1
|
Oumer A, Joy EJM, De Groote H, Broadley MR, Gashu D. Burden of selenium deficiency and cost-effectiveness of selenium agronomic biofortification of staple cereals in Ethiopia. Br J Nutr 2024; 132:1110-1122. [PMID: 39479900 PMCID: PMC11600287 DOI: 10.1017/s0007114524001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 11/02/2024]
Abstract
Selenium (Se) deficiency among populations in Ethiopia is consistent with low concentrations of Se in soil and crops that could be addressed partly by Se-enriched fertilisers. This study examines the disease burden of Se deficiency in Ethiopia and evaluates the cost-effectiveness of Se agronomic biofortification. A disability-adjusted life years (DALY) framework was used, considering goiter, anaemia, and cognitive dysfunction among children and women. The potential efficiency of Se agronomic biofortification was calculated from baseline crop composition and response to Se fertilisers based on an application of 10 g/ha Se fertiliser under optimistic and pessimistic scenarios. The calculated cost per DALY was compared against gross domestic product (GDP; below 1-3 times national GDP) to consider as a cost-effective intervention. The existing national food basket supplies a total of 28·2 µg of Se for adults and 11·3 µg of Se for children, where the risk of inadequate dietary Se reaches 99·1 %-100 %. Cereals account for 61 % of the dietary Se supply. Human Se deficiency contributes to 0·164 million DALYs among children and women. Hence, 52 %, 43 %, and 5 % of the DALYs lost are attributed to anaemia, goiter, and cognitive dysfunction, respectively. Application of Se fertilisers to soils could avert an estimated 21·2-67·1 %, 26·6-67·5 % and 19·9-66·1 % of DALY via maize, teff and wheat at a cost of US$129·6-226·0, US$149·6-209·1 and US$99·3-181·6, respectively. Soil Se fertilisation of cereals could therefore be a cost-effective strategy to help alleviate Se deficiency in Ethiopia, with precedents in Finland.
Collapse
Affiliation(s)
- Abdu Oumer
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Edward J. M. Joy
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, UK
- Rothamsted Research, Harpenden, HertfordshireAL5 2JQ, UK
| | - Hugo De Groote
- Sustainable Agrifood Systems Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Martin R. Broadley
- Rothamsted Research, Harpenden, HertfordshireAL5 2JQ, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LeicestershireLE12 5RD, UK
| | - Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Oztekin Y, Buyuktuncer Z. Agronomic Biofortification of Plants with Iodine and Selenium: A Potential Solution for Iodine and Selenium Deficiencies. Biol Trace Elem Res 2024:10.1007/s12011-024-04346-7. [PMID: 39192170 DOI: 10.1007/s12011-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Iodine and selenium deficiencies are widespread both in developed countries and developing countries. The soil is the fundamental source of iodine and selenium for plants, and iodine and/or selenium-depleted soil restrains the cultivation of crops to cover recommended daily intakes of iodine and selenium. Although food fortification strategies, including salt iodization, increase the dietary intake of these minerals, their global deficiencies have not been eliminated. Therefore, new strategies have been developed to prevent iodine and selenium deficiencies, and biofortification is one of them. The aim of this review is to assert the outcomes of the studies that investigate the optimum conditions for biofortification with iodine and selenium and to recognize the role of biofortification practices as a potential solution for preventing iodine and selenium deficiencies. The findings of studies show that biofortification with iodine and selenium can be a solution for iodine and selenium deficiencies. Agronomic biofortification is currently a more convenient method to increase selenium and iodine contents in plants. However, the most effective agronomic biofortification conditions are crucial to acquire biofortified food. Moreover, increasing the awareness of the producers and consumers on biofortification has a determinative role in the achievement of biofortification practices for human health. Although research about iodine and selenium biofortification has been increased, the effectiveness of biofortified foods to meet recommended daily intakes is still unknown. More research is needed to understand most effective biofortification conditions for plants and bioavailability of biofortified foods for humans.
Collapse
Affiliation(s)
- Yesim Oztekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Chilala P, Skalickova S, Horky P. Selenium Status of Southern Africa. Nutrients 2024; 16:975. [PMID: 38613007 PMCID: PMC11013911 DOI: 10.3390/nu16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Selenium is an essential trace element that exists in inorganic forms (selenite and selenates) and organic forms (selenoamino acids, seleno peptides, and selenoproteins). Selenium is known to aid in the function of the immune system for populations where human immunodeficiency virus (HIV) is endemic, as studies suggest that a lack of selenium is associated with a higher risk of mortality among those with HIV. In a recent study conducted in Zambia, adults had a median plasma selenium concentration of 0.27 μmol/L (IQR 0.14-0.43). Concentrations consistent with deficiency (<0.63 μmol/L) were found in 83% of adults. With these results, it can be clearly seen that selenium levels in Southern Africa should be investigated to ensure the good health of both livestock and humans. The recommended selenium dietary requirement of most domesticated livestock is 0.3 mg Se/kg, and in humans above 19 years, anRDA (recommended daily allowance) of 55 mcg Se/per dayisis recommended, but most of the research findings of Southern African countries have recorded low levels. With research findings showing alarming low levels of selenium in soils, humans, and raw feed materials in Southern Africa, further research will be vital in answering questions on how best to improve the selenium status of Southern African soils and plants for livestock and humans to attain sufficient quantities.
