1
|
Sun Y, Wang B, Chen W, Wang Y, Zhou D, Zhang M, Zhang C, Li R, He J. The Role of Potato Glycoside Alkaloids Mediated Oxidative Stress in Inducing Apoptosis of Wolfberry Root Rot Pathogen Fungi. Antioxidants (Basel) 2024; 13:1537. [PMID: 39765865 PMCID: PMC11726719 DOI: 10.3390/antiox13121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Wolfberry (Lycium barbarum) is a vital economic tree species in northwest China, but root rot caused by Fusarium solani occurs frequently, which seriously endangers the quality and yield of wolfberry. In this study, potato glycoside alkaloids (PGAs), a plant-derived active substance, were used as materials to explore its inhibitory effect on F. solani. By analyzing the changes of reactive oxygen species (ROS) level, antioxidant capacity, and apoptosis, the role of PGAs-mediated oxidative stress in inducing apoptosis of F. solani was revealed. The findings suggest that PGAs treatment inhibited mycelium growth, reduced biomass and sporulation, and delayed spore germination in F. solani. The concentration for 50% of maximal effect (EC50) was 1.85 mg/mL. PGAs treatment induced an increase in caspase-3 activity, disrupting the cell membrane of fungi. In addition, PGAs treatment activated NADH oxidase (NOX) and superoxide dismutase (SOD), promoted hydrogen peroxide (H2O2) and superoxide anion (O2-) accumulation, and decreased ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) activities as well as oxidized glutathione (GSSG), reduced glutathione (GSH), and electron donor NADPH content. In summary, PGAs has a strong inhibitory effect on F. solani, and its inhibitory effect may be related to the promotion of ROS accumulation by PGAs, causing the disorder of intracellular redox balance of fungi, the decrease of total antioxidant capacity, and finally the induction of apoptosis. This study provides a new insight into the antifungal mechanism of PGAs against F. solani.
Collapse
Affiliation(s)
- Yuyan Sun
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Wei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Yanbo Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Dongdong Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Mengyang Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
2
|
Fang J, Zhou G, Zhao H, Xie D, Zhang J, Kües U, Xiao Y, Fang Z, Liu J. An apoptosis-inducing factor controls programmed cell death and laccase expression during fungal interactions. Appl Microbiol Biotechnol 2024; 108:135. [PMID: 38229306 DOI: 10.1007/s00253-023-12988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
Apoptotic-like programmed cell death (PCD) is one of the main strategies for fungi to resist environmental stresses and maintain homeostasis. The apoptosis-inducing factor (AIF) has been shown in different fungi to trigger PCD through upregulating reactive oxygen species (ROS). This study identified a mitochondrial localized AIF homolog, CcAIF1, from Coprinopsis cinerea monokaryon Okayama 7. Heterologous overexpression of CcAIF1 in Saccharomyces cerevisiae caused apoptotic-like PCD of the yeast cells. Ccaif1 was increased in transcription when C. cinerea interacted with Gongronella sp. w5, accompanied by typical apoptotic-like PCD in C. cinerea, including phosphatidylserine externalization and DNA fragmentation. Decreased mycelial ROS levels were observed in Ccaif1 silenced C. cinerea transformants during cocultivation, as well as reduction of the apoptotic levels, mycelial growth, and asexual sporulation. By comparison, Ccaif1 overexpression led to the opposite phenotypes. Moreover, the transcription and expression levels of laccase Lcc9 decreased by Ccaif1 silencing but increased firmly in Ccaif1 overexpression C. cinerea transformants in coculture. Thus, in conjunction with our previous report that intracellular ROS act as signal molecules to stimulate defense responses, we conclude that CcAIF1 is a regulator of ROS to promote apoptotic-like PCD and laccase expression in fungal-fungal interactions. In an axenic culture of C. cinerea, CcAIF1 overexpression and H2O2 stimulation together increased laccase secretion with multiplied production yield. The expression of two other normally silent isozymes, Lcc8 and Lcc13, was unexpectedly triggered along with Lcc9. KEY POINTS: • Mitochondrial CcAIF1 induces PCD during fungal-fungal interactions • CcAIF1 is a regulator of ROS to trigger the expression of Lcc9 for defense • CcAIF1 overexpression and H2O2 stimulation dramatically increase laccase production.
Collapse
Affiliation(s)
- Junnan Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Gang Zhou
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Huifang Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Dengdeng Xie
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Jingna Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen‑Institute, University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China.
