1
|
Kayal E, Lavrov DV. One Ring does not rule them all: Linear mtDNA in Metazoa. Gene 2025; 933:148999. [PMID: 39396556 DOI: 10.1016/j.gene.2024.148999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in genome sequencing technologies have facilitated the exploration of the architecture of genomes, including mitochondrial genomes (mtDNA). In particular, whole genome sequencing has provided easier access to mitochondrial genomes with unusual organizations, which were difficult to obtain using traditional PCR-based approaches. As a consequence, there has been a steep increase in complete mtDNA sequences, particularly for Metazoa. The popular view of metazoan mtDNA is that of a small gene-dense circular chromosome. This view clashes with discoveries of a number of linear mtDNAs, particularly in non-bilaterian animals. Here, we review the distribution of linear mtDNA in Metazoa, namely in isopods, cnidarians, and sponges. We discuss the multiple origins of linear mitogenomes in these clades, where linearity has been linked to the likely insertion of a linear plasmid in cnidarians and the demosponge Acanthella acuta, while fixation of a heteroplasmy in the anticodon site of a tRNA might be responsible for the monolinear form of the mtDNA in some isopods. We also summarize our current knowledge of mechanisms that maintain the integrity of linear mitochromosomes, where a recurrent theme is the presence of terminal repeats that likely play the role of telomeres. We caution in defining a linear chromosome as complete, particularly when coding sequences and key features of linear DNA are missing. Finally, we encourage authors interested in mitogenome science to utilize all available data for linear mtDNA, including those tagged as "incomplete" or "unverified" in public databases, as they can still provide useful information such as phylogenetic characters and gene order.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Computational Analysis of Short Linear Motifs in the Spike Protein of SARS-CoV-2 Variants Provides Possible Clues into the Immune Hijack and Evasion Mechanisms of Omicron Variant. Int J Mol Sci 2022; 23:ijms23158822. [PMID: 35955954 PMCID: PMC9368778 DOI: 10.3390/ijms23158822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Short linear motifs (SLiMs) are short linear sequences that can mediate protein–protein interaction. Mimicking eukaryotic SLiMs to compete with extra- or intracellular binding partners, or to sequester host proteins is the crucial strategy of viruses to pervert the host system. Evolved proteins in viruses facilitate minimal protein–protein interactions that significantly affect intracellular signaling networks. Unfortunately, very little information about SARS-CoV-2 SLiMs is known, especially across SARS-CoV-2 variants. Through the ELM database-based sequence analysis of spike proteins from all the major SARS-CoV-2 variants, we identified four overriding SLiMs in the SARS-CoV-2 Omicron variant, namely, LIG_TRFH_1, LIG_REV1ctd_RIR_1, LIG_CaM_NSCaTE_8, and MOD_LATS_1. These SLiMs are highly likely to interfere with various immune functions, interact with host intracellular proteins, regulate cellular pathways, and lubricate viral infection and transmission. These cellular interactions possibly serve as potential therapeutic targets for these variants, and this approach can be further exploited to combat emerging SARS-CoV-2 variants.
Collapse
|
5
|
Laugel M, Lecomte E, Ayuso E, Adjali O, Mével M, Penaud-Budloo M. The Diversity of Parvovirus Telomeres. Vet Med Sci 2022. [DOI: 10.5772/intechopen.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parvoviridae are small viruses composed of a 4–6 kb linear single-stranded DNA protected by an icosahedral capsid. The viral genes coding non-structural (NS), capsid, and accessory proteins are flanked by intriguing sequences, namely the telomeres. Telomeres are essential for parvovirus genome replication, encapsidation, and integration. Similar (homotelomeric) or different (heterotelomeric) at the two ends, they all contain imperfect palindromes that fold into hairpin structures. Up to 550 nucleotides in length, they harbor a wide variety of motifs and structures known to be recognized by host cell factors. Our study aims to comprehensively analyze parvovirus ends to better understand the role of these particular sequences in the virus life cycle. Forty Parvoviridae terminal repeats (TR) were publicly available in databases. The folding and specific DNA secondary structures, such as G4 and triplex, were systematically analyzed. A principal component analysis was carried out from the prediction data to determine variables signing parvovirus groups. A special focus will be put on adeno-associated virus (AAV) inverted terminal repeats (ITR), a member of the genus Dependoparvovirus used as vectors for gene therapy. This chapter highlights the diversity of the Parvoviridae telomeres regarding shape and secondary structures, providing information that could be relevant for virus-host interactions studies.
