1
|
Martinec Nováková L, Plotěná D, Havlíček J. Children's odor pleasantness ratings may not differ according to pubertal status: Preliminary results from a sample of 11-14-year-old Czech children. Physiol Behav 2024; 281:114572. [PMID: 38688442 DOI: 10.1016/j.physbeh.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Puberty tends to be viewed as a "turning point" in hedonic perception of body odor (BO)-related smells. The pubertal stage, a potential proxy for the underlying physiological changes, may contribute to variation in odor hedonic perception. Other potential modulators of odor hedonics are general semantic knowledge about odors (which also tends to be subsumed under the term "age") and perceived odor intensity. The present cross-sectional study examined differences in hedonic odor perception across puberty in 205 Czech children aged 11-14 (89 boys). We investigated whether children differ in the hedonic appraisal of BO-related (16-androstenes and castoreum control), but also food and non-food odors according to their pubertal (penis/breast and pubic hair) development and general semantic knowledge about odors (operationalized as odor identification), controlling for age and perceived odor intensity. As a subsidiary aim, we examined variation in odor identification. We asked the children to self-stage themselves using drawings depicting Tanner's penis/breast and pubic hair stages of pubertal development, estimated their general semantic knowledge about odors with a Sniffin' Sticks identification test, and obtained their pleasantness and intensity ratings of body odor-related, food, a non-food smells. We found that the participants' ratings of the 16-androstenes and those of the perceptually similar odor of castoreum differed according to perceived intensity and, in the latter case, in boys vs. girls as well, but there were no influences of pubertal status or odor identification on the perceived pleasantness. Similarly, hedonic appraisal of non-food (but not food) odors was only influenced by perceived intensity. Regarding odor identification, differences between boys and girls were limited to younger children and did not become more marked throughout puberty. Perceived pleasantness of odors, irrespective of whether they are associated with body smells, food, or other, does not appear to vary across puberty, and boys and girls seem to achieve similar levels of semantic odor knowledge as they grow up.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Praha 8, Libeň, Czech Republic.
| | - Dagmar Plotěná
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Praha 8, Libeň, Czech Republic
| | - Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
2
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Micarelli A, Malacrida S, Vezzoli A, Micarelli B, Misici I, Carbini V, Caputo S, Mrakic-Sposta S, Alessandrini M. Smell, taste and food habits changes along body mass index increase: an observational study. Eur Arch Otorhinolaryngol 2023; 280:5595-5606. [PMID: 37642711 DOI: 10.1007/s00405-023-08204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To evaluate the changes in gustatory and olfactory sensitivity and dietary habits between healthy lean subjects (LS) and participants affected by overweight (OW), stage I and II obesity and to estimate possible impact of these factors on body mass index (BMI). METHODS After a general and ear-nose-throat evaluation, taste and olfactory function testing by means of taste strips and sniffin' stick tests, respectively, and food habits analysis by means of food frequency questionnaire (FFQ), 221 participants (68 LS [33 female; mean age = 53.01 ± 7.54 years]; 51 OW [26 female; mean age = 51.5 ± 12.16 years]; 50 stage I obesity [24 female; mean age = 50.78 ± 13.71 years] and 52 stage II obesity [24 female; mean age = 52.21 ± 13.35 years]) were enrolled in the study. RESULTS Significant (p < 0.008) reductions in total and subtest taste and smell scores were found in stage I and II obesity when compared to LS and OW participants. FFQ depicted a progressive intake increase of nutrients along the BMI stages. Significant associations were found between BMI and taste/smell subtests sugar taste carbs, saturated, monounsaturated and polyunsaturated fatty acids. CONCLUSIONS These data demonstrated for the first time a parallel impairment in smell and taste in a large sample size of participants from lean to stage II obesity and could reinforce those previous theories claiming that the greater the ability in taste or smell qualities perception, the lower the preference for them, resulting in a lower intake of specific foods.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy.
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | | | | | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, ENT Unit, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Akhlaghi M, Kohanmoo A. Sleep deprivation in development of obesity, effects on appetite regulation, energy metabolism, and dietary choices. Nutr Res Rev 2023:1-21. [PMID: 37905402 DOI: 10.1017/s0954422423000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sleep deprivation, which is a decrease in duration and quality of sleep, is a common problem in today's life. Epidemiological and interventional investigations have suggested a link between sleep deprivation and overweight/obesity. Sleep deprivation affects homeostatic and non-homoeostatic regulation of appetite, with the food reward system playing a dominant role. Factors such as sex and weight status affect this regulation; men and individuals with excess weight seem to be more sensitive to reward-driven and hedonistic regulation of food intake. Sleep deprivation may also affect weight through affecting physical activity and energy expenditure. In addition, sleep deprivation influences food selection and eating behaviours, which are mainly managed by the food reward system. Sleep-deprived individuals mostly crave for palatable energy-dense foods and have low desire for fruit and vegetables. Consumption of meals may not change but energy intake from snacks increases. The individuals have more desire for snacks with high sugar and saturated fat content. The relationship between sleep and the diet is mutual, implying that diet and eating behaviours also affect sleep duration and quality. Consuming healthy diets containing fruit and vegetables and food sources of protein and unsaturated fats and low quantities of saturated fat and sugar may be used as a diet strategy to improve sleep. Since the effects of sleep deficiency differ between animals and humans, only evidence from human subject studies has been included, controversies are discussed and the need for future investigations is highlighted.