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China.
| |
Collapse
|
3
|
Li L, Du C. Fungal Apoptosis-Related Proteins. Microorganisms 2024; 12:2289. [PMID: 39597678 PMCID: PMC11596484 DOI: 10.3390/microorganisms12112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in the development and homeostasis maintenance of multicellular organisms. Apoptosis is a form of PCD that prevents pathological development by eliminating damaged or useless cells. Despite the complexity of fungal apoptosis mechanisms being similar to those of plants and metazoans, fungal apoptosis lacks the core regulatory elements of animal apoptosis. Apoptosis-like PCD in fungi can be triggered by a variety of internal and external factors, participating in biological processes such as growth, development, and stress response. Although the core regulatory elements are not fully understood, apoptosis-inducing factor and metacaspase have been found to be involved. This article summarizes various proteins closely related to fungal apoptosis, such as apoptosis-inducing factor, metacaspase, and inhibitors of apoptosis proteins, as well as their structures and functions. This research provides new strategies and ideas for the development of natural drugs targeting fungal apoptosis and the control of fungal diseases.
Collapse
Affiliation(s)
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
4
|
Bravo-Chaucanés CP, Chitiva LC, Vargas-Casanova Y, Diaz-Santoyo V, Hernández AX, Costa GM, Parra-Giraldo CM. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023; 13:1729. [PMID: 38136600 PMCID: PMC10742119 DOI: 10.3390/biom13121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant-derived compounds have proven to be a source of inspiration for new drugs. In this study, piperine isolated from the fruits of Piper nigrum showed anti-Candida activity. Furthermore, the mechanisms of action of piperine and its impact on virulence factors in Candida albicans, which have not been comprehensively understood, were also assessed. Initially, piperine suppressed the hyphal transition in both liquid and solid media, hindered biofilm formation, and resulted in observable cell distortions in scanning electron microscope (SEM) samples, for both fluconazole-sensitive and fluconazole-resistant C. albicans strains. Additionally, the morphogenetic switches triggered by piperine were found to rely on the activity of mutant C. albicans strains. Secondly, piperine treatment increased cell membrane permeability and disrupted mitochondrial membrane potential, as evidenced by propidium iodine and Rhodamine 123 staining, respectively. Moreover, it induced the accumulation of intracellular reactive oxygen species in C. albicans. Synergy was obtained between the piperine and the fluconazole against the fluconazole-sensitive strain. Interestingly, there were no hemolytic effects of piperine, and it resulted in reduced cytotoxicity on fibroblast cells at low concentrations. The results suggest that piperine could have a dual mode of action inhibiting virulence factors and modulating cellular processes, leading to cell death in C. albicans.
Collapse
Affiliation(s)
- Claudia Patricia Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Valentina Diaz-Santoyo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Andrea Ximena Hernández
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Liang C, Xi-Xi X, Yun-Xiang S, Qiu-Hua X, Yang-Yong L, Yuan-Sen H, Ke B. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms. World J Microbiol Biotechnol 2023; 39:340. [PMID: 37821760 DOI: 10.1007/s11274-023-03790-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Fusarium graminearum, a devastating fungal pathogen, is the main pathogen of Fusarium head blight (FHB) in wheat globally; it results in significant yield loss and mycotoxin contamination that severely threatens global wheat production and food safety. However, despite ongoing efforts, controlling this pathogen still remains a major challenge. Surfactin, primarily synthesized by Bacillus sp. via non-ribosomal peptide synthetases, exhibits potent surfactant and antibacterial properties, but its antifungal mechanism has yet to be fully elucidated. We found that the EC50 of surfactin against hyphal growth of F. graminearum was 102.1 µg/mL, and control efficacy against wheat FHB under field conditions achieved 86.38% in wheat cultivar Huaimai 40 and 81.60% in wheat cultivar Zhoumai 36, indicating that surfactin has potential antifungal activity against F. graminearum. Accumulated intracellular ROS, decreased mitochondrial membrane potential (MMP), activated metacaspase activity and condensed chromatin, were induced by surfactin in F. graminearum hyphae, suggesting that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Furthermore, accumulated intracellular ROS was evidenced to act as a key mediator of surfactin-induced apoptosis. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that surfactin induces caspase-independent apoptosis in F. graminearum. Collectively, this study provides evidence that surfactin induces a ROS-mediated mitochondrial apoptosis in F. graminearum hyphae, and may exert its antifungal activity against F. graminearum by activating apoptosis. This study demonstrates the potential of surfactin as an antifungal agent for FHB biocontrol, provides a new perspective on the antifungal mechanism of surfactin against filamentous fungi, and contributes to the application of surfactin-producing microbes in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Chen Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xu Xi-Xi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Sun Yun-Xiang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin Qiu-Hua
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Lv Yang-Yong
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Hu Yuan-Sen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Bian Ke
