1
|
Wang H, Laram Y, Hu L, Hu Y, Chen M. Exploring the potential mechanisms of Rehmannia glutinosa in treating sepsis based on network pharmacology. BMC Infect Dis 2024; 24:893. [PMID: 39217296 PMCID: PMC11366132 DOI: 10.1186/s12879-024-09796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Yongchu Laram
- Department of Clinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Li Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yingchun Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| | - Muhu Chen
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| |
Collapse
|
2
|
Yang J, Li W, Wang Y. Capsaicin Reduces Obesity by Reducing Chronic Low-Grade Inflammation. Int J Mol Sci 2024; 25:8979. [PMID: 39201665 PMCID: PMC11354495 DOI: 10.3390/ijms25168979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic low-grade inflammation (CLGI) is associated with obesity and is one of its pathogenetic mechanisms. Lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls, is the principal cause of CLGI. Studies have found that capsaicin significantly reduces the relative abundance of LPS-producing bacteria. In the present study, TRPV1-knockout (TRPV1-/-) C57BL/6J mice and the intestinal epithelial cell line Caco-2 (TRPV1-/-) were used as models to determine the effect of capsaicin on CLGI and elucidate the mechanism by which it mediates weight loss in vivo and in vitro. We found that the intragastric administration of capsaicin significantly blunted increases in body weight, food intake, blood lipid, and blood glucose in TRPV1-/- mice fed a high-fat diet, suggesting an anti-obesity effect of capsaicin. Capsaicin reduced LPS levels in the intestine by reducing the relative abundance of Proteobacteria such as Helicobacter, Desulfovibrio, and Sutterella. Toll-like receptor 4 (TLR4) levels decreased following decreases in LPS levels. Then, the local inflammation of the intestine was reduced by reducing the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 mediated by TLR4. Attenuating local intestinal inflammation led to the increased expression of tight junction proteins zonula occludens 1 (ZO-1) and occludin and the restoration of the intestinal barrier function. Capsaicin increased the expression of ZO-1 and occludin at the transcriptional and translational levels, thereby increasing trans-endothelial electrical resistance and restoring intestinal barrier function. The restoration of intestinal barrier function decreases intestinal permeability, which reduces the concentration of LPS entering the circulation, and reduced endotoxemia leads to decreased serum concentrations of inflammatory cytokines such as TNF-α and IL-6, thereby attenuating CLGI. This study sheds light on the anti-obesity effect of capsaicin and its mechanism by reducing CLGI, increasing our understanding of the anti-obesity effects of capsaicin. It has been confirmed that capsaicin can stimulate the expression of intestinal transmembrane protein ZO-1 and cytoplasmic protein occludin, increase the trans-epithelial electrical resistance value, and repair intestinal barrier function.
Collapse
Affiliation(s)
| | | | - Yuanwei Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (J.Y.); (W.L.)
| |
Collapse
|
3
|
AlZahrani AM, Rajendran P, Bekhet GM, Balasubramanian R, Govindaram LK, Ahmed EA, Hanieh H. Protective effect of 5,4'-dihydroxy-6,8-dimethoxy7-O-rhamnosylflavone from Indigofera aspalathoides Vahl on lipopolysaccharide-induced intestinal injury in mice. Inflammopharmacology 2024:10.1007/s10787-024-01530-y. [PMID: 39090500 DOI: 10.1007/s10787-024-01530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Intestinal inflammation is one of the main health challenges affecting the quality of life of millions of people worldwide. Accumulating evidence introduces several flavonoids with multifaceted therapeutic properties in inflammatory diseases including intestinal inflammation. Herein, we examined potential anti-inflammatory properties of 5,4'-dihydroxy-6,8-dimethoxy7-O-rhamnosylflavone (DDR) flavone derived from Indigofera aspalathoides Vahl (I. aspalathoides Vahl) on lipopolysaccharide (LPS)-induced intestinal inflammation and injury in mice. Oral DDR treatment decreased serum levels of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β. It reduced oxidative stress through augmenting the activities of catalase (CAT) and superoxide dismutase (SOD) and reducing the level of malondialdehyde (MDA) in the duodenum and colon tissues. Moreover, DDR enhanced the activities of digestive enzymes including trypsin, pancreatic lipase, and amylase, and increased the production of short-chain fatty acids (SCFAs) by colon microbiota. Histopathological investigation of duodenum and colon revealed that DDR inhibited inflammatory infiltration and largely restored mucosal architecture and protected lining integrity. Importantly, DDR suppressed activation of nuclear factor-κB (NF-κB) signaling pathway through reduced expression of Toll-like receptor 4 (TLR4) and expression and phosphorylation of P65. The current study identified DDR as anti-inflammatory flavonoid capable of ameliorating LPS-induced intestinal inflammation through suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Abdullah M AlZahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia.
