L, Zhang C, Li D, Wang Z, Sun D, Liao C, Zhang Q. Spatial distribution and risk assessment of fluorine and cadmium in rice, corn, and wheat grains in most karst regions of Guizhou province, China. Front Nutr 2022; 9:1014147. [PMID: 36337645 PMCID: PMC9626765 DOI: 10.3389/fnut.2022.1014147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
The pollution status of crops planted in Guizhou province of Southwestern China with high background values of Fluorine (F) and Cadmium (Cd) has attracted people’s concern. The present study aimed to investigate the spatial distributions of F and Cd in rice, corn and wheat grains, and further evaluate their health risks to residents in Guizhou province. The contents of F and Cd were measured by fluoride ion-selective electrode and inductively coupled plasma mass spectrometry (ICP-MS) methods, respectively. Additionally, the inverse distance weighted (IDW) technique was conducted to analyze spatial distribution, and the health risk was estimated by target hazard quotient (THQ) and hazardous index (HI). The results indicate that Cd contents in samples varied from 0.000 to 0.463 for rice, 0.000 to 0.307 for corn, and 0.012 to 0.537 (mg/kg) for wheat, while F contents ranged from 0.825 to 5.193 (rice), 0.946 to 8.485 (corn), and 0.271 to 9.143 (wheat) mg/kg. The Cd exceeding ratios were 11.600% for rice, 13.500% for corn, and 45.100% for wheat grains, respectively. In terms of spatial distribution, high levels of F and Cd in rice were found in the northern and central in Guizhou, while Cd in corn was distributed in the eastern and F in corn were distributed in the west area of Guizhou. Moreover, the high levels of F and Cd in wheat were distributed in the western and eastern areas. The mean carcinogenic risks (R) of Cd in rice, corn, and wheat in children were 4.150 × 10–4, 1.670 × 10–4 and 3.470 × 10–4, respectively, and that in adults were 3.430 × 10–4, 0.471 × 10–4, and 2.190 × 10–4, respectively. The HI for adults in rice, corn and wheat grains were 0.756, 0.154, and 0.514, respectively, and that for children were 0.913, 0.549, and 0.814, respectively. Collectively, the potential risks produced by F and Cd to the local residents should not be ignored.
Collapse
Affiliation(s)
- Xiangxiang Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Cheng Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dasuan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Zelan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chaoxuan Liao
- Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- *Correspondence: Qinghai Zhang,
| |
Collapse
|
3
|
Ding L, Yang Q, Sun Z, Liu L, Meng Z, Zhao X, Tao N, Liu J. Association between dietary intake of one-carbon metabolism nutrients and hyperglycemia in coal-burning fluorosis areas of Guizhou, China. Front Nutr 2022; 9:1002044. [PMID: 36299987 PMCID: PMC9589113 DOI: 10.3389/fnut.2022.1002044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims There are limited studies describing the association between dietary intake of one-carbon metabolism nutrients and hyperglycemia. The present study aimed to investigate the association of habitual dietary intake of one-carbon metabolism nutrients with hyperglycemia in a fluorosis area in China, and explored the interaction between these nutrients and fluorosis related to hyperglycemia. Method In a cross-sectional study, we recruited 901 villagers, ages ranging from 18–75, in Guizhou Province. Dietary data and other covariate data were obtained through an interviewer-administered questionnaire. We collected venous blood samples from participants who had fasted for one night to obtain fasting blood glucose levels and we categorized dietary intake of betaine, total choline, methionine, folate, vitamins B6 and B12, and choline subclasses into quartiles (Q1–Q4). The lowest quartile (Q1) served as the reference group. An unconditional logistic regression model was used to evaluate the protective effects of a dietary intake of one-carbon nutrients against hyperglycemia. We calculated Odds Ratios (ORs) with 95% confidence intervals (CIs). A presence or absence of fluorosis subgroup analysis was performed to determine the potential effect of fluorosis on hyperglycemia. Result After adjusting for potential confounding factors, we found that a greater intake of dietary vitamin B6, total choline and methyl-donor index was inversely associated with the occurrence of hyperglycemia (P-trend <0.05). However, there were no significant associations between hyperglycemia and the dietary intake of folate, vitamin B12, methionine, and betaine. As for the choline subgroups, it showed that the dietary intake of free choline, phosphatidylcholine, and glycerol phosphatidylcholine was negatively correlated with the occurrence of hyperglycemia (P < 0.05). In contrast, there was no statistical association between dietary phosphatidylcholine and sphingomyelin and hyperglycemia (all P > 0.05). The results of subgroup analysis showed that dietary intake of folate, vitamin B6, total choline, free choline, glycerol phosphorylcholine, and phosphocholine had a protective effect against the occurrence of hyperglycemia in the non-fluorosis subgroup, although no effects were observed in the fluorosis subgroup. There were significant interactions between these nutrients and fluorosis (P = 0.010–0.048). Conclusion The study demonstrated that higher dietary intake of vitamin B6, total choline, methyl-donor index, free choline, glycerol phosphorylcholine, and phosphocholine in choline compounds were associated with a lower incidence of hyperglycemia. Moreover, the associations were modified by the presence or absence of fluorosis. Further investigation is needed to test the association in large-scale follow-up studies.