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Gao Q, Fan Y, Wei S, Song S, Guo Y, Wang S, Liu Y, Yan D. Insights into the Global Transcriptome Response of Lentinula edodes Mycelia during Aging. J Fungi (Basel) 2023; 9:jof9030379. [PMID: 36983547 PMCID: PMC10057243 DOI: 10.3390/jof9030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The spawn of Lentinula edodes and other basidiomycete fungi tend to age with long-term culture. This causes heavy yield losses if aging spawn is used for propagation. In this study, we cultivated dikaryotic L. edodes mycelia in plates for 60 days to produce intrinsic aging phenotypes. We found that intracellular reactive oxygen species levels increased in contrast to mitochondrial depolarization and also observed greater DNA fragmentation with longer culture time. Transcriptome analysis of mycelia at different growth stages revealed pronounced expression differences between short- and long-term cultures. In particular, "phenylalanine, tyrosine, and tryptophan biosynthesis", "mitophagy and autophagy", "MAPK signaling pathway", and "ABC transporter" were among the enriched terms in the mycelial aging process. Weighted correlation network analysis identified LeAtg8, LeHog1, LePbs2, and LemTOR as key genes during aging. Western blotting confirmed that LeATG8 and phosphorylated LeHOG1 protein levels were significantly upregulated in aging mycelia. Our combined analytical approach provides insights into the mechanisms that regulate mycelial aging, indicating that autophagy/mitophagy plays a major role in counteracting the effects of age on mycelial growth development.
Collapse
Affiliation(s)
- Qi Gao
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yangyang Fan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Sai Wei
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102208, China
| | - Shuang Song
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yuan Guo
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Shouxian Wang
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yu Liu
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Dong Yan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| |
Collapse
|
7
|
A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochim Biophys Acta Gen Subj 2022; 1866:130218. [PMID: 35905923 DOI: 10.1016/j.bbagen.2022.130218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial peptides, natural or synthetic, appear as promising molecules for antimicrobial therapy because of their both broad antimicrobial activity and mechanism of action. Herein, we determine the anti-Candida and antimycobacterial activities, mechanism of action on yeasts, and cytotoxicity on mammalian cells in the presence of the bioinspired peptide CaDef2.1G27-K44. METHODS CaDef2.1G27-K44 was designed to attain the following criteria: high positive net charge; low molecular weight (<3000 Da); Boman index ≤2.5; and total hydrophobic ratio ≥ 40%. The mechanism of action was studied by growth inhibition, plasma membrane permeabilization, ROS induction, mitochondrial functionality, and metacaspase activity assays. The cytotoxicity on macrophages, monocytes, and erythrocytes were also determined. RESULTS CaDef2.1G27-K44 showed inhibitory activity against Candida spp. with MIC100 values ranging from 25 to 50 μM and the standard and clinical isolate of Mycobacterium tuberculosis with MIC50 of 33.2 and 55.4 μM, respectively. We demonstrate that CaDef2.1G27-K44 is active against yeasts at different salt concentrations, induced morphological alterations, caused membrane permeabilization, increased ROS, causes loss of mitochondrial functionality, and activation of metacaspases. CaDef2.1G27-K44 has low cytotoxicity against mammalian cells. CONCLUSIONS The results obtained showed that CaDef2.1G27-K44 has great antimicrobial activity against Candida spp. and M. tuberculosis with low toxicity to host cells. For Candida spp., the treatment with CaDef2.1G27-K44 induces a process of regulated cell death with apoptosis-like features. GENERAL SIGNIFICANCE We show a new AMP bioinspired with physicochemical characteristics important for selectivity and antimicrobial activity, which is a promising candidate for drug development, mainly to control Candida infections.
Collapse
|
8
|
Horikiri S, Harada M, Asada R, J Sakamoto J, Furuta M, Tsuchido T. Low Temperature Heating-Induced Death and Vacuole Injury in Cladosporium sphaerospermum Conidia. Biocontrol Sci 2022; 27:107-115. [PMID: 35753793 DOI: 10.4265/bio.27.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanism of thermal death of mold conidia has not been understood in detail. The purpose of this study is to analyze the death kinetics of heated conidia of Cladosporium sphaerospermum and to ascertain the expectant cell injury responsible for the death. The death of the dormant (resting) conidia of Cladosporium sphaerospermum was examined at temperatures of between 43 and 54℃ with the conventional colony count method. The death reaction apparently followed the first order kinetics, but the Arrhenius plot of the death rate constant demonstrated seemingly a break. The linearity at temperatures higher than that at the break was lost at lower temperatures, suggesting the involvement of an unusual mechanism in the latter temperatures. In the cell morphology, we observed with quinacrine staining the vacuole rupture at a lower temperature but not at a high temperature. Interestingly, the vacuole rupture by low-temperature heating was found to correlate with the viability loss. Furthermore, active protease originally locating in vacuoles was detected in the cytoplasm of the conidia after heated at a low temperature. The results obtained suggest the involvement of potent autophagic cell death induced by low temperature heating of C. sphaerospermum conidia.
