1
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk-Tea Blends. Foods 2024; 13:3016. [PMID: 39335944 PMCID: PMC11431367 DOI: 10.3390/foods13183016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the impact of substituting lactose with maltodextrin in milk-tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk-tea (SM-T) and whole milk-tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk-tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk-tea properties.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
2
|
Tzirkel-Hancock N, Raz C, Sharabi L, Argov-Argaman N. The Stressogenic Impact of Bacterial Secretomes Is Modulated by the Size of the Milk Fat Globule Used as a Substrate. Foods 2024; 13:2429. [PMID: 39123620 PMCID: PMC11312077 DOI: 10.3390/foods13152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Milk fat globules (MFGs) are produced by mammary epithelial cells (MECs) and originate from intracellular lipid droplets with a wide size distribution. In the mammary gland and milk, bacteria can thrive on MFGs. Herein, we aimed to investigate whether the response of MECs to the bacterial secretome is dependent on the MFG size used as a substrate for the bacteria, and whether the response differs between pathogenic and commensal bacteria. We used secretomes from both Bacillus subtilis and E. coli. Proinflammatory gene expression in MECs was elevated by the bacteria secretomes from both bacteria sources, while higher expression was found in cells exposed to the secretome of bacteria grown on large MFGs. The secretome of B. subtilis reduced lipid droplet size in MECs. When the secretome originated from E. coli, lipid droplet size in MEC cytoplasm was elevated with a stronger response to the secretome from bacteria grown on large compared with small MFGs. These results indicate that MEC response to bacterial output is modulated by bacteria type and the size of MFGs used by the bacteria, which can modulate the stress response of the milk-producing cells, their lipid output, and consequently milk quality.
Collapse
Affiliation(s)
| | | | | | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (N.T.-H.)
| |
Collapse
|
3
|
Argov-Argaman N, Altman H, Janssen JN, Daeem S, Raz C, Mesilati-Stahy R, Penn S, Monsonego-Ornan E. Effect of milk fat globules on growth and metabolism in rats fed an unbalanced diet. Front Nutr 2024; 10:1270171. [PMID: 38274212 PMCID: PMC10808575 DOI: 10.3389/fnut.2023.1270171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 01/27/2024] Open
Abstract
We assessed the effects of supplementing milk fat globules (MFG) on the growth and development of the skeleton in rats fed a Western unbalanced diet (UBD). The UBD is high in sugar and fat, low in protein, fiber, and micronutrients, and negatively impacts health. The MFG-a complex lipid-protein assembly secreted into milk-has a unique structure and composition, which differs significantly from isolated and processed dietary ingredients. Rats consuming the UBD exhibited growth retardation and disrupted bone structural and mechanical parameters; these were improved by supplementation with small MFG. The addition of small MFG increased the efficiency of protein utilization for growth, and improved trabecular and cortical bone parameters. Furthermore, consumption of UBD led to a decreased concentration of saturated fatty acids and increased levels of polyunsaturated fatty acids (PUFA), particularly omega-6 PUFA, in the serum, liver, and adipose tissue. The addition of small MFG restored PUFA concentration and the ratio of omega-6 to omega-3 PUFA in bone marrow and adipose tissue. Finally, large but not small MFG supplementation affected the cecal microbiome in rats. Overall, our results suggest that natural structure MFG supplementation can improve metabolism and bone development in rats fed an UBD, with the effects depending on MFG size. Moreover, the benefits of small MFG to bone development and metabolism were not mediated by the microbiome, as the detrimental effects of an UBD on the microbiome were not mitigated by MFG supplementation.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hodaya Altman
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Seman Daeem
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Raz
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Mesilati-Stahy
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svetlana Penn
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Monsonego-Ornan
