1
|
Miyamoto J, Ando Y, Yamano M, Nishida A, Murakami K, Kimura I. Acidipropionibacterium acidipropionici, a propionate-producing bacterium, contributes to GPR41 signaling and metabolic regulation in high-fat diet-induced obesity in mice. Front Nutr 2025; 12:1542196. [PMID: 40248033 PMCID: PMC12003125 DOI: 10.3389/fnut.2025.1542196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Obesity is a major healthcare problem worldwide and is induced by excess energy intake, resulting in gut microbial composition and microbial diversity changes. Through fermentation of dietary fibers, short-chain fatty acids (SCFAs) act as host energy sources and signaling molecules via G protein-coupled receptors such as GPR41. Acidipropionibacterium acidipropionici is widely used in many applications; however, in vivo studies on the beneficial effect of A. acidipropionici via propionate production and host energy homeostasis are unclear. Therefore, this study aimed to investigate the beneficial metabolic effects of A. acidipropionici by focusing on GPR41 signaling in a high-fat diet (HFD)-induced obesity mouse model. Here, we demonstrated that A. acidipropionici OB7439 improved host metabolism in HFD-induced obesity in mice. The intake of A. acidipropionici OB7439 improved metabolism in HFD-induced obese mice by increasing propionate production, regulating glucose tolerance, and inhibiting hepatic inflammation via GPR41 signaling. Our findings shed light on the potential of using A. acidipropionici OB7439 as an SCFA producer for the prevention and treatment of metabolic disorders. Based on these results, we suggest that A. acidipropionici may be a potential therapeutic bacterium that inhibits obesity and modulates the gut microbial community.
Collapse
Affiliation(s)
- Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Yuna Ando
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kota Murakami
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Chatsirisakul O, Leenabanchong N, Siripaopradit Y, Chang CW, Buhngamongkol P, Pongpirul K. Strain-Specific Therapeutic Potential of Lactiplantibacillus plantarum: A Systematic Scoping Review. Nutrients 2025; 17:1165. [PMID: 40218922 PMCID: PMC11990516 DOI: 10.3390/nu17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Objectives: This systematically scoping review aims to evaluate the therapeutic potential and clinical benefits of specific Lactiplantibacillus plantarum (L. plantarum) strains in human health, identifying their strain-specific effects across various medical conditions. Methods: Following the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines and employing the PICO framework, a comprehensive literature search was conducted in the PubMed and Embase databases to identify relevant studies published up to December 2023. Inclusion criteria were rigorously applied to ensure the selection of high-quality studies focusing on the clinical application of distinct L. plantarum stains. Results: This review analyzed several unique strains of L. plantarum across 69 studies, identifying several therapeutic benefits. L. plantarum 299v effectively improved gastrointestinal symptoms, enhanced oral health, and reduced systemic inflammation. L. plantarum IS-10506 exhibited notable immunomodulatory effects, especially in managing atopic dermatitis. L. plantarum LB931 showed promise in decreasing pathogenic colonization, supporting women's vaginal health. Additionally, L. plantarum CCFM8724 demonstrated potential in reducing early childhood caries, highlighting its promise in pediatric oral care. Conclusions: The therapeutic potential of L. plantarum is extensive, with certain strains exhibiting promising clinical benefits for specific health concerns. The findings of this review advocate for the integration of L. plantarum strains into clinical practice, emphasizing the need for further research to elucidate their mechanisms of action, optimal dosages, and long-term safety profiles.