Collapse
Affiliation(s)
- Shigetoshi Horikiri
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Panasonic Ecology Systems Co., Ltd
| | - Mami Harada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - Ryoko Asada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Research Center of Microorganism Control, Organization for Research Promotion
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion.,Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Research Center of Microorganism Control, Organization for Research Promotion
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion
| |
Collapse
|
9
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sella L, Govind R, Caracciolo R, Quarantin A, Vu VV, Tundo S, Nguyen HM, Favaron F, Musetti R, De Zotti M. Transcriptomic and Ultrastructural Analyses of Pyricularia Oryzae Treated With Fungicidal Peptaibol Analogs of Trichoderma Trichogin. Front Microbiol 2021; 12:753202. [PMID: 34721357 PMCID: PMC8551967 DOI: 10.3389/fmicb.2021.753202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Eco-friendly analogs of Trichogin GA IV, a short peptaibol produced by Trichoderma longibrachiatum, were assayed against Pyricularia oryzae, the causal agent of rice blast disease. In vitro and in vivo screenings allowed us to identify six peptides able to reduce by about 70% rice blast symptoms. One of the most active peptides was selected for further studies. Microscopy analyses highlighted that the treated fungal spores could not germinate and the fluorescein-labeled peptide localized on the spore cell wall and in the agglutinated cytoplasm. Transcriptomic analysis was carried out on P. oryzae mycelium 3 h after the peptide treatment. We identified 1,410 differentially expressed genes, two-thirds of which upregulated. Among these, we found genes involved in oxidative stress response, detoxification, autophagic cell death, cell wall biogenesis, degradation and remodeling, melanin and fatty acid biosynthesis, and ion efflux transporters. Molecular data suggest that the trichogin analogs cause cell wall and membrane damages and induce autophagic cell death. Ultrastructure observations on treated conidia and hyphae confirmed the molecular data. In conclusion, these selected peptides seem to be promising alternative molecules for developing effective bio-pesticides able to control rice blast disease.
Collapse
Affiliation(s)
- Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rakshita Govind
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rocco Caracciolo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Hung Minh Nguyen
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta De Zotti
- Department of Chemistry (DISC), University of Padova, Padua, Italy
| |
Collapse
|
11
|
Belov AA, Witte TE, Overy DP, Smith ML. Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in Cryphonectria parasitica. G3-GENES GENOMES GENETICS 2021; 11:6025178. [PMID: 33561228 PMCID: PMC7849911 DOI: 10.1093/g3journal/jkaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023]
Abstract
The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, remain largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-incompatible strains of Cryphonectria parasitica, the chestnut blight fungus. Pronounced differential expression occurred in barraging strains of genes involved in mating pheromone (mf2-1, mf2-2), secondary metabolite production, detoxification (including oxidative stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six vegetative incompatibility (vic) loci in C. parasitica and revealed distinct recognition process networks. We infer that vegetative incompatibility in C. parasitica activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intracellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis, sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific metabolome as conidiation is initiated.
