1
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
2
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
3
|
Iannuzzo F, Schiano E, Pastore A, Guerra F, Tenore GC, Novellino E, Stornaiuolo M. Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts. Antioxidants (Basel) 2024; 13:1000. [PMID: 39199244 PMCID: PMC11351949 DOI: 10.3390/antiox13081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Rhodiola rosea L. is recognized for its adaptogenic properties and ability to promote muscle health, function and recovery from exercise. The plethora of biological effects of this plant is ascribed to the synergism existing among the molecules composing its phytocomplex. In this manuscript, we analyze the activity of a bioactive fraction extracted from Rhodiola rosea L. controlled cultivation. Biological assays were performed on human skeletal myoblasts and revealed that the extract is able to modulate in vitro expression of transcription factors, namely Pax7 and myoD, involved in muscle differentiation and recovery. The extract also promotes ROS scavenging, ATP production and mitochondrial respiration. Untargeted metabolomics further reveals that the mechanism underpinning the plant involves the synergistic interconnection between antioxidant enzymes and the folic/acid polyamine pathway. Finally, by examining the phytochemical profiles of the extract, we identify the specific combination of secondary plant metabolites contributing to muscle repair, recovery from stress and regeneration.
Collapse
Affiliation(s)
- Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D’Annunzio, 66100 Chieti, Italy;
| | - Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Arianna Pastore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy; (A.P.); (G.C.T.)
| | - Fabrizia Guerra
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy; (A.P.); (G.C.T.)
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy; (A.P.); (G.C.T.)
| |
Collapse
|
4
|
Song Q, Zhu Y, Liu X, Liu H, Zhao X, Xue L, Yang S, Wang Y, Liu X. Changes in the gut microbiota of patients with sarcopenia based on 16S rRNA gene sequencing: a systematic review and meta-analysis. Front Nutr 2024; 11:1429242. [PMID: 39006102 PMCID: PMC11239431 DOI: 10.3389/fnut.2024.1429242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Sarcopenia, an age-related disease, has become a major public health concern, threatening muscle health and daily functioning in older adults around the world. Changes in the gut microbiota can affect skeletal muscle metabolism, but the exact association is unclear. The richness of gut microbiota refers to the number of different species in a sample, while diversity not only considers the number of species but also the evenness of their abundances. Alpha diversity is a comprehensive metric that measures both the number of different species (richness) and the evenness of their abundances, thereby providing a thorough understanding of the species composition and structure of a community. Methods This meta-analysis explored the differences in intestinal microbiota diversity and richness between populations with sarcopenia and non-sarcopenia based on 16 s rRNA gene sequencing and identified new targets for the prevention and treatment of sarcopenia. PubMed, Embase, Web of Science, and Google Scholar databases were searched for cross-sectional studies on the differences in gut microbiota between sarcopenia and non-sarcopenia published from 1995 to September 2023 scale and funnel plot analysis assessed the risk of bias, and performed a meta-analysis with State v.15. 1. Results A total of 17 randomized controlled studies were included, involving 4,307 participants aged 43 to 87 years. The alpha diversity of intestinal flora in the sarcopenia group was significantly reduced compared to the non-sarcopenia group: At the richness level, the proportion of Actinobacteria and Fusobacteria decreased, although there was no significant change in other phyla. At the genus level, the abundance of f-Ruminococcaceae; g-Faecalibacterium, g-Prevotella, Lachnoclostridium, and other genera decreased, whereas the abundance of g-Bacteroides, Parabacteroides, and Shigella increased. Discussion This study showed that the richness of the gut microbiota decreased with age in patients with sarcopenia. Furthermore, the relative abundance of different microbiota changed related to age, comorbidity, participation in protein metabolism, and other factors. This study provides new ideas for targeting the gut microbiota for the prevention and treatment of sarcopenia. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=475887, CRD475887.
