1
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Higuchi J, Kurogochi M, Yamaguchi T, Fujio N, Mitsuduka S, Ishida Y, Fukudome H, Nonoyama N, Gota M, Mizuno M, Sakai F. Qualitative and Quantitative Analyses of Sialyl O-Glycans in Milk-Derived Sialylglycopeptide Concentrate. Foods 2024; 13:2792. [PMID: 39272557 PMCID: PMC11395400 DOI: 10.3390/foods13172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Sialyl glycans have several biological functions. We have previously reported on the preparation and bifidogenic activity of milk-derived sialylglycopeptide (MSGP) concentrate containing sialyl O-glycans. The current study qualitatively and quantitatively analyzed the sialyl O-glycans present in the MSGP concentrate. Notably, our quantitative analysis indicated that a majority of O-glycopeptides in the MSGP concentrate were derived from glycomacropeptides. The concentrate was found to contain mainly three types of sialyl core 1 O-glycans, with the disialyl core 1 O-glycan being the most abundant. We successfully quantified three types of sialyl core 1 O-glycans using a meticulous method that used homogeneous O-glycopeptides as calibration standards. Our results provide valuable insights into assessment strategies for the quality control of O-glycans in dietary products and underscore the potential applications of MSGP concentrate in the food industry and other industries.
Collapse
Affiliation(s)
- Junichi Higuchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Masaki Kurogochi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| | - Toshiyuki Yamaguchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Noriki Fujio
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Sho Mitsuduka
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Yuko Ishida
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Hirofumi Fukudome
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Noriko Nonoyama
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Masayuki Gota
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| | - Fumihiko Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| |
Collapse
|
3
|
Ottino-González J, Adise S, Machle CJ, Mokhtari P, Holzhausen EA, Furst A, Yonemitsu C, Alderete TL, Bode L, Peterson BS, Goran MI. Consumption of different combinations of human milk oligosaccharides in the first 6 mo of infancy is positively associated with early cognition at 2 y of age in a longitudinal cohort of Latino children. Am J Clin Nutr 2024; 120:593-601. [PMID: 39059708 PMCID: PMC11393400 DOI: 10.1016/j.ajcnut.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Lactation has been widely associated with optimal neurocognitive development, but the underlying mechanism remains unknown. Human milk oligosaccharides (HMOs) are complex sugars that support brain development, but previous studies examining their associations with cognition have yielded inconsistent findings. OBJECTIVES This study aimed to provide a broader understanding of how HMOs jointly influence cognition. METHODS We used data from an ongoing longitudinal cohort of Latino mother-infant dyads. Human milk samples from 1 mo (n = 157) and 6 mo (n = 107) postpartum were assessed for the 19 most abundant HMOs. Cognitive performance was assessed at 2 y using the Bayley Scale of Infant and Toddler Development. A partial least squares model identified HMO combinations predictive of cognitive scores. RESULTS At 1 mo, the combination of higher concentrations of lacto-N-neotetraose (LNnT), lacto-N-tetraose (LNT), lacto-N-fucopentaose (LNFP)-III, 6'-sialyllactose, and 2'-fucosyllactose (FL) with lower concentrations of sialyllacto-N-tetraose (LST) b, LNFP-II, fucodisialyllacto-N-hexaose, and 3-FL significantly predicted higher cognitive scores (β: 0.61; 95% confidence interval [CI]: 0.30, 0.92), explaining an additional 8% of the variance over a model with only nuisance covariates (11%). Additional analyses revealed that the combination of higher LNFP-III and lower LSTb alone explained 5% more of the variation in cognitive scores (β: 0.66; 95% CI: 0.24, 1.09). At 6 mo (n = 107), higher LNnT, LNT, and LNFP-III and lower 3FL and LSTb concentrations explained an extra 6% of the variance in cognitive scores (β: 0.43; 95% CI: 0.12, 0.75). CONCLUSIONS This study highlights specific HMO combinations in early life influencing cognitive performance at 2 y.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Pari Mokhtari
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Bradley S Peterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
4
|
Wang Y, Rui B, Ze X, Liu Y, Yu D, Liu Y, Li Z, Xi Y, Ning X, Lei Z, Yuan J, Li L, Zhang X, Li W, Deng Y, Yan J, Li M. Sialic acid-based probiotic intervention in lactating mothers improves the neonatal gut microbiota and immune responses by regulating sialylated milk oligosaccharide synthesis via the gut-breast axis. Gut Microbes 2024; 16:2334967. [PMID: 38630006 PMCID: PMC11028031 DOI: 10.1080/19490976.2024.2334967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are vital milk carbohydrates that help promote the microbiota-dependent growth and immunity of infants. Sialic acid (SA) is a crucial component of sialylated milk oligosaccharides (S-MOs); however, the effects of SA supplementation in lactating mothers on S-MO biosynthesis and their breastfed infants are unknown. Probiotic intervention during pregnancy or lactation demonstrates promise for modulating the milk glycobiome. Here, we evaluated whether SA and a probiotic (Pro) mixture could increase S-MO synthesis in lactating mothers and promote the microbiota development of their breastfed neonates. The results showed that SA+Pro intervention modulated the gut microbiota and 6'-SL contents in milk of maternal rats more than the SA intervention, which promoted Lactobacillus reuteri colonization in neonates and immune development. Deficient 6'-SL in the maternal rat milk of St6gal1 knockouts (St6gal1-/-) disturbed intestinal microbial structures in their offspring, thereby impeding immune tolerance development. SA+Pro intervention in lactating St6gal1± rats compromised the allergic responses of neonates by promoting 6'-SL synthesis and the neonatal gut microbiota. Our findings from human mammary epithelial cells (MCF-10A) indicated that the GPR41-PI3K-Akt-PPAR pathway helped regulate 6'-SL synthesis in mammary glands after SA+Pro intervention through the gut - breast axis. We further validated our findings using a human-cohort study, confirming that providing SA+Pro to lactating Chinese mothers increased S-MO contents in their breast milk and promoted gut Bifidobacterium spp. and Lactobacillus spp. colonization in infants, which may help enhance immune responses. Collectively, our findings may help alter the routine supplementation practices of lactating mothers to modulate milk HMOs and promote the development of early-life gut microbiota and immunity.