Collapse
Affiliation(s)
- Anatoly A Belov
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas E Witte
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa, ON, K1Y 4X2, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Chen L, Ma Y, Peng M, Chen W, Xia H, Zhao J, Zhang Y, Fan Z, Xing X, Li H. Analysis of Apoptosis-Related Genes Reveals that Apoptosis Functions in Conidiation and Pathogenesis of Fusarium pseudograminearum. mSphere 2021; 6:e01140-20. [PMID: 33408234 PMCID: PMC7845595 DOI: 10.1128/msphere.01140-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Apoptosis, a type of programmed cell death, plays crucial roles in various physiological processes, from development to adaptive responses. Key features of apoptosis have been verified in various fungal microbes but not yet in Fusarium species. Here, we identified 19 apoptosis-related genes in Fusarium pseudograminearum using a genome-wide survey. Expression profile analysis revealed that several apoptosis-related genes were significantly increased during conidiation and infection stages. Among these is FpBIR1, with two BIR (baculovirus inhibitor-of-apoptosis protein repeat) domains at the N-terminal end of the protein, a homolog of Saccharomyces cerevisiae BIR1, which is a unique apoptosis inhibitor. FpNUC1 is the ortholog of S. cerevisiae NUC1, which triggers AIF1- or YCA1-independent apoptosis. The functions of these two proteins were assessed by creating Δfpbir1 and Δfpnuc1 mutants via targeted gene deletion. The Δfpbir1 mutant had more cells with nuclear fragmentation and exhibited reduced conidiation, conidial formation, and infectivity. Correspondingly, the Δfpnuc1 mutant contained multiple nuclei, produced thicker and more branched hyphae, was reduced in conidiation, and exhibited faster conidial formation and higher infection rates. Taken together, our results indicate that the apoptosis-related genes FpBIR1 and FpNUC1 function in conidiation, conidial germination, and infection by F. pseudograminearumIMPORTANCE The plant-pathogenic fungus F. pseudograminearum is the causal agent of Fusarium crown rot (FCR) in wheat and barley, resulting in substantial yield losses worldwide. Particularly, in the Huanghuai wheat-growing region of China, F. pseudograminearum was reported as the dominant Fusarium species in FCR infections. Apoptosis is an evolutionarily conserved mechanism in eukaryotes, playing crucial roles in development and cell responses to biotic and abiotic stresses. However, few reports on apoptosis in plant fungal pathogens have been published. In this study, we identified 19 conserved apoptosis-related genes in F. pseudograminearum, several of which were significantly increased during conidiation and infection stages. Potential apoptosis functions were assessed by deletion of the putative apoptosis inhibitor gene FpBIR1 and apoptosis trigger gene FpNUC1 in F. pseudograminearum The FpBIR1 deletion mutant exhibited defects in conidial germination and pathogenicity, whereas the FpNUC1 deletion mutant experienced faster conidial formation and higher infection rates. Apoptosis appears to negatively regulate the conidial germination and pathogenicity of F. pseudograminearum To our knowledge, this study is the first report of apoptosis contributing to infection-related morphogenesis and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Linlin Chen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuming Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Huiqing Xia
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yake Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
13
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
14
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
15
|
Abstract
The programmed release of apoptogenic proteins from mitochondria is a core event of apoptosis, although ancestral roles of this phenomenon are not known. In mammals, one such apoptogenic protein is Endonuclease G (EndoG), a conserved mitochondrial nuclease that fragments the DNA of dying cells. In this work, we show that budding yeast executes meiotically programmed mitochondrial release of an EndoG homolog, Nuc1, during sporulation. In contrast to EndoG's ostensible pro-death function during apoptosis, Nuc1 mitochondrial release is pro-survival, attenuating the cytosolic L-A and Killer double-stranded RNA mycoviruses and protecting meiotic progeny from the catastrophic consequences of their derepression. The protective viral attenuation role of this pathway illuminates a primordial role for mitochondrial release of EndoG, and perhaps of apoptosis itself.
Collapse
|
16
|
Zhang L, Zhong K, Lv R, Zheng X, Zhang Z, Zhang H. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus. Appl Microbiol Biotechnol 2019; 103:6617-6627. [PMID: 31175429 DOI: 10.1007/s00253-019-09931-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Abstract
The inhibitor of apoptosis protein (IAP) family has been identified in a variety of organisms. All IAPs contain one to three baculoviral IAP repeat (BIR) domains, which are required for anti-apoptotic activity. Here, we identified a type II BIR domain-containing protein, MoBir1, in the rice blast fungus Magnaporthe oryzae. Expression of the MoBIR1 gene in Saccharomyces cerevisiae suppressed hydrogen peroxide-induced cell death and delayed yeast cell chronological aging. Delayed aging was found to require the carboxyl terminus of MoBir1. M. oryzae transformants overexpressing the MoBIR1 gene demonstrated increased growth rate and biomass, delayed mycelial aging, and enhanced resistance to hydrogen peroxide but reduced reactive oxygen species generation and virulence. Moreover, MoBIR1-overexpressing transformants exhibited anti-apoptotic activity. However, MoBIR1 silencing resulted in no obvious phenotypic changes, compared with the wild-type M. oryzae strain Guy11. Our findings broaden the knowledge on fungal type II BIR domain-containing proteins.