Collapse
Affiliation(s)
- Oranut Chatsirisakul
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Natasha Leenabanchong
- Faculty of Medicine and Public Health, HRH Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Lak Si, Bangkok 10210, Thailand;
| | - Yada Siripaopradit
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Chun-Wei Chang
- College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Patsakorn Buhngamongkol
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
- Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
3
|
Lim SYM, Chong EJ, Mah WY, Pan Y, Fang CM, Murugaiah C, Alshagga M. Exploring the anti-obesity effects of Lactobacillus in C57BL/6 mice: mechanisms, interventions, and future directions. Lett Appl Microbiol 2025; 78:ovaf024. [PMID: 39965784 DOI: 10.1093/lambio/ovaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which harms insulin sensitivity and leads to fat buildup. Lactobacillus strains like Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus plantarum help regulate lipid metabolism by boosting key genes, preventing fat cell formation, and encouraging fat breakdown. They also produce short-chain fatty acids (SCFAs) that improve gut health, activate metabolic pathways, and reduce inflammation. Studies in animals have shown that Lactobacillus can reduce body weight, fat, and inflammation, with Lactobacillus plantarum being especially effective in improving gut microbiota and liver function. When combined with other probiotics or prebiotics, these strains work even better, enhancing lipid metabolism and reducing inflammation. These results suggest that Lactobacillus could be an effective way to manage obesity and related health problems by influencing metabolism, gut health, and inflammation. However, more research, particularly human clinical trials, is needed to confirm its potential as a dietary treatment for obesity.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
- Faculty of Business, Design and Arts, Swinburne University of Technology, 93350 Kuching, Sarawak, Malaysia
| | - E-Jayn Chong
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Weng Yan Mah
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Yan Pan
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chee Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chandrika Murugaiah
- Faculty of Medicine, Manipal University College Malaysia, Bukit Baru 75150 Melaka, Malaysia
| | - Mustafa Alshagga
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
4
|
Liu CY, Chen YW, Tsai TY, Liu TH, Chang TC, Tsao CW. Lactiplantibacillus plantarum 1008 Enhances Testicular Function and Spermatogenesis via the Modulation of Gut Microbiota in Male Mice with High-Fat-Diet-Induced Obesity. BIOLOGY 2024; 13:890. [PMID: 39596845 PMCID: PMC11592197 DOI: 10.3390/biology13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Our study was designed to investigate the Lactiplantibacillus plantarum 1008 (LP1008) on testicular antioxidant capacity, spermatogenesis, apoptosis, autophagy, and metabolic function in male mice with high-fat-diet-induced obesity. A total of thirty-six male C57BL/6 mice were fed a normal diet (denoted as the NC group) or a high-fat control diet (denoted as the HFC group) for 16 weeks, then half of the HFC group was randomly chosen and subsequently fed with LP1008 for the final 8 weeks (high-fat diet + LP1008; denoted as the HFP group). The HFP group expressed improved blood cholesterol, insulin resistance, hepatic function, and lipopolysaccharide (LPS) levels compared to the HFC group. Meanwhile, the HFC group displayed decreased testicular testosterone levels, sperm quality, and 17β-HSD protein expression, which were rescued after LP1008 treatment. Moreover, the HFC group had lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activities. After LP1008 treatment, enhanced antioxidative activities and decreased lipid peroxidation were observed. The HFC group also exhibited aggravated apoptosis, inflammation, and autophagy proteins in the testis, which were ameliorated by LP1008 supplementation. Furthermore, the gut microbiota analysis results revealed that the Firmicutes/Bacteroidetes ratio was significantly elevated in the HFC and HFP groups compared to the NC group and that LP1008 treatment diminished Ruminococcaceae and enhanced Bifidobacteriaceae diversity. In summary, LP1008 treatment strengthened antioxidative enzyme levels and regulated microbiota-ameliorated HFC-induced oxidative stress, apoptosis, inflammation, and autophagy, and thus improved testicular function and semen quality.
Collapse
Affiliation(s)
- Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (Y.-W.C.); (T.-C.C.)
| | - Yi-Wen Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (Y.-W.C.); (T.-C.C.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Te-Hua Liu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (Y.-W.C.); (T.-C.C.)