Collapse
Affiliation(s)
- Yushuang Wang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Binqi Rui
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yujia Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Da Yu
- The Third Ward of Obstetrics and Gynecology at Chunliu District, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Yinhui Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhi Li
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yu Xi
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xixi Ning
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Liang Li
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xuguang Zhang
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yanjie Deng
- The Third Ward of Obstetrics and Gynecology at Chunliu District, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Xie Q, Cui D, Zhu Q, Qin X, Ren D, Xu X. Supplementing maternal diet with milk oligosaccharides and probiotics helps develop the immune system and intestinal flora of offsprings. Food Sci Nutr 2023; 11:6868-6877. [PMID: 37970377 PMCID: PMC10630837 DOI: 10.1002/fsn3.3579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Intestinal flora is very important for improving the development of the immune system in newborns. Maternal diet during pregnancy and lactation is one of the key factors affecting the growth and development of offspring. The objective of the present study was to examine whether supplementation of maternal diet with milk oligosaccharides and Bifidobacterium could influence the development of the intestinal flora and immune system of neonatal mice. In total, 30 pregnant Institute of Cancer Research (ICR) mice were randomly divided into six groups: a control group (basal diet) and five intervention groups (basal diet supplemented with different doses of 2'-fucosyllactose [2'-FL] and Bifidobacterium Bb12) during the pregnancy period. All female mice were monitored for physical health during gavage. After delivery, the number of mice in each litter, any deformity, and the development of the offspring were recorded. The spleen, blood, and fecal samples of six groups of 10-12 day-old offspring were collected. The results demonstrated that maternal milk oligosaccharides and probiotics conferred protective effects against lipopolysaccharide (LPS)-induced immunosuppression in mice offspring by significantly enhancing the immune organ indexes, splenocyte proliferation, immunoglobulin (immunoglobulin G, A, M) production as well as improving the macrophage phagocytosis (p < .05). The abundance of Lactobacilli and Bifidobacteria in the feces of offspring mice in the intervention groups was significantly higher than that of the offspring mice in the control group (p < .05). These findings suggest that the combination of 2'-FL and Bifidobacterium Bb12 displayed synergistic interactions between the two components that could promote the development of the immune system of the offsprings and improve their microbiota through maternal ingestion.
Collapse
Affiliation(s)
- Qinggang Xie
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| | | | - Qinchao Zhu
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xuewen Qin
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Daxi Ren
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xiaoxi Xu
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
6
|
Cao X, Yang X, Xiao M, Jiang X. Molecular Dynamics Simulations Reveal the Conformational Transition of GH33 Sialidases. Int J Mol Sci 2023; 24:ijms24076830. [PMID: 37047800 PMCID: PMC10095477 DOI: 10.3390/ijms24076830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Sialidases are increasingly used in the production of sialyloligosaccharides, a significant component of human milk oligosaccharides. Elucidating the catalytic mechanism of sialidases is critical for the rational design of better biocatalysts, thereby facilitating the industrial production of sialyloligosaccharides. Through comparative all-atom molecular dynamics simulations, we investigated the structural dynamics of sialidases in Glycoside Hydrolase family 33 (GH33). Interestingly, several sialidases displayed significant conformational transition and formed a new cleft in the simulations. The new cleft was adjacent to the innate active site of the enzyme, which serves to accommodate the glycosyl acceptor. Furthermore, the residues involved in the specific interactions with the substrate were evolutionarily conserved in the whole GH33 family, highlighting their key roles in the catalysis of GH33 sialidases. Our results enriched the catalytic mechanism of GH33 sialidases, with potential implications in the rational design of sialidases.