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Maheshwari A, Mantry H, Bagga N, Frydrysiak-Brzozowska A, Badarch J, Rahman MM. Milk Fat Globules: 2024 Updates. NEWBORN (CLARKSVILLE, MD.) 2024; 3:19-37. [PMID: 39474586 PMCID: PMC11521418 DOI: 10.5005/jp-journals-11002-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Milk fat globules (MFGs) are a remarkable example of nature's ingenuity. Human milk (HM) carries contains 3-5% fat, 0.8-0.9% protein, 6.9-7.2% carbohydrate calculated as lactose, and 0.2% mineral constituents. Most of these nutrients are carried in these MFGs, which are composed of an energy-rich triacylglycerol (TAG) core surrounded by a triple membrane structure. The membrane contains polar lipids, specialized proteins, glycoproteins, and cholesterol. Each of these bioactive components serves important nutritional, immunological, neurological, and digestive functions. These MFGs are designed to release energy rapidly in the upper gastrointestinal tract and then persist for some time in the gut lumen so that the protective bioactive molecules are conveyed to the colon. These properties may shape the microbial colonization and innate immune properties of the developing gastrointestinal tract. Milk fat globules in milk from humans and ruminants may resemble in structure but there are considerable differences in size, profile, composition, and specific constituents. There are possibilities to not only enhance the nutritional composition in a goal-oriented fashion to correct specific deficiencies in the infant but also to use these fat globules as a nutraceutical in infants who require specific treatments. To mention a few, there might be possibilities in enhancing neurodevelopment, in defense against gastrointestinal and respiratory tract infections, improving insulin sensitivity, treating chronic inflammation, and altering plasma lipids. This review provides an overview of the composition, structure, and biological activities of the various components of the MFGs. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
- Global Newborn Society, Clarksville Maryland, United States of America
| | - Harshvardhan Mantry
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Nitasha Bagga
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Rainbow Children’s Hospital and Birthright, Hyderabad, Telangana, India
| | - Adrianna Frydrysiak-Brzozowska
- Global Newborn Society, Clarksville Maryland, United States of America
- The Mazovian University in Płock, Collegium Medicum, Faculty of Health Sciences, Płock, Poland
| | - Jargalsaikhan Badarch
- Global Newborn Society, Clarksville Maryland, United States of America
- Department of Obstetrics, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Md Mozibur Rahman
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| |
Collapse
|
5
|
Tzirkel-Hancock N, Sharabi L, Argov-Argaman N. Milk fat globule size: Unraveling the intricate relationship between metabolism, homeostasis, and stress signaling. Biochimie 2023; 215:4-11. [PMID: 37802210 DOI: 10.1016/j.biochi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Fat is an important component of milk which delivers energy, nutrients, and bioactive molecules from the lactating mother to the suckling neonate. Milk fat consists of a complex mixture of different types of lipids; hundreds of fatty acids, triglycerides, phospholipids, sphingolipids, cholesterol and cholesteryl ester, and glycoconjugates, secreted by the mammary gland epithelial cells (MEC) in the form of a lipid-protein assembly termed the milk fat globule (MFG). The mammary gland in general, and specifically that of modern dairy cows, faces metabolic stress once lactation commences, which changes the lipogenic capacity of MECs directly by reducing available energy and reducing factors required for both lipid synthesis and secretion or indirectly by activating a proinflammatory response. Both processes have the capacity to change the morphometric features (e.g., number and size) of the secreted MFG and its precursor-the intracellular lipid droplet (LD). The MFG size is tightly associated with its lipidome and proteome and also affects the bioavailability of milk fat and protein. Thus, MFG size has the potential to regulate the bioactivity of milk and dairy products. MFG size also plays a central role in the functional properties of milk and dairy products such as texture and stability. To understand how stress affects the structure-function of the MFG, we cover: (i) The mechanism of production and secretion of the MFG and the implications of MFG size, (ii) How the response mechanisms to stress can change the morphometric features of MFGs, and (iii) The possible consequences of such modifications.
Collapse
Affiliation(s)
- Noam Tzirkel-Hancock
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Lior Sharabi
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|