Collapse
Affiliation(s)
- Lisha Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Kaili Zhong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ruili Lv
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.
| |
Collapse
|
17
|
Zhang L, Zhang D, Chen Y, Ye W, Lin Q, Lu G, Ebbole DJ, Olsson S, Wang Z. Magnaporthe oryzae CK2 Accumulates in Nuclei, Nucleoli, at Septal Pores and Forms a Large Ring Structure in Appressoria, and Is Involved in Rice Blast Pathogenesis. Front Cell Infect Microbiol 2019; 9:113. [PMID: 31058100 PMCID: PMC6478894 DOI: 10.3389/fcimb.2019.00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/01/2019] [Indexed: 01/16/2023] Open
Abstract
Magnaporthe oryzae (Mo) is a model pathogen causing rice blast resulting in yield and economic losses world-wide. CK2 is a constitutively active, serine/threonine kinase in eukaryotes, having a wide array of known substrates, and involved in many cellular processes. We investigated the localization and role of MoCK2 during growth and infection. BLAST search for MoCK2 components and targeted deletion of subunits was combined with protein-GFP fusions to investigate localization. We found one CKa and two CKb subunits of the CK2 holoenzyme. Deletion of the catalytic subunit CKa was not possible and might indicate that such deletions are lethal. The CKb subunits could be deleted but they were both necessary for normal growth and pathogenicity. Localization studies showed that the CK2 holoenzyme needed to be intact for normal localization at septal pores and at appressorium penetration pores. Nuclear localization of CKa was however not dependent on the intact CK2 holoenzyme. In appressoria, CK2 formed a large ring perpendicular to the penetration pore and the ring formation was dependent on the presence of all CK2 subunits. The effects on growth and pathogenicity of deletion of the b subunits combined with the localization indicate that CK2 can have important regulatory functions not only in the nucleus/nucleolus but also at fungal specific structures such as septa and appressorial pores.
Collapse
Affiliation(s)
- Lianhu Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunyun Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Ye
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingyun Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daniel J. Ebbole
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Stefan Olsson
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
18
|
Menacing Mold: Recent Advances in Aspergillus Pathogenesis and Host Defense. J Mol Biol 2019; 431:4229-4246. [PMID: 30954573 DOI: 10.1016/j.jmb.2019.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/21/2019] [Accepted: 03/30/2019] [Indexed: 02/08/2023]
Abstract
The genus Aspergillus is ubiquitous in the environment and contains a number of species, primarily A. fumigatus, that cause mold-associated disease in humans. Humans inhale several hundred to several thousand Aspergillus conidia (i.e., vegetative spores) daily and typically clear these in an asymptomatic manner. In immunocompromised individuals, Aspergillus conidia can germinate into tissue-invasive hyphae, disseminate, and cause invasive aspergillosis. In this review, we first discuss novel concepts in host defense against Aspergillus infections and emphasize new insights in fungal recognition and signaling, innate immune activation, and fungal killing. Second, the review focuses on novel concepts of Aspergillus pathogenesis and highlights emerging knowledge regarding fungal strain heterogeneity, stress responses, and metabolic adaptations on infectious outcomes. Mechanistic insight into the host-pathogen interplay is thus critical to define novel druggable fungal targets and to exploit novel immune-based strategies to improve clinical outcomes associated with aspergillosis in vulnerable patient populations.
Collapse
|
19
|
Fan X, He F, Ding M, Geng C, Chen L, Zou S, Liang Y, Yu J, Dong H. Thioredoxin Reductase Is Involved in Development and Pathogenicity in Fusarium graminearum. Front Microbiol 2019; 10:393. [PMID: 30899249 PMCID: PMC6416177 DOI: 10.3389/fmicb.2019.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 01/03/2023] Open
Abstract
Fusarium graminearum is one of the causal agents of Fusarium head blight and produces the trichothecene mycotoxin, deoxynivalenol (DON). Thioredoxin reductases (TRRs) play critical roles in the recycling of oxidized thioredoxin. However, their functions are not well known in plant pathogenic fungi. In this study, we characterized a TRR orthologue FgTRR in F. graminearum. The FgTRR-GFP fusion protein localized to the cytoplasm. FgTRR gene deletion demonstrated that FgTRR is involved in hyphal growth, conidiation, sexual reproduction, DON production, and virulence. The ΔTRR mutants also exhibited a defect in pigmentation, the expression level of aurofusarin biosynthesis-related genes was significantly decreased in the FgTRR mutant. Furthermore, the ΔTRR mutants were more sensitive to oxidative stress and aggravated apoptosis-like cell death compared with the wild type strain. Taken together, these results indicate that FgTRR is important in development and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuancun Liang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | | | | |
Collapse
|
20
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
21
|
Abstract
Fungi are able to switch between different lifestyles in order to adapt to environmental changes. Their ecological strategy is connected to their secretome as fungi obtain nutrients by secreting hydrolytic enzymes to their surrounding and acquiring the digested molecules. We focus on fungal serine proteases (SPs), the phylogenetic distribution of which is barely described so far. In order to collect a complete set of fungal proteases, we searched over 600 fungal proteomes. Obtained results suggest that serine proteases are more ubiquitous than expected. From 54 SP families described in MEROPS Peptidase Database, 21 are present in fungi. Interestingly, 14 of them are also present in Metazoa and Viridiplantae - this suggests that, except one (S64), all fungal SP families evolved before plants and fungi diverged. Most representatives of sequenced eukaryotic lineages encode a set of 13-16 SP families. The number of SPs from each family varies among the analysed taxa. The most abundant are S8 proteases. In order to verify hypotheses linking lifestyle and expansions of particular SP, we performed statistical analyses and revealed previously undescribed associations. Here, we present a comprehensive evolutionary history of fungal SP families in the context of fungal ecology and fungal tree of life.