Collapse
Affiliation(s)
- Li Ding
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Disease, Center of Disease Control and Prevention of Zhijin County, Bijie, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China,*Correspondence: Na Tao
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China,Jun Liu
| |
Collapse
|
4
|
Tao N, Li L, Chen Q, Sun Z, Yang Q, Cao D, Zhao X, Zeng F, Liu J. Association Between Antioxidant Nutrients, Oxidative Stress-Related Gene Polymorphism and Skeletal Fluorosis in Guizhou, China. Front Public Health 2022; 10:849173. [PMID: 35646794 PMCID: PMC9140744 DOI: 10.3389/fpubh.2022.849173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Oxidative stress plays an important role in the pathogenesis of endemic fluorosis. We analyzed associations between oxidative stress-related gene polymorphisms (PON1 rs662, CAT rs769217, rs2300182, and SOD2 rs11968525) and skeletal fluorosis, and examined potential gene–environment interactions with dietary vitamin C, vitamin E, zinc, and selenium intake. Methods A cross-sectional study was conducted in the Zhijin County, Guizhou Province of China. Skeletal fluorosis was identified according to the Chinese Diagnostic Criteria of Endemic Skeletal Fluorosis. Dietary information was assessed through face-to-face interviews by trained interviewers using a 75-item food frequency questionnaire. The genotype was detected by high throughput TaqMan-MGB RT-PCR technology. Odds ratios (ORs) and 95% CIs were calculated using an unconditional logistic regression model. Results Intake of vitamin E, zinc, and selenium was found to be inversely associated with the risk of skeletal fluorosis. The multivariable-adjusted ORs were 0.438 (95% CI: 0.268 to 0.715, P-trend < 0.001) for vitamin E, 0.490 (95% CI: 0.298 to 0.805, P-trend = 0.001) for zinc, and 0.532 (95% CI: 0.324 to 0.873, P-trend = 0.010) for selenium when comparing the highest with the lowest quartile. The relationship for vitamin C was not observed after adjustment for risk factors. Furthermore, participants with PON1 rs662 AA genotype had a significantly decreased risk of skeletal fluorosis compared with those with the GG genotype (OR = 0.438, 95% CI: 0.231 to 0.830). GG + AG genotype carriers were 2.212 times more likely to have skeletal fluorosis than AA carriers (OR = 2.212, 95% CI: 1.197 to 4.090). Compared with AA carriers, AG carriers had a 2.182 times higher risk of skeletal fluorosis (OR = 2.182, 95% CI: 1.143 to 4.163). Although we observed the risk of skeletal fluorosis was higher with a lower intake of antioxidant nutrients, the potential interactions between nutrient intake and genetic polymorphisms were not observed. Conclusion Participants with a higher intake of vitamin E, zinc, and selenium have a lower likelihood of skeletal fluorosis. In addition, the PON1 rs662 polymorphism is related to skeletal fluorosis.
Collapse
Affiliation(s)
- Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lianhong Li
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Qing Chen
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Dafang Cao
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Diseases, Center for Diseases Control and Prevention of Zhijin County, Zhijin, China
| | - Fangfang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Jun Liu
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
- Fangfang Zeng
| |
Collapse
|
5
|
Golzarand M, Mirmiran P, Azizi F. Association between dietary choline and betaine intake and 10.6-year cardiovascular disease in adults. Nutr J 2022; 21:1. [PMID: 34986852 PMCID: PMC8728923 DOI: 10.1186/s12937-021-00755-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 01/12/2023] Open
Abstract
Background Several studies have assessed the association between dietary choline and betaine and cardiovascular disease (CVD), but their results are inconsistent. The present study aimed to determine the association between dietary intake of choline and betaine and the risk of CVD in the general population over a 10.6-year period of follow-up. Methods The present cohort study was conducted on participants in the third wave of the Tehran Lipid and Glucose Study (2006–2008) and was followed-up until March 2018. Dietary intake of choline and betaine was calculated using the United States Department of Agriculture (USDA) database. Patients’ medical records were used to collect data on CVD. Results In this study, 2606 subjects with no previous CVD participated and were followed-up for a median of 10.6 years. During the follow-up periods, 187 incidences of CVD were detected. Results of the Cox proportional hazards regression indicated that neither energy-adjusted total choline nor betaine was associated with the incidence of CVD. Among individual choline forms, only higher intake of free choline (FC) was associated with a lower risk of CVD (HR: 0.64, 95% CI: 0.42–0.98). There was no significant association between each 10 mg/d increase in choline and betaine content of each food category and CVD. Conclusion Our investigation indicates no association between energy-adjusted total choline and betaine and a 10.6-year risk of CVD among adults. Besides, we found no relationship between individual choline forms (except FC) and CVD. We also found energy-adjusted choline and betaine obtained from food categories were not associated with the risk of CVD.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No. 7, Shahid Hafezi St., Farahzadi Blvd., Shahrak-e-qods, Tehran, 1981619573, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yang HJ, Kang Y, Li YZ, Liu FH, Yan S, Gao S, Huo YL, Gong TT, Wu QJ. Relationship between different forms of dietary choline and ovarian cancer survival: findings from the ovarian cancer follow-up study, a prospective cohort study. Food Funct 2022; 13:12342-12352. [DOI: 10.1039/d2fo02594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Higher levels of pre-diagnosis fat-soluble choline intake was associated with better overall survival of ovarian cancer, and this association was more attributed to phosphatidylcholine.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shi Yan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yun-Long Huo
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|