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
5
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Zhong H, Wang L, Jia F, Yan Y, Xiong F, Li Y, Hidayat K, Guan R. Effects of Lactobacillus plantarum supplementation on glucose and lipid metabolism in type 2 diabetes mellitus and prediabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 61:377-384. [PMID: 38777458 DOI: 10.1016/j.clnesp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Lactobacillus plantarum has been shown to improve glucose and lipid metabolism in mouse models of type 2 diabetes mellitus (T2DM). However, it remains unclear whether such benefits extend to humans. A systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to clarify the effect of L. plantarum supplementation on glucose and lipid metabolism in T2DM and prediabetes. The PubMed, Cochrane, and Web of Science databases were searched. A random-effects model was used to estimate the pooled mean difference with 95% CI (confidence interval). L. plantarum supplementation reduced the levels of fasting plasma glucose (-0.41, 95%CI -0.63, -0.19 mg/dL; n = 5) and hemoglobin A1c (-0.2, 95%CI: -0.3, 0%; n = 4). A non-statistically significant tendency towards improvements in the Homeostatic Model Assessment for Insulin Resistance (MD: -0.74, 95%CI: -1.72, 0.25; n = 3), low-density lipoprotein cholesterol (-6.87; 95%CI: -15.03, 1.29 mg/dL; n = 3), high-density lipoprotein cholesterol (MD: 1.34; 95%CI: -0.78, 3.46 mg/dL; n = 3), triglyceride (MD: -3.90; 95%CI: -11.05, 3.24 mg/dL; n = 3), and total cholesterol (MD: -4.88; 95%CI: -11.84, 2.07 mg/dL; n = 3) was observed with the supplementation. In summary, while the evidence from the currently available RCTs provides a crude indication that L. plantarum supplementation might improve glucose and lipid metabolism in patients with T2DM and prediabetes, the benefits of the supplementation are likely subtle, and its clinical significance requires further investigation.
Collapse
Affiliation(s)
- Hao Zhong
- School of Medicine, Nankai University, Tianjin, 310071, China; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Yongqiu Yan
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Feifei Xiong
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Yunhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Khemayanto Hidayat
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
7
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
9
|
Weng G, Huang J, Ma X, Song M, Yin Y, Deng D, Deng J. Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet. Front Nutr 2022; 9:1050025. [PMID: 36505236 PMCID: PMC9729748 DOI: 10.3389/fnut.2022.1050025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Scope Probiotics are a potential preventive strategy for obesity. However, with discrete efficacy and limited species of probiotics, there is a demand for novel strains with excellent anti-obesity properties. This study aimed to investigate the effects of Brevibacillus laterosporus BL1 on preventing obesity in high-fat diet (HFD)-fed mice. Methods and results C57BL/6 male mice were randomly assigned to four groups (n = 10) and fed a control diet, HFD, HFD plus B. laterosporus BL1, and HFD plus supernatant of B. laterosporus BL1, respectively for 8 weeks. The results showed that prophylactic B. laterosporus BL1 treatment reduced body weight gain by 41.26% in comparison to the HFD group, and this difference was accompanied by a reduction in body fat mass and the weight of inguinal white adipose tissues and epididymal white adipose tissue (-33.39%, -39.07%, and -43.75%, respectively). Moreover, the B. laterosporus BL1-mediated improvements in lipid profile, insulin resistance, and chronic inflammation were associated with the regulation of gene expression related to lipid metabolism and enhancement of brown adipose tissue thermogenesis. Particularly, B. laterosporus BL1 intervention significantly improved HFD-induced gut flora dysbiosis, as evidenced by a reverse in the relative abundance of Bacillota and Bacteroidota, as well as an increase in the relative abundance of bacteria that produce short-chain fatty acids (SCFAs), which in turn increased SCFAs levels. Conclusion Our findings found for the first time that B. laterosporus BL1 may be a promising probiotic for prevention of obesity associated with the regulation of gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China,State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Jian Huang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Min Song
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dun Deng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China,*Correspondence: Dun Deng,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China,Jinping Deng,