Collapse
|
6
|
Glass MC, Smith JM, Cheng HH, Delany ME. Marek's Disease Virus Telomeric Integration Profiles of Neoplastic Host Tissues Reveal Unbiased Chromosomal Selection and Loss of Cellular Diversity during Tumorigenesis. Genes (Basel) 2021; 12:1630. [PMID: 34681024 PMCID: PMC8536068 DOI: 10.3390/genes12101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
The avian α-herpesvirus known as Marek's disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek's disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of 'MDV telomere-integrated only', and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32-50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51-62 dpi) and establish metastatic lymphomas.
Collapse
Affiliation(s)
- Marla C. Glass
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin M. Smith
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA; (J.M.S.); (M.E.D.)
| | - Hans H. Cheng
- Avian Disease and Oncology Laboratory, United States Department of Agriculture, Agricultural Research Service, East Lansing, MI 48823, USA;
| | - Mary E. Delany
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA; (J.M.S.); (M.E.D.)
| |
Collapse
|
7
|
Metaviral
SPAdes: assembly of viruses from metagenomic data. Bioinformatics 2020; 36:4126-4129. [DOI: 10.1093/bioinformatics/btaa490] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Although the set of currently known viruses has been steadily expanding, only a tiny fraction of the Earth’s virome has been sequenced so far. Shotgun metagenomic sequencing provides an opportunity to reveal novel viruses but faces the computational challenge of identifying viral genomes that are often difficult to detect in metagenomic assemblies.
Results
We describe a MetaviralSPAdes tool for identifying viral genomes in metagenomic assembly graphs that is based on analyzing variations in the coverage depth between viruses and bacterial chromosomes. We benchmarked MetaviralSPAdes on diverse metagenomic datasets, verified our predictions using a set of virus-specific Hidden Markov Models and demonstrated that it improves on the state-of-the-art viral identification pipelines.
Availability and implementation
Metaviral SPAdes includes ViralAssembly, ViralVerify and ViralComplete modules that are available as standalone packages: https://github.com/ablab/spades/tree/metaviral_publication, https://github.com/ablab/viralVerify/ and https://github.com/ablab/viralComplete/.
Contact
d.antipov@spbu.ru
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
|
8
|
R-loop-forming Sequences Analysis in Thousands of Viral Genomes Identify A New Common Element in Herpesviruses. Sci Rep 2020; 10:6389. [PMID: 32286400 PMCID: PMC7156643 DOI: 10.1038/s41598-020-63101-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
R-loops are RNA-DNA hybrid sequences that are emerging players in various biological processes, occurring in both prokaryotic and eukaryotic cells. In viruses, R-loop investigation is limited and functional importance is poorly understood. Here, we performed a computational approach to investigate prevalence, distribution, and location of R-loop forming sequences (RLFS) across more than 6000 viral genomes. A total of 14637 RLFS loci were identified in 1586 viral genomes. Over 70% of RLFS-positive genomes are dsDNA viruses. In the order Herpesvirales, RLFS were presented in all members whereas no RLFS was predicted in the order Ligamenvirales. Analysis of RLFS density in all RLFS-positive genomes revealed unusually high RLFS densities in herpesvirus genomes, with RLFS densities particularly enriched within repeat regions such as the terminal repeats (TRs). RLFS in TRs are positionally conserved between herpesviruses. Validating the computationally-identified RLFS, R-loop formation was experimentally confirmed in the TR and viral Bcl-2 promoter of Kaposi sarcoma-associated herpesvirus (KSHV). These predictions and validations support future analysis of RLFS in regulating the replication, transcription, and genome maintenance of herpesviruses.