Collapse
|
22
|
Anjo SI, Figueiredo F, Fernandes R, Manadas B, Oliveira M. A proteomic and ultrastructural characterization of Aspergillus fumigatus' conidia adaptation at different culture ages. J Proteomics 2017; 161:47-56. [PMID: 28365406 DOI: 10.1016/j.jprot.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
The airborne fungus Aspergillus fumigatus is one of the most common agents of human fungal infections with a remarkable impact on public health. However, A. fumigatus conidia atmospheric resistance and longevity mechanisms are still unknown. Therefore, in this work, the processes underlying conidial adaptation were studied by a time course evaluation of the proteomics and ultrastructural changes of A. fumigatus' conidia at three time-points selected according to relevant changes previously established in conidial survival rates. The proteomics characterization revealed that conidia change from a highly active metabolic to a dormant state, culminating in cell autolysis as revealed by the increased levels of hydrolytic enzymes. Structural characterization corroborates the proteomics data, with noticeable changes observed in mitochondria, nucleus and plasma membrane ultrastructure, accompanied by the formation of autophagic vacuoles. These changes are consistent with both apoptotic and autophagic processes, and indicate that the changes in protein levels may anticipate those in cell morphology. SIGNIFICANCE The findings presented in this work not only clarify the processes underlying conidial adaptation to nutrient limiting conditions but can also be exploited for improving infection control strategies and in the development of new therapeutical drugs. Additionally, the present study was deposited in a public database and thus, it may also be a valuable dataset to be used by the scientific community as a tool to understand and identified other potential targets associated with conidia resistance.
Collapse
Affiliation(s)
- Sandra I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Rui Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Manuela Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Biology Department, Faculty of Sciences, University of Porto, 4150-171 Porto, Portugal.
| |
Collapse
|
23
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
24
|
Talas F, Kalih R, Miedaner T, McDonald BA. Genome-Wide Association Study Identifies Novel Candidate Genes for Aggressiveness, Deoxynivalenol Production, and Azole Sensitivity in Natural Field Populations of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:417-30. [PMID: 26959837 DOI: 10.1094/mpmi-09-15-0218-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genome-wide association studies can identify novel genomic regions and genes that affect quantitative traits. Fusarium head blight is a destructive disease caused by Fusarium graminearum that exhibits several quantitative traits, including aggressiveness, mycotoxin production, and fungicide resistance. Restriction site-associated DNA sequencing was performed for 220 isolates of F. graminearum. A total of 119 isolates were phenotyped for aggressiveness and deoxynivalenol (DON) production under natural field conditions across four environments. The effective concentration of propiconazole that inhibits isolate growth in vitro by 50% was calculated for 220 strains. Approximately 29,000 single nucleotide polymorphism markers were associated to each trait, resulting in 50, 29, and 74 quantitative trait nucleotides (QTNs) that were significantly associated to aggressiveness, DON production, and propiconazole sensitivity, respectively. Approximately 41% of these QTNs caused nonsynonymous substitutions in predicted exons, while the remainder were synonymous substitutions or located in intergenic regions. Three QTNs associated with propiconazole sensitivity were significant after Bonferroni correction. These QTNs were located in genes not previously associated with azole sensitivity. The majority of the detected QTNs were located in genes with predicted regulatory functions, suggesting that nucleotide variation in regulatory genes plays a major role in the corresponding quantitative trait variation.