Collapse
Affiliation(s)
- Qi Song
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Youkang Zhu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xiao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Hai Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | | | - Liyun Xue
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Shaoying Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Yujia Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xifang Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Jiang L, Wang X, Zhang D, Yee Yuen KW, Tse YC. RSU-1 regulates the integrity of dense bodies in muscle cells of aging Caenorhabditis elegans. iScience 2024; 27:109854. [PMID: 38784006 PMCID: PMC11112334 DOI: 10.1016/j.isci.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle contraction is vital for animal survival, and the sarcomere is the fundamental unit for this process. However, the functions of many conserved sarcomere proteins remain unknown, as their mutants do not exhibit obvious defects. To address this, Caenorhabditis elegans was utilized as a model organism to investigate RSU-1 function in the body wall muscle. RSU-1 is found to colocalize with UNC-97 at the dense body and M-line, and it is particularly crucial for regulating locomotion in aging worms, rather than in young worms. This suggests that RSU-1 has a specific function in maintaining muscle function during aging. Furthermore, the interaction between RSU-1 and UNC-97/PINCH is essential for RSU-1 to modulate locomotion, preserve filament structure, and sustain the M-line and dense body throughout aging. Overall, these findings highlight the significant contribution of RSU-1, through its interaction with UNC-97, in maintaining proper muscle cell function in aging worms.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyan Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| | - Yu Chung Tse
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
M Y, Patel MG, Makwana HH, Kalariya H. Unraveling the enigma of sarcopenia and sarcopenic obesity in Indian adults with type 2 diabetes - a comparative cross-sectional study. Clin Diabetes Endocrinol 2024; 10:22. [PMID: 38880930 PMCID: PMC11181647 DOI: 10.1186/s40842-024-00179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Sarcopenia and sarcopenic obesity are growing concerns associated with increasing diabetes incidence, but data from Indian diabetic cohorts are limited. This study examined the prevalence and clinical factors associated with sarcopenia and sarcopenic obesity. METHODS In this cross-sectional study, 750 participants aged 35-70 years were recruited by systematic stratification and a fixed quota sampling technique from medical camps and categorized into diabetic (n = 250), nondiabetic (n = 250), and obese nondiabetic (n = 250) groups. The assessments included questionnaires, muscle mass estimation by bioimpedance analysis, and blood tests. Sarcopenia was defined using the Asian Working Group consensus, and sarcopenic obesity was defined as sarcopenia with a BMI ≥ 25 kg/m2. Logistic regression was used to analyze risk factors. RESULTS Sarcopenia affected 60% of diabetic patients, 28% of nondiabetic patients, and 38% of nonobese nondiabetic patients (p < 0.001). The prevalence of sarcopenic obesity was 40%, 11%, and 30%, respectively (p < 0.001). Diabetes was associated with 2.3-fold greater odds (95% CI 1.1-4.7) of sarcopenia and 2.4-fold greater odds (1.1-5.0) of sarcopenic obesity after adjustment. A duration greater than 10 years, uncontrolled diabetes, age greater than 65 years, low physical activity, hypertension, and dyslipidemia also independently increased the odds. CONCLUSION Indian adults with type 2 diabetes have a high burden of sarcopenia and sarcopenic obesity. Early optimization of diabetes care and lifestyle changes are vital for preserving muscle health.
Collapse
Affiliation(s)
- Yogesh M
- Department of Community Medicine, M P Shah Government Medical College, New PG Hostel, Shri MP Shah Medical College campus, GG Hospital, Patel Colony Post, Jamnagar, Gujarat, 361008, India.