Collapse
Affiliation(s)
- Xueting Cao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Xiao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Guan B, Zhang Z, Cao X, Yang M, Chai Y, Amantai X, Luo X, Feng D, Liu Y, Yue X, Liu X. Characterization and comparison site-specific N-glycosylation profiling of milk fat globule membrane proteome in donkey and human colostrum and mature milk. Food Chem 2023; 419:136081. [PMID: 37037133 DOI: 10.1016/j.foodchem.2023.136081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Milk fat globule membrane (MFGM) proteins are highly glycosylated and involved in various biological processes within the body. However, information on site-specific N-glycosylation of MFGM glycoproteins in donkey and human milk remains limited. This study aimed to map the most comprehensive site-specific N-glycosylation fingerprinting of donkey and human MFGM glycoproteins using a site-specific glycoproteomics strategy. We identified 1,360, 457, 2,617, and 986 site-specific N-glycans from 296, 77, 214, and 196 N-glycoproteins in donkey colostrum (DC), donkey mature milk (DM), human colostrum (HC), and human mature milk (HM), respectively. Bioinformatics was used to describe the structure-activity relationships of DC, DM, HC, and HM MFGM N-glycoproteins. The results revealed differences in the molecular composition of donkey and human MFGM N-glycoproteins and the dynamic changes to site-specific N-glycosylation of donkey and human MFGM glycoproteins during lactation, deepening our understanding of the composition of donkey and human MFGM N-glycoproteins and their potential physiological roles.
Collapse
Affiliation(s)
- Boyuan Guan
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yuxia Chai
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiakouna Amantai
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Daguang Feng
- College of Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yiming Liu
- Foreign Language Teaching Department, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110003, China.
| |
Collapse
|
8
|
Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows. BIOLOGY 2022; 12:biology12010005. [PMID: 36671698 PMCID: PMC9854834 DOI: 10.3390/biology12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, N-acetylneuraminic acid (Neu5Ac), can be attached as monosialyl-residues or as polymers. To investigate the sialylation processes during lactation of German Holstein cows, we analyzed udder tissue in addition to milk at different time points of lactation. The analysis of the milk samples revealed that both the levels of Neu5Ac and its polymer, polysialic acid (polySia), rapidly decreased during the first three days of lactation, and a high interindividual variance was observed. In mature milk, however, the sialylation status remains relatively constant. The results indicate that mammary gland epithelial cells are one source for milk polySia, since immunohistochemistry of udder tissue exhibited strong polySia staining in these cells. Furthermore, both polysialyltransferases, ST8SiaII and ST8SiaIV, are expressed. Based on known functions of monosialyl residues and polySia, we discuss the potential impact of these biomolecules and the consequences of the heterogeneous sialylation status of milk in relation to udder health and offspring health.
Collapse
|
9
|
Fibbiani M, Ghelli Luserna DI Rorà L, Novelli T, Peroni DG. The impact of human milk oligosaccharides on health from infancy to childhood. Minerva Pediatr (Torino) 2022; 74:724-732. [PMID: 36178339 DOI: 10.23736/s2724-5276.22.07037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human milk oligosaccharides (HMOs) act as prebiotics in the infant's gut and contribute to the relationship among the host and the gut microbiota. HMO are greatly present in the human milk and their benefit may include: reinforcement of the immune system with a better immune response to infective agents, improved resistance to infections of the gut, immunomodulation against food allergies, asthma, and atopic dermatitis and finally decreased the risk of chronic diseases. In this narrative review will discuss evidence present in literature regarding HMOs in human milk and their supplementation in infant formula.
Collapse
Affiliation(s)
- Martina Fibbiani
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Tommaso Novelli
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy -
| |
Collapse
|
10
|
Wang H, Zhang X, Kang P, Cui X, Hao G, Wang Z, Han B, Lv X, Zhang J, Ge W. Variations in Oligosaccharides and N/ O-Glycans in Human Milk through the Eight-Month Lactation Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14272-14283. [PMID: 36315615 DOI: 10.1021/acs.jafc.2c05869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oligosaccharides and N/O-glycans are abundant in human milk and have numerous biological functions (for instance sialylated glycans provide sialic acid for the growth of infant brains), but their variation trends during lactation need further exploration. Qualitative and quantitative analyses of oligosaccharides and N/O-glycans in human milk at different lactation stages (from 7 days to 8 months) were performed using UHPLC-ESI-MS/MS. Thirty-four oligosaccharides, twenty-three N-glycans, and six O-glycans were identified. Oligosaccharides showed the highest abundance in human colostrum and decreased with the progression of lactation, and the abundance of N/O-glycans fluctuated as lactation progressed, while a high abundance of sialylated oligosaccharides and sialylated N/O-glycans was observed in human colostrum. These findings provide evidence for breastfeeding support and contribute to the development of infant formula supplemented with human milk glycans.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ximei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peng Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd, Yanliang 710089, China
| | - Guo Hao
- Shaanxi Goat Milk Product Quality Supervision and Inspection Center, Fuping 711700, China
| | - Zhongfu Wang
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bei Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|