Collapse
Affiliation(s)
- Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Micarelli A, Vezzoli A, Malacrida S, Micarelli B, Misici I, Carbini V, Iennaco I, Caputo S, Mrakic-Sposta S, Alessandrini M. Taste Function in Adult Humans from Lean Condition to Stage II Obesity: Interactions with Biochemical Regulators, Dietary Habits, and Clinical Aspects. Nutrients 2023; 15:nu15051114. [PMID: 36904115 PMCID: PMC10005537 DOI: 10.3390/nu15051114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Differences in gustatory sensitivity, nutritional habits, circulating levels of modulators, anthropometric measures, and metabolic assays may be involved in overweight (OW) development. The present study aimed at evaluating the differences in these aspects between 39 OW (19 female; mean age = 53.51 ± 11.17), 18 stage I (11 female; mean age = 54.3 ± 13.1 years), and 20 II (10 female; mean age = 54.5 ± 11.9) obesity participants when compared with 60 lean subjects (LS; 29 female; mean age = 54.04 ± 10.27). Participants were evaluated based on taste function scores, nutritional habits, levels of modulators (leptin, insulin, ghrelin, and glucose), and bioelectrical impedance analysis measurements. Significant reductions in total and subtests taste scores were found between LS and stage I and II obesity participants. Significant reductions in total and all subtests taste scores were found between OW and stage II obesity participants. Together with the progressive increase in plasmatic leptin levels, insulin, and serum glucose, decrease in plasmatic ghrelin levels, and changes in anthropometric measures and nutritional habits along with body mass index, these data for the first time demonstrated that taste sensitivity, biochemical regulators, and food habits play a parallel, concurring role along the stages evolving to obesity.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
- Correspondence:
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy
| | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | - Ilaria Iennaco
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | | | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Marco Alessandrini
- ENT Unit, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Nie H, Zhao R, Ai Y, Yang Y, Cao B, Han P. Comparison between human olfactory sensitivity in the fasted and fed states: A systematic review and meta-analysis. Appetite 2023; 181:106395. [PMID: 36450324 DOI: 10.1016/j.appet.2022.106395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Olfaction is tightly regulated by internal status such as hunger level. The influence of fasted and fed states on olfactory sensitivity in humans has reached mixed results. This study aims to systematically review, integrate and meta-analyze evidence of the impact of fasting on olfactory sensitivity in humans and to explore the impact of potential moderators. METHOD Electronic databases (PubMed, PsycINFO, Web of Science, COCHRANE and Ovid) were searched for studies with human participants investigating the effect of fasting on olfactory sensitivity. Studies were included in the review if they measured odor threshold both at fasted and sated status. The data extraction was determined based on the change in odor threshold from the fasted state to the fed state. Meta-analysis was conducted using a random-effect model to estimate the standardized mean difference transformed olfactory sensitivity change between fasted and fed states with 95% confidence interval (CI). RESULTS Thirteen studies (12 articles) were included in the meta-analysis with a total of 550 participants. Olfactory sensitivity was higher in the fasted state compared to the fed state (SMD = -0.251, 95% CI = -0.426, -0.075, Z = -2.804, p = 0.005). Separated analyses for food and non-food odors revealed a significant elevated sensitivity to non-food odors during the fasted state compared to the fed state. The meta-regression analysis revealed that fasting time positively moderate the increased olfactory sensitivity from the fasted to fed states (β = -0.013, 95% CI = -0.023, -0.002, p = 0.016). CONCLUSION Fasting improves human olfactory sensitivity to non-food odors, and this effect increases with longer fasting time. Future research design on olfactory sensitivity should take both the fasted state and fasting period of the participants into consideration.
Collapse
Affiliation(s)
- Haoyu Nie
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhao
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yun Ai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, China; MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Bing Cao
- Faculty of Psychology, Southwest University, Chongqing, China; MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Pengfei Han
- Faculty of Psychology, Southwest University, Chongqing, China; MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Zhao Y, Bhutani S, Kahnt T. Appetite-regulating hormones modulate odor perception and odor-evoked activity in hypothalamus and olfactory cortices. Chem Senses 2023; 48:bjad039. [PMID: 37796827 PMCID: PMC10590159 DOI: 10.1093/chemse/bjad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
Odors guide food seeking, and food intake modulates olfactory function. This interaction is mediated by appetite-regulating hormones like ghrelin, insulin, and leptin, which alter activity in the rodent olfactory bulb, but their effects on downstream olfactory cortices have not yet been established in humans. The olfactory tract connects the olfactory bulb to the cortex through 3 main striae, terminating in the piriform cortex (PirC), amygdala (AMY), olfactory tubercule (OT), and anterior olfactory nucleus (AON). Here, we test the hypothesis that appetite-regulating hormones modulate olfactory processing in the endpoints of the olfactory tract and the hypothalamus. We collected odor-evoked functional magnetic resonance imaging (fMRI) responses and plasma levels of ghrelin, insulin, and leptin from human subjects (n = 25) after a standardized meal. We found that a hormonal composite measure, capturing variance relating positively to insulin and negatively to ghrelin, correlated inversely with odor intensity ratings and fMRI responses to odorized vs. clean air in the hypothalamus, OT, and AON. No significant correlations were found with activity in PirC or AMY, the endpoints of the lateral stria. Exploratory whole-brain analyses revealed significant correlations near the diagonal band of Broca and parahippocampal gyrus. These results demonstrate that high (low) blood plasma concentrations of insulin (ghrelin) decrease perceived odor intensity and odor-evoked activity in the cortical targets of the medial and intermediate striae of the olfactory tract, as well as the hypothalamus. These findings expand our understanding of the cortical mechanisms by which metabolic hormones in humans modulate olfactory processing after a meal.
