1
|
Yang C, Jiang W, Su D, Yang C, Yuan Q, Kang C, Xiao C, Wang L, Peng C, Zhou T, Zhang J. Contamination of the traditional medicine Radix Dipsaci with aflatoxin B1 impairs hippocampal neurogenesis and cognitive function in a mouse model of osteoporosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116831. [PMID: 39151374 DOI: 10.1016/j.ecoenv.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Aflatoxin B1, which can penetrate the blood-brain barrier and kill neural cells, can contaminate traditional herbal medicines, posing a significant risk to human health. The present study examined cellular, cognitive and behavioral consequences of aflatoxin B1 contamination of the anti-osteoporotic medicine Radix Dipsaci. METHODS A mouse model of osteoporosis was created by treating the animals with all-trans-retinoic acid. Then the animals were treated intragastically with water decoctions of Radix Dipsaci that contained detectable aflatoxin B1 or not. The animals were compared in terms of mineral density and mineral salt content of bone, production of pro-inflammatory factors, neurogenesis and microglial activation in hippocampus, as well as behavior and cognitive function. RESULTS Contamination of Radix Dipsaci with aflatoxin B1 significantly reduced the medicine's content of bioactive saponins. It destroyed the ability of the herbal decoction to improve mineral density and mineral salt content in the bones of diseased mice, and it induced the production of the oxidative stress marker malondialdehyde as well as the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α. Aflatoxin B1 contamination inhibited formation of new neurons and increased the proportion of activated microglia in the hippocampus. These neurological changes were associated with anhedonia, behavioral despair, and deficits in short-term memory and social memory. CONCLUSION Contamination of Radix Dipsaci with aflatoxin B1 not only eliminates the herbal decoction's anti-osteoporotic effects, but it also induces neurotoxicity that can lead to cognitive decline and behavioral abnormalities. Such contamination should be avoided through tightly regulated production and quality control of medicinal herbs.
Collapse
Affiliation(s)
- Chengyan Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Dapeng Su
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changgui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chuanzhi Kang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
2
|
Hassaneen NH, Hemeda SA, El Nahas AF, Fadl SE, El-Diasty EM. Camel milk or silymarin could improve the negative effects that experimentally produced by aflatoxin B1 on rat's male reproductive system. BMC Vet Res 2024; 20:108. [PMID: 38500117 PMCID: PMC10946164 DOI: 10.1186/s12917-024-03965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Camel milk and silymarin have many different beneficial effects on several animal species. Meanwhile, Aflatoxins are mycotoxins with extraordinary potency that pose major health risks to several animal species. Additionally, it has been documented that aflatoxins harm the reproductive systems of a variety of domestic animals. The present design aimed to investigate the impact of aflatoxin B1 (AFB1) on rat body weight and reproductive organs and the ameliorative effects of camel milk and silymarin through measured serum testosterone, testes pathology, and gene expression of tumor necrosis factor (TNF-α), luteinizing hormone receptor (LHR), and steroidogenic acute regulatory protein (StAR) in the testes. A total of sixty mature male Wister white rats, each weighing an average of 83.67 ± 0.21 g, were used. There were six groups created from the rats. Each division had ten rats. The groups were the control (without any treatment), CM (1 ml of camel milk/kg body weight orally), S (20 mg silymarin/kg b. wt. suspension, orally), A (1.4 mg aflatoxin/kg diet), ACM (aflatoxin plus camel milk), and AS (aflatoxin plus silymarin). RESULTS The results indicated the positive effects of camel milk and silymarin on growth, reproductive organs, and gene expression of TNF-α, LHR, and StAR with normal testicular architecture. Also, the negative effect of AFB1 on the rat's body weight and reproductive organs, as indicated by low body weight and testosterone concentration, was confirmed by the results of histopathology and gene expression. However, these negative effects were ameliorated by the ingestion of camel milk and silymarin. CONCLUSION In conclusion, camel milk and silymarin could mitigate the negative effect of AFB1 on rat body weight and reproductive organs.