| | - Monika G Patel
- Department of Community Medicine, M P Shah Government Medical College, New PG Hostel, Shri MP Shah Medical College campus, GG Hospital, Patel Colony Post, Jamnagar, Gujarat, 361008, India
| | | | - Hardikkumar Kalariya
- Department of Community Medicine, M P Shah Government Medical College, New PG Hostel, Shri MP Shah Medical College campus, GG Hospital, Patel Colony Post, Jamnagar, Gujarat, 361008, India
| |
Collapse
|
7
|
Yamamoto H, Shimomura N, Hasegawa Y. Oral Administration of Nacre Extract from Pearl Oyster Shells Has Anti-Aging Effects on Skin and Muscle, and Extends the Lifespan in SAMP8 Mice. Pharmaceuticals (Basel) 2024; 17:713. [PMID: 38931380 PMCID: PMC11206907 DOI: 10.3390/ph17060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pearl oysters have been extensively utilized in pearl production; however, most pearl oyster shells are discarded as industrial waste. In a previous study, we demonstrated that the intraperitoneal administration of pearl oyster shell-derived nacre extract (NE) prevented d-galactose-induced brain and skin aging. In this study, we examined the anti-aging effects of orally administered NE in senescence-accelerated mice (SAMP8). Feeding SAMP8 mice NE prevented the development of aging-related characteristics, such as coarse and dull hair, which are commonly observed in aged mice. Additionally, the NE mitigated muscle aging in SAMP8 mice, such as a decline in grip strength. Histological analysis of skeletal muscle revealed that the NE suppressed the expression of aging markers, cyclin-dependent kinase inhibitor 2A (p16) and cyclin-dependent kinase inhibitor 1 (p21), and increased the expression of sirtuin1 and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)- α, which are involved in muscle synthesis. These findings suggest that the oral administration of NE suppresses skeletal muscle aging. Moreover, NE administration suppressed skin aging, including a decline in water content. Interestingly, oral administration of NE significantly extended the lifespan of SAMP8 mice, suggesting that its effectiveness as an anti-aging agent of various tissues including skeletal muscle, skin, and adipose tissue.
Collapse
Affiliation(s)
| | | | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan; (H.Y.); (N.S.)
| |
Collapse
|
8
|
Chen J, Zhu Y, Gao H, Chen X, Yi D, Li M, Wang L, Xing G, Chen S, Tang J, Wang Y. HucMSCs Delay Muscle Atrophy After Peripheral Nerve Injury Through Exosomes by Repressing Muscle-Specific Ubiquitin Ligases. Stem Cells 2024; 42:460-474. [PMID: 38381592 PMCID: PMC11094387 DOI: 10.1093/stmcls/sxae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.
Collapse
Affiliation(s)
- Jian Chen
- School of Medicine, Nankai University, Tianjin, China
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Yaqiong Zhu
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Hui Gao
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Xianghui Chen
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Dan Yi
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - MoLin Li
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li Wang
- Department of Ultrasound, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Guanhui Xing
- Department of Ultrasound, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Siming Chen
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jie Tang
- School of Medicine, Nankai University, Tianjin, China
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yuexiang Wang
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Taktaz F, Scisciola L, Fontanella RA, Pesapane A, Ghosh P, Franzese M, Tortorella G, Puocci A, Sommella E, Signoriello G, Olivieri F, Barbieri M, Paolisso G. Evidence that tirzepatide protects against diabetes-related cardiac damages. Cardiovasc Diabetol 2024; 23:112. [PMID: 38555463 PMCID: PMC10981817 DOI: 10.1186/s12933-024-02203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective antidiabetic drugs with potential cardiovascular benefits. Despite their well-established role in reducing the risk of major adverse cardiovascular events (MACE), their impact on heart failure (HF) remains unclear. Therefore, our study examined the cardioprotective effects of tirzepatide (TZT), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonist. METHODS A three-steps approach was designed: (i) Meta-analysis investigation with the primary objective of assessing major adverse cardiovascular events (MACE) occurrence from major randomized clinical trials.; (ii) TZT effects on a human cardiac AC16 cell line exposed to normal (5 mM) and high (33 mM) glucose concentrations for 7 days. The gene expression and protein levels of primary markers related to cardiac fibrosis, hypertrophy, and calcium modulation were evaluated. (iii) In silico data from bioinformatic analyses for generating an interaction map that delineates the potential mechanism of action of TZT. RESULTS Meta-analysis showed a reduced risk for MACE events by TZT therapy (HR was 0.59 (95% CI 0.40-0.79, Heterogeneity: r2 = 0.01, I2 = 23.45%, H2 = 1.31). In the human AC16 cardiac cell line treatment with 100 nM TZT contrasted high glucose (HG) levels increase in the expression of markers associated with fibrosis, hypertrophy, and cell death (p < 0.05 for all investigated markers). Bioinformatics analysis confirmed the interaction between the analyzed markers and the associated pathways found in AC16 cells by which TZT affects apoptosis, fibrosis, and contractility, thus reducing the risk of heart failure. CONCLUSION Our findings indicate that TZT has beneficial effects on cardiac cells by positively modulating cardiomyocyte death, fibrosis, and hypertrophy in the presence of high glucose concentrations. This suggests that TZT may reduce the risk of diabetes-related cardiac damage, highlighting its potential as a therapeutic option for heart failure management clinical trials. Our study strongly supports the rationale behind the clinical trials currently underway, the results of which will be further investigated to gain insights into the cardiovascular safety and efficacy of TZT.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy.