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Gamal M Bekhet
- Department of Biological Sciences, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | | | - Lalitha Keddal Govindaram
- Department of Pharmaceutical Chemistry, Ultra College of Pharmacy, Thasildhar Nagar, Madurai, India
- The Tamilnadu Dr MGR Medical University, Chennai, India
| | - Emad A Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
- International Medical Research Center (iMReC), Aqaba, 77110, Jordan
| |
Collapse
|
4
|
Zhong HZ, Mo J, Li YX, Li MY, Wei SB. Changes in Rehmanniae Radix processing and their impact on ovarian hypofunction: potential mechanisms of action. Front Pharmacol 2024; 15:1426972. [PMID: 39035992 PMCID: PMC11258383 DOI: 10.3389/fphar.2024.1426972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Objective This study evaluates the research developments concerning Rehmanniae Radix in ovarian hypofunction diseases. It explores the processing methods of Rehmanniae Radix, the variations in its compounds before and after processing, the mechanism of Rehmanniae Radix and its active compounds in improving ovarian function, and the advancements in clinical applications of traditional Chinese medicine (TCM) compound that include Rehmanniae Radix. Methods Comprehensive literature search was conducted using databases such as China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database, National Science and Technology Library, the Pharmacopoeia of the People's Republic of China, Pubmed, and the Web of Science Database. The search utilized the following Medical Subject Headings (MeSH) and keywords: "Rehmanniae Radix," "Drying Rehmannia Root," "Rehmannia glutinosa," "Rehmanniae Radix Praeparata," "Traditional Chinese Medicine Processing," "Pharmacological Effects," "Ovarian Aging," "Diminished ovarian reserve," "Premature ovarian insufficiency," "Premature Ovarian Failure," "Ovarian hypofunction diseases". Results The ancient Chinese medical books document various processing techniques for Rehmanniae Radix. Contemporary research has identified changes in its compounds processing and the resultant diverse therapeutic effects. When processed into Rehmanniae Radix Praeparata, it is noted for its ability to invigorate the kidney. TCM compound containing Rehmanniae Radix is frequently used to treat ovarian hypofunction diseases, demonstrating significant clinical effectiveness. The key changes in its compounds processing include cyclic dilute ether terpene glycosides, phenylethanol glycosides, sugars, and 5-hydroxymethylfurfural. Its pharmacological action is primarily linked to the improvement of granulosa cell proliferation, antioxidative and anti-aging properties, and modulation of the immune and inflammatory microenvironment. Furthermore, Rehmanniae Radix also offers therapeutic benefits for cardiovascular and cerebrovascular diseases, osteoporosis and cognitive dysfunction caused by low estrogen levels. Thereby Rehmanniae Radix mitigates both the short-term and long-term health risks associated with ovarian hypofunction diseases. Conclusion Processed Rehmanniae Radix has shown potential to improve ovarian function, and its compound prescriptions have a definite effect on ovarian dysfunction diseases. Therefore Rehmanniae Radix was garnering interest for both basic and clinical research, with promising application prospects as a future therapeutic agent for ovarian hypofunction diseases. However, further studies on its toxicology and the design of standardized clinical trials are necessary to fully establish its efficacy and safety.