Collapse
|
9
|
B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol 2020; 94:JVI.02028-19. [PMID: 31941781 DOI: 10.1128/jvi.02028-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The binding of Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA1) to the latent replication origin (oriP) triggers multiple downstream events to support virus-induced pathogenesis and tumorigenesis. Although EBV is widely recognized as a B-lymphotropic infectious agent, little is known about how tissue-specific factors are involved in the establishment of latency. Here, we showed that EBNA1 binds B cell activator PAX5 to promote EBNA1/oriP-dependent binding and transcription. In addition to showing that short hairpin RNA (shRNA)-mediated PAX5 knockdown substantially abrogated the above EBNA1-dependent functions, two mini-EBV reporter plasmids were used to perform nonlytic nano-luciferase (nLuc) activity and chromatin immunoprecipitation (ChIP) assays to show how EBNA1 cooperates with PAX5 to activate the transcription at the oriP site. The expression plasmids of two PAX5 mutants, V26G (EBNA1 binding mutant) and P80R (which remained EBNA1 associated), were used to assess their capability to restore the defects caused by PAX5 depletion in EBNA1/oriP-mediated binding, transcription, and maintenance of the genome copy number of the mini-EBV episome reporter in BJAB cells stably expressing EBNA1 or that of the EBV genome in EBV-infected BJAB cells. Since p300 is known to be associated with PAX5, we showed that the loss of function of the P80R mutant in support of EBNA1/oriP-mediated transcription under PAX5 depletion conditions was linked to its defective binding to p300. ChIP-quantitative PCR (qPCR) confirmed that P80R indeed failed to recruit p300 to the oriP DNA. Our discovery suggests that EBV has evolved an exquisite strategy to take advantage of tissue-specific factors to enable the establishment of viral latency.IMPORTANCE Although B cells are known to be the primary target for EBV infection, there is limited knowledge regarding the mechanism that determines this preferable tissue tropism. An in-depth understanding of the potential link of tissue-specific factors with the viral genes and their functioning is key to deciphering how EBV induces persistent infection in the distinct types of host cells. In this study, a substantial protein-protein interaction mediated by the B cell-specific activator PAX5 and EBNA1 was identified as the general requirement for the binding of EBNA1 to the latent replication origin and for downstream events. Of importance, the EBNA1-PAX5-p300 network is directly linked to EBNA1-dependent transcription. These findings suggest that targeting the viral gene-associated tissue-specific factors may lead to new therapeutic strategies for EBV-associated malignancies.
Collapse
|
10
|
Liu Z, Goldstein AM, Hsu WL, Yu KJ, Chien YC, Ko JY, Jian JJM, Tsou YA, Leu YS, Liao LJ, Chang YL, Wang CP, Wu JS, Hua CH, Lee JC, Yang TL, Hsiao CK, Wu MS, Tsai MH, Huang KK, Yu K, Jones K, Zhu B, Yeager M, Yu G, Lou PJ, Chen CJ, Hildesheim A. Evaluation of Rare and Common Variants from Suspected Familial or Sporadic Nasopharyngeal Carcinoma (NPC) Susceptibility Genes in Sporadic NPC. Cancer Epidemiol Biomarkers Prev 2019; 28:1682-1686. [PMID: 31270100 DOI: 10.1158/1055-9965.epi-19-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genetic susceptibility is associated with nasopharyngeal carcinoma (NPC). We previously identified rare variants potentially involved in familial NPC and common variants significantly associated with sporadic NPC. METHODS We conducted targeted gene sequencing of 20 genes [16 identified from the study of multiplex families, three identified from a pooled analysis of NPC genome-wide association study (GWAS), and one identified from both studies] among 819 NPC cases and 938 controls from two case-control studies in Taiwan (independent from previous studies). A targeted, multiplex PCR primer panel was designed using the custom Ion AmpliSeq Designer v4.2 targeting the regions of the selected genes. Gene-based and single-variant tests were conducted. RESULTS We found that NPC was associated with combined common and