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Giuseppe Signoriello
- Department of Mental Health and Public Medicine, Section of Statistic, University of Campania, Naples, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania ''Luigi Vanvitelli'', P.zza L. Miraglia, 2, 80138, Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
10
|
Conejeros-Lillo S, Aguirre F, Cabrera D, Simon F, Peñailillo L, Cabello-Verrugio C. Role of the ubiquitin-proteasome system in the sarcopenic-like phenotype induced by CCL5/RANTES. Eur J Transl Myol 2024; 34:12249. [PMID: 38357936 PMCID: PMC11017164 DOI: 10.4081/ejtm.2024.12249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Sarcopenia is characterized by reduced muscle strength and mass and a decline in muscle fiber diameter and amount of sarcomeric proteins. Sarcopenia involves the activation of the ubiquitin-proteasome system (UPS). MuRF-1 and atrogin-1 are E3 ubiquitin ligases belonging to UPS, leading to proteolysis mediated by the PSMB 5, 6, and 7 subunits of 20S proteasome. CCL5/RANTES induces a sarcopenic-like effect in muscle cells. The present work explored the impact of CCL5 on UPS components and the influence of UPS on its sarcopenic-like effect. We demonstrated that CCL5 increased MuRF-1 and atrogin-1 protein levels and mRNA levels of subunits PSMB 5, 6, and 7. We used the MG132 inhibitor to elucidate the role of the 20S proteasome in the CCL5-induced sarcopenic-like effect. This inhibitor prevented the decrease in troponin and MHC protein levels and partially prevented the reduction in the diameter of single-isolated FDB muscle fibers induced by CCL5. These findings indicate that CCL5 actively modulates the UPS. Moreover, our results show the direct participation of UPS in the sarcopenic-like phenotype induced by CCL5.
Collapse
Affiliation(s)
- Sabrina Conejeros-Lillo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago.
| | - Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago.
| | - Daniel Cabrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Facultad de Ciencias Médicas, Escuela de Medicina, Universidad Bernardo O Higgins, Santiago.
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago.
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andrés Bello, Santiago.
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago.