Collapse
|
25
|
Oliveira M, Pereira C, Bessa C, Araujo R, Saraiva L. Chronological aging in conidia of pathogenic Aspergillus: Comparison between species. J Microbiol Methods 2015; 118:57-63. [PMID: 26341609 DOI: 10.1016/j.mimet.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus niger are common airborne fungi, and the most frequent causative agents of human fungal infections. However, the resistance and lifetime persistence of these fungi in the atmosphere, and the mechanism of aging of Aspergillus conidia are unknown.With this work, we intended to study the processes underlying conidial aging of these four relevant and pathogenic Aspergillus species. Chronological aging was therefore evaluated in A. fumigatus, A. flavus, A. terreus and A. niger conidia exposed to environmental and human body temperatures. The results showed that the aging process in Aspergillus conidia involves apoptosis,with metacaspase activation, DNA fragmentation, and reactive oxygen species production, associated with secondary necrosis. Distinct results were observed for the selected pathogenic species. At environmental conditions, A. niger was the species with the highest resistance to aging, indicating a higher adaption to environmental conditions, whereas A. flavus followed by A. terreus were the most sensitive species. At higher temperatures (37 °C), A. fumigatus presented the longest lifespan, in accordance with its good adaptation to the human body temperature. Altogether,with this work new insights regarding conidia aging are provided, which may be useful when designing treatments for aspergillosis.
Collapse
Affiliation(s)
- Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Clara Pereira
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cláudia Bessa
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Araujo
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
26
|
Romero A, Novoa B, Figueras A. The complexity of apoptotic cell death in mollusks: An update. FISH & SHELLFISH IMMUNOLOGY 2015; 46:79-87. [PMID: 25862972 DOI: 10.1016/j.fsi.2015.03.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study.
Collapse
Affiliation(s)
- A Romero
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - B Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - A Figueras
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
27
|
Chen L, Shen D, Sun N, Xu J, Wang W, Dou D. Phytophthora sojae TatD nuclease positively regulates sporulation and negatively regulates pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1070-80. [PMID: 24940989 DOI: 10.1094/mpmi-05-14-0153-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
During pathogenic interactions, both the host and pathogen are exposed to conditions that induce programmed cell death (PCD). Certain aspects of PCD have been recently examined in eukaryotic microbes but not in oomycetes. Here, we identified conserved TatD proteins in Phytophthora sojae; the proteins are key components of DNA degradation in apoptosis. We selected PsTatD4 for further investigation because the enzyme is unique to the oomycete branch of the phylogenetic tree. The purified protein exhibited DNase activity in vitro. Its expression was upregulated in sporangia and later infective stages but downregulated in cysts and during early infection. Functional analysis revealed that the gene was required for sporulation and zoospore production, and the expression levels were associated with the numbers of hydrogen-peroxide-induced terminal dUTP nick end-labeling-positive cells. Furthermore, overexpression of PsTatD4 gene reduced the virulence in a susceptible soybean cultivar. Together, these data suggest that apoptosis may play different roles in the early and late infective stages of P. sojae, and that PsTatD4 is a key regulator of infection. The association of PsTatD4 and apoptosis will lay a foundation to understanding the basic biology of apoptosis and its roles in P. sojae disease cycle.
Collapse
|
28
|
Van der Nest MA, Olson A, Lind M, Vélëz H, Dalman K, Brandström Durling M, Karlsson M, Stenlid J. Distribution and evolution of het gene homologs in the basidiomycota. Fungal Genet Biol 2013; 64:45-57. [PMID: 24380733 DOI: 10.1016/j.fgb.2013.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 12/24/2022]
Abstract
In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina. Our aim was to identify and study the distribution and evolution of putative het gene homologs in the Basidiomycota. For this purpose we used the information available for the model fungi to identify homologs of het genes in other fungi, especially the Basidiomycota. Putative het-c, het-c2 and un-24 homologs, as well as sequences containing the NACHT, HET or WD40 domains present in the het-e, het-r, het-6 and het-d genes were identified in certain members of the Ascomycota and Basidiomycota. The widespread phylogenetic distribution of certain het genes may reflect the fact that the encoded proteins are involved in fundamental cellular processes other than SI. Although homologs of het-S were previously known only from the Sordariomycetes (Ascomycota), we also identified a putative homolog of this gene in Gymnopus luxurians (Basidiomycota, class Agaricomycetes). Furthermore, with the exception of un-24, all of the putative het genes identified occurred mostly in a multi-copy fashion, some with lineage and species-specific expansions. Overall our results indicated that gene duplication followed by gene loss and/or gene family expansion, as well as multiple events of domain fusion and shuffling played an important role in the evolution of het gene homologs of Basidiomycota and other filamentous fungi.
Collapse
Affiliation(s)
- M A Van der Nest
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden.
| | - A Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - H Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - K Dalman
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - J Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| |
Collapse
|
29
|
Côrte-Real M, Madeo F. Yeast programed cell death and aging. Front Oncol 2013; 3:283. [PMID: 24303368 PMCID: PMC3831160 DOI: 10.3389/fonc.2013.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Affiliation(s)
- Manuela Côrte-Real
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho , Braga , Portugal
| | | |
Collapse
|
30
|
Affiliation(s)
- Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|