| |
Collapse
|
10
|
Kwon JG, Park SH, Kwak JE, Cho JH, Kim G, Lee D, Kim DH, Kim HB, Lee JH. Mouse feeding study and microbiome analysis of sourdough bread for evaluation of its health effects. Front Microbiol 2022; 13:989421. [PMID: 36212840 PMCID: PMC9532698 DOI: 10.3389/fmicb.2022.989421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sourdough bread fermented with yeast and lactic acid bacteria (LAB) is thought to have various beneficial health effects. However, its beneficial effects were not fully evaluated with in vivo mouse model. To evaluate these effects in vivo, a mouse feeding study and microbiome analysis of white bread containing 40% sourdough (WBS) and yeast-leavened white bread (WB) were performed. Although feed consumption and body weight increased with WBS, the glycemic index was reduced, suggesting a diabetes-lowering effect, probably due to the presence of dietary fiber and short-chain fatty acids (SCFA). In addition, a mineral absorption test showed that WBS increased magnesium absorption owing to phytate degradation during fermentation. Interestingly, WBS decreased total cholesterol and triglycerides, probably due to the dietary fiber and SCFA in LAB. In addition, the ratio of low- and high-density lipoprotein was decreased in WBS, implying potential risk reduction for cardiovascular disease. An immunomodulatory assay of WBS revealed that pro-inflammatory cytokines TNF-α and IL-6 were decreased, suggesting anti-inflammatory activity. Gluten degradation by fermentation and antioxidation activity of menaquinol/ubiquinol by gut microbiota also supported the anti-inflammatory activity of sourdough bread. Furthermore, some beneficial gut bacteria, including Akkermansia, Bifidobacterium, and Lactobacillus, were increased in WBS. In particular, Akkermansia has been associated with anti-inflammatory properties. Consequently, WBS has beneficial effects on health, including decreased glycemic index and cholesterol, increased mineral availability and absorption, anti-inflammatory properties, and establishment of healthy gut microbiota.
Collapse
Affiliation(s)
- Joon-Gi Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hoon Park
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jeong-Eun Kwak
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Cho
- Department of Animal Resource Science, Dankook University, Cheonan, South Korea
| | - Gooyoun Kim
- Research Institute of Food and Biotechnology, SPC Group Co., Seoul, South Korea
| | - Deukbuhm Lee
- Research Institute of Food and Biotechnology, SPC Group Co., Seoul, South Korea
| | - Dong Hyun Kim
- Research Institute of Food and Biotechnology, SPC Group Co., Seoul, South Korea
| | - Hyeun Bum Kim
- Department of Animal Resource Science, Dankook University, Cheonan, South Korea
| | - Ju-Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Ju-Hoon Lee,
| |
Collapse
|
11
|
Huang CH, Chen CL, Shieh CC, Chang SH, Tsai GJ. Evaluation of Hypoglycemic and Antioxidant Activities of Soybean Meal Products Fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in Rats Fed with High-Fat Diet. Metabolites 2022; 12:metabo12050442. [PMID: 35629946 PMCID: PMC9147997 DOI: 10.3390/metabo12050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
The hypoglycemic and antioxidant activities of Lactobacillus plantarum FPS 2520 and/or Bacillus subtilis N1 fermented soybean meal (SBM) in rats fed a high-fat diet (HFD) were investigated by assessing plasma glucose levels, insulin resistance, and oxidative stress-induced organ damage. Supplementation with FPS 2520- and/or N1-fermented SBM (500 and 1000 mg/kg of body weight per day) to HFD-induced obese rats for 6 weeks significantly down-regulated the concentration of plasma glucose during the oral glucose tolerance test (OGTT), as well as the concentration of fasting plasma glucose, insulin, and the value of the homeostasis model assessment of insulin resistance (HOMA-IR). In addition, plasma and hepatic levels of malondialdehyde (MDA) were alleviated in rats fed fermented SBM, especially SBM fermented by mixed strains. Moreover, fermented SBM treatment reduced HFD-exacerbated increases in plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid levels. Based on these results, we clearly demonstrate the effect of fermented SBM on improving insulin resistance and oxidation-induced organ damage. Therefore, it is suggested that fermented SBM has the potential to be developed as functional foods for the management of obesity-induced hyperglycemia and organ damage.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Chun-Lung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Chen-Che Shieh
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|