Collapse
Affiliation(s)
- Yao Zhao
- National Institute on Drug Abuse Intramural Research Program, Cellular and Neurocomputational Systems Branch, Baltimore, MD,United States
| | - Surabhi Bhutani
- San Diego State University, School of Exercise and Nutritional Sciences, San Diego, CA, United States
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Cellular and Neurocomputational Systems Branch, Baltimore, MD,United States
| |
Collapse
|
8
|
Sugar reduction in beverages: Current trends and new perspectives from sensory and health viewpoints. Food Res Int 2022; 162:112076. [DOI: 10.1016/j.foodres.2022.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/08/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022]
|
9
|
Pfabigan DM, Vezzani C, Thorsby PM, Sailer U. Sex difference in human olfactory sensitivity is associated with plasma adiponectin. Horm Behav 2022; 145:105235. [PMID: 35868172 DOI: 10.1016/j.yhbeh.2022.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Energy deprivation as well as hormones that regulate appetite and eating can influence olfactory function. This study investigated olfactory sensitivity for a food-related and a non-food odour prior to and after a meal, and its relationship to the energy-regulating hormones ghrelin and adiponectin. The olfactory sensitivity for orange and rose (PEA) odour in healthy, normal-weight volunteers (19 women, 45 men, 1 undisclosed individual) was not affected by the consumption of a meal. Olfactory sensitivity was not associated with concentrations of circulating ghrelin. However, olfactory sensitivity was higher for women than for men, indicating better olfactory performance. This difference between women and men was related to concentrations of plasma adiponectin, an adipose-specific hormone. Adiponectin may thus explain why sex differences in olfactory sensitivity emerge, and may also account for some of the inconsistencies in previous findings on sex differences. Our findings add to the limited literature on the impact of stomach and adipose tissue-derived hormones on olfactory sensitivity. Further studies are needed to establish a causal link between circulating adiponectin and a sex difference in olfactory sensitivity.
Collapse
Affiliation(s)
- Daniela M Pfabigan
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
| | - Cecilia Vezzani
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Medbøe Thorsby
- Hormone Laboratory, Dep of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
| | - Uta Sailer
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Micarelli A, Mrakic-Sposta S, Micarelli B, Malacrida S, Misici I, Carbini V, Iennaco I, Caputo S, Vezzoli A, Alessandrini M. Smell Impairment in Stage I-II Obesity: Correlation with Biochemical Regulators and Clinical Aspects. Laryngoscope 2022; 132:2028-2035. [PMID: 35906890 DOI: 10.1002/lary.30325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the differences in olfactory sensitivity, nutritional habits, levels of modulators of feeding and smell, bioelectrical impedance analysis (BIA) measures and metabolic assays between two groups of participants with stage I and II obesity and reciprocal relationships between these parameters. METHODS Eighteen participants with stage I (11 female; mean age = 54.3 ± 13.1 years) and 20 participants with stage II (10 female; mean age = 54.5 ± 11.9) obesity underwent a food frequency questionnaire and Sniffin' Sticks® test battery, anthropometric parameters, and BIA measurements as well as metabolic assays (including plasma levels of leptin, insulin, ghrelin, glucose, insulin-like growth factor-1 [IGF-1] and usual laboratory parameters). RESULTS The stage II obesity participants demonstrated significant higher levels of insulin and leptin and lower levels of ghrelin and IGF-1, a reduction in odor identification (OI) and in total olfactory score, and an increase in visceral and total fat percentage. Among a mosaic of multiple correlations, ghrelin was found to positively correlate with OI and leptin negatively with odor discrimination. CONCLUSION The present study expands the notions positing the olfactory perception - and its connections with metabolic cues, foods habits and BIA measures - changes across the two most important obesity stages. This could ameliorate clinical and research deepening of obesity-related olfactory behavior with possible consequences on diagnosis, treatment and prevention of onset and development of obesity, thus opening possible future strategies involving multidisciplinary contributions. LEVEL OF EVIDENCE Level 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | | | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ilaria Iennaco
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Marco Alessandrini
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine - ENT Unit, Rome, Italy
| |
Collapse
|