Collapse
Affiliation(s)
- Han-Zhi Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Mo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Xin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Ya Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shao-Bin Wei
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Zeng H, Miao J, Liao J, Sui Z, Hou M, Hang S. Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro. Antioxidants (Basel) 2024; 13:682. [PMID: 38929121 PMCID: PMC11200965 DOI: 10.3390/antiox13060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Co-fermentation with bacteria and enzymes can reduce sugar content in palm kernel cake (PKC); however, the chemical changes and their effects on cell functionality are unclear. This study investigated the active components in pre-treated PKC extracts and their effects on pig small intestine IPEC-J2 cell proliferation and LPS-induced inflammation. The extracts contained 60.75% sugar, 36.80% mannose, 1.75% polyphenols and 0.59% flavone, as determined by chemical analyses, suggesting that the extracts were palm kernel cake oligosaccharides (PKCOS). Then, we found that 1000 µg/mL PKCOS counteracted the decrease in cell viability (CCK8 kit) caused by LPS induction by 5 µg/mL LPS (p < 0.05). Mechanistic studies conducted by RNA-seq and qPCR analyses suggested PKCOS promoted cell proliferation through the upregulation of TNF-α, PI3KAP1, MAP3K5 and Fos in the PI3K/MAPK signalling pathway; alleviated inflammation caused by LPS via the downregulation of the target genes Casp3 and TNF-α in association with apoptosis; and regulated the expression of the antioxidant genes SOD1, SOD2 and GPX4 to exert positive antioxidant effects (p < 0.05). Furthermore, PKCOS upregulated SLC5A1 (encoding SLGT1), HK and MPI in the glycolytic pathway (p < 0.05), suggesting cell survival. In summary, PKCOS has positive effects on promoting swine intestine cell proliferation against inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (J.M.); (J.L.); (Z.S.); (M.H.)
| |
Collapse
|
6
|
Wang Y, Xiao J, Wei S, Su Y, Yang X, Su S, Lan L, Chen X, Huang T, Shan Q. Protective effect of zinc gluconate on intestinal mucosal barrier injury in antibiotics and LPS-induced mice. Front Microbiol 2024; 15:1407091. [PMID: 38855764 PMCID: PMC11157515 DOI: 10.3389/fmicb.2024.1407091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.
Collapse
Affiliation(s)
- Yongcai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Dazhou Central Hospital, Dazhou, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sumei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqi Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liancheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Xiong S, Jiang J, Wan F, Tan D, Zheng H, Xue H, Hang Y, Lu Y, Su Y. Cordyceps militaris Extract and Cordycepin Alleviate Oxidative Stress, Modulate Gut Microbiota and Ameliorate Intestinal Damage in LPS-Induced Piglets. Antioxidants (Basel) 2024; 13:441. [PMID: 38671889 PMCID: PMC11047340 DOI: 10.3390/antiox13040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Cordycepin is considered a major bioactive component in Cordyceps militaris extract. This study was performed to evaluate the ameliorative effect of Cordyceps militaris extract (CME) and cordycepin (CPN) supplementation on intestinal damage in LPS-challenged piglets. The results showed that CPN or CME supplementation significantly increased the villus height (p < 0.01) and villus height/crypt depth ratio (p < 0.05) in the jejunum and ileum of piglets with LPS-induced intestinal inflammation. Meanwhile, CPN or CME supplementation alleviated oxidative stress and inflammatory responses by reducing the levels of MDA (p < 0.05) and pro-inflammatory cytokines in the serum. Additionally, supplementation with CPN or CME modulated the structure of the intestinal microbiota by enriching short-chain fatty acid-producing bacteria, and increased the level of butyrate (p < 0.05). The RNA-seq results demonstrated that CME or CPN altered the complement and coagulation-cascade-related genes (p < 0.05), including upregulating gene KLKB1 while downregulating the genes CFD, F2RL2, CFB, C4BPA, F7, C4BPB, CFH, C3 and PROS1, which regulate the complement activation involved in inflammatory and immune responses. Correlation analysis further demonstrated the potential relation between the gut microbiota and intestinal inflammation, oxidative stress, and butyrate in piglets. In conclusion, CPN or CME supplementation might inhibit LPS-induced inflammation and oxidative stress by modulating the intestinal microbiota and its metabolite butyrate in piglets.