Collapse
Affiliation(s)
| | | | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic; (P.C.); (S.S.)
| |
Collapse
|
4
|
Lowe NM. Fortification or biofortification: complimentary strategies or duplication of effort? Proc Nutr Soc 2024:1-10. [PMID: 38197143 DOI: 10.1017/s0029665124000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Micronutrient deficiencies continue to be a global concern, with the most common deficiencies being vitamin A, iron, zinc and B vitamins (folate and B12). Addressing this requires strategies that are scalable and equitable such that they reach all members of a population irrespective of socioeconomic status and geography. Fortification and biofortification offer potential large-scale solutions, however each have strengths and limitations depending on the context, particularly the cultural and political factors that may create barriers or opportunities for effectiveness. Planning how to target scarce resources for maximum impact requires an in-depth knowledge and understanding of local food systems and market dynamics, alongside strong government policy and legislative support. A food fortification programme was launched in Pakistan in 2016, supported by UK Aid and designed to address the high prevalence of vitamin A, iron and zinc deficiency, particularly in women and children. In the same year, the first zinc biofortified variety of wheat, Zincol-2016, was released in Pakistan, supported and developed through the HarvestPlus programme in collaboration with the Pakistan National Agriculture Research Centre. This review explores the challenges faced by fortification and biofortification, initiated independently, (but around the same time) in Pakistan.
Collapse
Affiliation(s)
- Nicola Mary Lowe
- Centre for Global Development, University of Central Lancashire, PrestonPR1 2HE, UK
| |
Collapse
|
5
|
Giacconi R, Piacenza F, Aversano V, Zampieri M, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Weinberger B, Sikora E, Toussaint O, Debacq-Chainiaux F, Stuetz W, Slagboom PE, Bernhardt J, Fernández-Sánchez ML, Provinciali M, Malavolta M. Uncovering the Relationship between Selenium Status, Age, Health, and Dietary Habits: Insights from a Large Population Study including Nonagenarian Offspring from the MARK-AGE Project. Nutrients 2023; 15:2182. [PMID: 37432362 PMCID: PMC10180750 DOI: 10.3390/nu15092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 07/12/2023] Open
Abstract
An inadequate selenium (Se) status can accelerate the aging process, increasing the vulnerability to age-related diseases. The study aimed to investigate plasma Se and Se species in a large population, including 2200 older adults from the general population (RASIG), 514 nonagenarian offspring (GO), and 293 GO Spouses (SGO). Plasma Se levels in women exhibit an inverted U-shaped pattern, increasing with age until the post-menopausal period and then declining. Conversely, men exhibit a linear decline in plasma Se levels with age. Subjects from Finland had the highest plasma Se values, while those from Poland had the lowest ones. Plasma Se was influenced by fish and vitamin consumption, but there were no significant differences between RASIG, GO, and SGO. Plasma Se was positively associated with albumin, HDL, total cholesterol, fibrinogen, and triglycerides and negatively associated with homocysteine. Fractionation analysis showed that Se distribution among plasma selenoproteins is affected by age, glucometabolic and inflammatory factors, and being GO or SGO. These findings show that sex-specific, nutritional, and inflammatory factors play a crucial role in the regulation of Se plasma levels throughout the aging process and that the shared environment of GO and SGO plays a role in their distinctive Se fractionation.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Valentina Aversano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, P.O. Box 628, 78457 Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, P.O. Box 628, 78457 Konstanz, Germany
- Human Performance Research Centre, Department of Sport Science, Universityof Konstanz, P.O. Box 30, 78457 Konstanz, Germany
| | - Martijn E. T. Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany
| | - Efstathios S. Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 11635 Athens, Greece
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, Lobachevsky State University, 603105 Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center—Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, 40126 Bologna, Italy
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Olivier Toussaint
- URBC-NARILIS, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | | | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | - Maria Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería, 8, 33006 Oviedo, Spain
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| |
Collapse
|
6
|
Safiul Azam FM, Lian T, Liang Q, Wang W, Zhang C, Jiang L. Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Front Nutr 2022; 9:1029119. [PMID: 36337650 PMCID: PMC9634661 DOI: 10.3389/fnut.2022.1029119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin B and its derivatives possess diverse physiological functions and are essential micronutrients for humans. Their variation in crops is important for the identification of genetic resources used to develop new varieties with enhanced vitamin B. In this research, remarkable variations were observed in kernels of 156 maize inbred lines, ranging from 107.61 to 2654.54 μg per 100 g for vitamin B1, 1.19-37.37 μg per 100 g for B2, 19.60-213.75 μg per 100 g for B3, 43.47-590.86 μg per 100 g for B5, and 138.59-1065.11 μg per 100 g for B6. Growing inbreeds in Hainan and Hebei provinces of China revealed environmental and genotype interactions among these vitamins and the correlations between them in maize grain. Several inbred lines were identified as good sources of vitamin B and promising germplasms for maize breeding, namely By855 and Si273 are overall rich in all the studied vitamins, and GY386B and CML118 are specially enriched with derivatives of vitamin B6. The present study can assist maize breeders with germplasm resources of vitamin B for biofortification to offer people nutritious foods.
Collapse
Affiliation(s)
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|