| |
Collapse
|
11
|
Schluessel S, Zhang W, Nowotny H, Bidlingmaier M, Hintze S, Kunz S, Martini S, Mehaffey S, Meinke P, Neuerburg C, Schmidmaier R, Schoser B, Reisch N, Drey M. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res 2023; 35:3073-3083. [PMID: 37943405 PMCID: PMC10721692 DOI: 10.1007/s40520-023-02574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Glucocorticoids play a significant role in metabolic processes and pathways that impact muscle size, mass, and function. The expression of 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) has been previously described as a major regulator of skeletal muscle function in glucocorticoid-induced muscle atrophy and aging humans. Our study aimed to investigate glucocorticoid metabolism, including the expression of HSD11B1 in skeletal muscle, in patients with sarcopenia. METHODS Muscle biopsies were taken from the vastus lateralis muscle of thirty-three patients over 60 years of age with hip fractures. Sarcopenia status was assessed according to the criteria of the European Working Group on Sarcopenia in Older People 2. Skeletal muscle mass was measured by bioelectrical impedance analysis. Cortisol and cortisone concentrations were measured in serum. Gene expression analysis of HSD11B1, NR3C1, FBXO32, and TRIM63 in muscle biopsies was performed. Serial cross sections of skeletal muscle were labeled with myosin heavy chain slow (fiber type-1) and fast (fiber type-2) antibodies. RESULTS The study included 33 patients (21 women) with a mean age of 82.5 ± 6.3 years, 17 patients revealed sarcopenic (n = 16 non-sarcopenic). Serum cortisone concentrations were negatively correlated with muscle mass (ß = - 0.425; p = 0.034) and type-2 fiber diameter (ß = - 0.591; p = 0.003). Gene expression of HSD11B1 (ß = - 0.673; p = 0.008) showed a negative correlation with muscle mass in the sarcopenic group. A significant correlation was found for the non-sarcopenic group for NR3C1 (ß = 0.548; p = 0.028) and muscle mass. CONCLUSION These findings suggest a pathogenetic role of HSD11B1 in sarcopenic muscle.
Collapse
Affiliation(s)
- Sabine Schluessel
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Wei Zhang
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Hanna Nowotny
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Martin Bidlingmaier
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, LMU Munich, Munich, Germany
| | - Sonja Kunz
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Sebastian Martini
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Stefan Mehaffey
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, LMU Munich, Munich, Germany
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Ralf Schmidmaier
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, LMU Munich, Munich, Germany
| | - Nicole Reisch
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany.
| | - Michael Drey
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| |
Collapse
|
12
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
13
|
Liang YC, Cheng KP, Kuo HY, Wang CT, Chou HW, Huang KL, Wu HT, Ou HY. Calsarcin-2 May Play a Compensatory Role in the Development of Obese Sarcopenia. Biomedicines 2023; 11:2708. [PMID: 37893082 PMCID: PMC10604196 DOI: 10.3390/biomedicines11102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Although obese sarcopenia is a major public health problem with increasing prevalence worldwide, the factors that contribute to the development of obese sarcopenia are still obscure. In order to clarify this issue, a high-fat-diet-induced obese sarcopenia mouse model was utilized. After being fed with a high-fat diet for 24 weeks, decreased motor functions and muscle mass ratios were found in the C57BL/6 mice. In addition, the expression of calsarcin-2 was significantly increased in their skeletal muscle, which was determined by a microarray analysis. In order to clarify the role of calsarcin-2 in muscle, lentiviral vectors containing the calsarcin-2 gene or short hairpin RNA targeted to calsarcin-2 were used to manipulate calsarcin-2 expressions in L6 myoblasts. We found that an overexpression of calsarcin-2 facilitated L6 myoblast differentiation, whereas a calsarcin-2 knockdown delayed myoblast differentiation, as determined by the expression of myogenin. However, the calsarcin-2 knockdown showed no significant effects on myoblast proliferation. In addition, to clarify the relationship between serum calsarcin-2 and sarcopenia, the bilateral gastrocnemius muscle mass per body weight in mice and appendicular skeletal muscle mass index in humans were measured. Although calsarcin-2 facilitated myoblast differentiation, the serum calsarcin-2 concentration was negatively related to skeletal muscle mass index in mice and human subjects. Taken together, calsarcin-2 might facilitate myoblast differentiation and appear to play a compensatory role in sarcopenia.
Collapse
Affiliation(s)
- Yu-Cheng Liang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Kai-Pi Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Chung-Teng Wang
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hsuan-Wen Chou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Kuan-Lin Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| |
Collapse
|