Collapse
Affiliation(s)
- Nahla H Hassaneen
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Shabaan A Hemeda
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer F El Nahas
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman M El-Diasty
- Mycology Department, Animal Health Research Institute Dokki, Giza (ARC), Egypt
| |
Collapse
|
3
|
Li Q, Sun H, Guo J, Zhao X, Bai R, Zhang M, Liu M. The effect of prenatal stress on offspring depression susceptibility in relation to the gut microbiome and metabolome. J Affect Disord 2023; 339:531-537. [PMID: 37463643 DOI: 10.1016/j.jad.2023.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Prenatal stress (PS) increases offspring susceptibility to depression, but the underlying mechanism remains unclear. Our previous results showed that PS can affect depression-like behavior in offspring through neurotransmitters and neuroinflammatory substances in the hippocampus and frontal cortex. In recent years there has been increasing evidence for a role of the gut microbiome in depression. The brain-gut axis theory suggests there is a need to further explore the mechanism involving the gut microbiome in the susceptibility of offspring to depression caused by PS. In the present study we used a stress model relevant to depression in which pregnant female rats undergo prenatal restraint stress and the offspring show susceptibility to depression. High-resolution gene sequencing for 16S ribosomal RNA markers and non-targeted metabolomic analysis were used to evaluate the fecal microbiome and the availability of metabolites, respectively. PS was found to induce depressive-like behavior in susceptible offspring (PS-S), as detected by the sucrose preference and forced swimming tests, as well as altering Alpha and Beta diversity. The different microbiota between the PS-S and control groups were mainly involved in membrane transport, carbohydrate metabolism, amino acid metabolism, and replication and repair pathways. In total, 237 and 136 important differential metabolites with significant influence on modeling analysis were obtained under positive and negative modes, respectively. The main canonical pathways found to be altered were glycerophospholipid metabolism and glycerolipid metabolism. These results suggest that gut microbiota might contribute to the onset of PS-induced depression-like behavior by affecting the glycerophospholipid and glycerolipid metabolic pathways.
Collapse
Affiliation(s)
- Qinghong Li
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Hongli Sun
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi 86-710003, PR China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Xiaolin Zhao
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Ruimiao Bai
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Min Zhang
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Minna Liu
- Child Healthcare Department, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 86-710061, PR China.
| |
Collapse
|
4
|
Batsukh S, Oh S, Rheu K, Lee BJ, Choi CH, Son KH, Byun K. Rice Germ Attenuates Chronic Unpredictable Mild Stress-Induced Muscle Atrophy. Nutrients 2023; 15:2719. [PMID: 37375622 DOI: 10.3390/nu15122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic stress leads to hypothalamic-pituitary-adrenal axis dysfunction, increasing cortisol levels. Glucocorticoids (GCs) promote muscle degradation and inhibit muscle synthesis, eventually causing muscle atrophy. In this study, we aimed to evaluate whether rice germ supplemented with 30% γ-aminobutyric acid (RG) attenuates muscle atrophy in an animal model of chronic unpredictable mild stress (CUMS). We observed that CUMS raised the adrenal gland weight and serum adrenocorticotropic hormone (ACTH) and cortisol levels, and these effects were reversed by RG. CUMS also enhanced the expression of the GC receptor (GR) and GC-GR binding in the gastrocnemius muscle, which were attenuated by RG. The expression levels of muscle degradation-related signaling pathways, such as the Klf15, Redd-1, FoxO3a, Atrogin-1, and MuRF1 pathways, were enhanced by CUMS and attenuated by RG. Muscle synthesis-related signaling pathways, such as the IGF-1/AKT/mTOR/s6k/4E-BP1 pathway, were reduced by CUMS and enhanced by RG. Moreover, CUMS raised oxidative stress by enhancing the levels of iNOS and acetylated p53, which are involved in cell cycle arrest, whereas RG attenuated both iNOS and acetylated p53 levels. Cell proliferation in the gastrocnemius muscle was reduced by CUMS and enhanced by RG. The muscle weight, muscle fiber cross-sectional area, and grip strength were reduced by CUMS and enhanced by RG. Therefore, RG attenuated ACTH levels and cortisol-related muscle atrophy in CUMS animals.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kyoungmin Rheu
- Marine Bioprocess Co., Ltd., Smart Marine BioCenter, Busan 46048, Republic of Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Smart Marine BioCenter, Busan 46048, Republic of Korea
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|