Collapse
Affiliation(s)
- Shijie Xiong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| | - Jiajia Jiang
- Institute of China Black Pig Industry Research, Zhejiang Qinglian Food Co., Ltd., Haiyan 314317, China;
| | - Fan Wan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Ding Tan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| | - Haibo Zheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| | - Huiqin Xue
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
| | - Yiqiong Hang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| |
Collapse
|
8
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Yang S, Liu G, Xia X, Gan D, Xiang S, Xiang M. α-Mangostin suppresses ethanol-induced gastric ulceration by regulating the Nrf2/HO-1 and NF-κB/NLRP3/caspase-1 signaling pathways and gut microbiota. Heliyon 2024; 10:e24339. [PMID: 38304797 PMCID: PMC10831614 DOI: 10.1016/j.heliyon.2024.e24339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
α-Mangostin is a natural xanthone derivative isolated from Camellia atrophy (CA), commonly known as Lichuan black tea (LBT). The present study investigated the ameliorating effect and mechanism of α-mangostin on alcoholic gastric ulcers (GU) in rats. In vivo, α-mangostin relieved pathological symptoms. Moreover, α-mangostin regulated the activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) and nuclear factor κB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3)/caspase-1 pathways. Reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were significantly decreased and IL-10 were increased, the microtubule-associated protein light chain 3 (LC3)-II/LC3-I ratio was increased, p62 protein expression was decreased, and inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expression was down-regulated. The relevant mechanisms were validated using GSE-1 and RAW264.7 cells in an in vitro model. Furthermore, α-mangostin increased Ligilactobacillus and Muribaculum abundance as well as propionic acid and butyric acid contents. Therefore, α-mangostin possesses antioxidant and anti-inflammatory properties, and remodels intestinal flora dysbiosis through mechanisms that may involve regulation of the Nrf2/HO-1 pathway and NF-κB/NLRP3/caspase-1 pathway. It also increases propionic acid and butyric acid contents. This study provides novel evidence regarding the use of α-mangostin for treating GU.
Collapse
Affiliation(s)
- Suqin Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China, 430060, Hubei, China
| | - Xiankun Xia
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Dali Gan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Shijian Xiang
- Department of Laboratory Medicine, Renmin Hosipital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
10
|
Elnour AAM, Abdurahman NH, Musa KH, Rasheed Z. Prebiotic potential of gum Arabic for gut health. Int J Health Sci (Qassim) 2023; 17:4-5. [PMID: 37929233 PMCID: PMC10624802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Affiliation(s)
- Ahmed A. M. Elnour
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Gambang, Malaysia
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang Al-Sultan Abdullah, Gambang, Malaysia
| | - Nour Hamid Abdurahman
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Gambang, Malaysia
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang Al-Sultan Abdullah, Gambang, Malaysia
| | - Khalid Hamid Musa
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Li C, Zhang J, Liu H, Yuan H, Cai J, Fogaça MV, Zhang YW. The synergistic mechanism of action of Dajianzhong decoction in conjunction with ketamine in the treatment of depression. Biomed Pharmacother 2023; 165:115137. [PMID: 37453197 DOI: 10.1016/j.biopha.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Depression is a multifactorial syndrome with a variety of underlying pathological mechanisms. While ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, exhibits a rapid antidepressant action in the central never system (CNS), the potential addiction and psychotomimetic adverse effects of ketamine limit its chronic use in clinical practice. Therefore, it is necessary to discover an additional agent that shows a synergistic antidepressant activity with ketamine to sustain its therapeutic action so as to reduce its use frequency in depression treatment. The present study indicated that Dajianzhong decoction (DJZT), an empirical herbal formula used for the clinical treatment of several inflammation-related intestinal disorders, sustains behavioral and synaptic action of ketamine in depressive mouse models. Additionally, ketamine was also demonstrated to exert a synergistic action with DJZT to alleviate the chronic unpredictable mild stress (CUMS)-induced abnormalities in gut barrier proteins and colonic histology, and subsequently to normalize the diversity and composition of gut microbiota. Furthermore, DJZT was shown to possess an anti-inflammatory activity to prevent activation of NF-κB from releasing proinflammatory cytokines, specifically through inhibiting Th17 cells/IL-17A pathway. Our results uncovered the mechanism of action of DJZT in conjunction with ketamine in depression treatment by which these agents target different pathological factors across biological systems and exert a synergistic activity through a bidirectional communication in the gut-brain axis, and also provided new insights into the systematic treatment of depression.
Collapse
Affiliation(s)
- Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hanhe Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huijie Yuan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianxin Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|