rare variants in CDKN2A/2B (P = 1.3 × 10-4), BRD2 (P = 1.6 × 10-3), TNFRSF19 (P = 4.0 × 10-3), and CLPTM1L/TERT (P = 5.4 × 10-3). Such associations were likely driven by common variants within these genes, based on gene-based analyses evaluating common variants and rare variants separately (e.g., for common variants of CDKN2A/2B, P = 4.6 × 10-4; for rare variants, P = 0.04). We also observed a suggestive association with rare variants in HNRNPU (P = 3.8 × 10-3) for NPC risk. In addition, we validated four previously reported NPC risk-associated SNPs. CONCLUSIONS Our findings confirm previously reported associated variants and suggest that some common variants in genes previously linked to familial NPC are associated with the development of sporadic NPC. IMPACT NPC-associated genes, including CLPTM1L/TERT, BRD2, and HNRNPU, suggest a role for telomere length maintenance in NPC etiology.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wan-Lun Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yin-Chu Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jenq-Yuh Ko
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - James Jer-Min Jian
- Department of Head and Neck Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Yung-An Tsou
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Shing Leu
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Jen Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Liang Chang
- Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Jia-Shing Wu
- Department of Head and Neck Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Jehn-Chuan Lee
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chuhsing Kate Hsiao
- Graduate Institute of Epidemiology and Preventative Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Kuei-Kang Huang
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Kristie Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Guoqin Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
11
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
13
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
14
|
Kamranvar SA, Masucci MG. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses 2017; 9:v9080217. [PMID: 28792435 PMCID: PMC5580474 DOI: 10.3390/v9080217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.
Collapse
Affiliation(s)
- Siamak A Kamranvar
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Knecht H, Mai S. LMP1 and Dynamic Progressive Telomere Dysfunction: A Major Culprit in EBV-Associated Hodgkin's Lymphoma. Viruses 2017; 9:v9070164. [PMID: 28654015 PMCID: PMC5537656 DOI: 10.3390/v9070164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is expressed in germinal-center-derived, mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells in classical EBV-positive Hodgkin's lymphoma (cHL). LMP1 expression in EBV-negative H-cell lines results in a significantly increased number of RS cells. In a conditional, germinal-center-derived B-cell in vitro system, LMP1 reversibly down-regulates the shelterin proteins, telomeric repeat binding factor (TRF)1, TRF2, and protection of telomeres (POT)1. This down-regulation is associated with progressive 3D shelterin disruption, resulting in telomere dysfunction, progression of complex chromosomal rearrangements, and multinuclearity. TRF2 appears to be the key player. Thus, we hypothesize that the 3D interaction of telomeres and TRF2 is disrupted in H cells, and directly associated with the formation of H and RS cells. Using quantitative 3D co-immuno-TRF2-telomere fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) applied to monolayers of primary H and RS cells, we demonstrate TRF2-telomere dysfunction in EBV-positive cHL. However, in EBV-negative cHL a second molecular mechanism characterized by massive up-regulation of TRF2, but attrition of telomere signals, is also identified. These facts point towards a shelterin-related pathogenesis of cHL, where two molecularly disparate mechanisms converge at the level of 3D Telomere-TRF2 interactions, leading to the formation of RS cells.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Haematology, Department of Medicine, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada.
- Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Sabine Mai
- Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
16
|
Piekna-Przybylska D, Sharma G, Maggirwar SB, Bambara RA. Deficiency in DNA damage response, a new characteristic of cells infected with latent HIV-1. Cell Cycle 2017; 16:968-978. [PMID: 28388353 DOI: 10.1080/15384101.2017.1312225] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs). We found that phosphorylation of histone H2AX on Ser139 (gamma-H2AX), a biomarker of DSBs, and phosphorylation of ATM at Ser1981, Chk2 at Thr68, and p53 at Ser15, part of signaling pathways associated with DSBs, are elevated in these cells. These results indicate a DDR defect even though the virus is latent. DDR-inducing agents, specifically high doses of nucleoside RT inhibitors (NRTIs), caused greater increases in gamma-H2AX levels in latently infected cells. Additionally, latently infected cells are more susceptible to long-term exposure to G-quadruplex stabilizing agents, and this effect is enhanced when the agent is combined with an inhibitor targeting DNA-PK, which is crucial for DSB repair and telomere maintenance. Moreover, exposing these cells to the cancer drug etoposide resulted in formation of DSBs at a higher rate than in un-infected cells. Similar effects of etoposide were also observed in population of primary memory T cells infected with latent HIV-1. Sensitivity to these agents highlights a unique vulnerability of latently infected cells, a new feature that could potentially be used in developing therapies to eliminate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Gaurav Sharma
- b Department of Electrical and Computer Engineering , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| |
Collapse
|
17
|
Witzany G. Two genetic codes: Repetitive syntax for active non-coding RNAs; non-repetitive syntax for the DNA archives. Commun Integr Biol 2017; 10:e1297352. [PMID: 29149223 PMCID: PMC5398208 DOI: 10.1080/19420889.2017.1297352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Current knowledge of the RNA world indicates 2 different genetic codes being present throughout the living world. In contrast to non-coding RNAs that are built of repetitive nucleotide syntax, the sequences that serve as templates for proteins share-as main characteristics-a non-repetitive syntax. Whereas non-coding RNAs build groups that serve as regulatory tools in nearly all genetic processes, the coding sections represent the evolutionarily successful function of the genetic information storage medium. This indicates that the differences in their syntax structure are coherent with the differences of the functions they represent. Interestingly, these 2 genetic codes resemble the function of all natural languages, i.e., the repetitive non-coding sequences serve as appropriate tool for organization, coordination and regulation of group behavior, and the non-repetitive coding sequences are for conservation of instrumental constructions, plans, blueprints for complex protein-body architecture. This differentiation may help to better understand RNA group behavioral motifs.
Collapse
|
18
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
19
|
The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly. J Virol 2017; 91:JVI.02110-16. [PMID: 28031366 DOI: 10.1128/jvi.02110-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83-encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis-acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis-acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis-acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process.IMPORTANCE Virus nucleocapsid assembly usually requires specific cis-acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis-acting elements in the viral genome.
Collapse
|
20
|
Reed A, Lin L, Ostertag-Hill C, Wang Q, Wu Z, Miller-Morgan T, Jin L. Detection of ORF6 protein associated with latent KHV infection. Virology 2016; 500:82-90. [PMID: 27771562 DOI: 10.1016/j.virol.2016.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
Koi herpesvirus (KHV) is highly pathogenic to Cyprinus carpio. KHV can also become latent in recovered fish and reactivate from latency under stressful conditions. Understanding KHV latency is important for development of strategies against herpesvirus latent infection. Our previous studies found KHV ORF6 mRNA is detectable during latent infection. In this study, ORF6 protein expression was investigated by a polyclonal antibody specific to ORF6 peptide. Positive staining by an immunofluorescence assay was observed in both KHV infected CCB (common carp brain) cells and IgM+ white blood cells (WBCs) from recovered KHV+ koi. Proteins at the expected size, 68kDa, and several different sizes can be detected during productive infection. Five potential sumoylation sites were identified in the ORF6 protein. Our study demonstrated that ORF6 protein is expressed in both productive infection and latent infection and may have different post-translational modifications during productive infection.
Collapse
Affiliation(s)
- Aimee Reed
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Lin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Claire Ostertag-Hill
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Qing Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Zhixing Wu
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Tim Miller-Morgan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Aquatic Animal Health Program, Oregon Sea Grant, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
21
|
Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 2016; 114:16-27. [PMID: 27595912 DOI: 10.1016/j.ymeth.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Collapse
Affiliation(s)
- Vratislav Peška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
22
|
Crucial steps to life: From chemical reactions to code using agents. Biosystems 2016; 140:49-57. [DOI: 10.1016/j.biosystems.2015.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023]
|
23
|
McPherson MC, Delany ME. Virus and host genomic, molecular, and cellular interactions during Marek's disease pathogenesis and oncogenesis. Poult Sci 2016; 95:412-29. [PMID: 26755654 PMCID: PMC4957504 DOI: 10.3382/ps/pev369] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 01/16/2023] Open
Abstract
Marek's Disease Virus (MDV) is a chicken alphaherpesvirus that causes paralysis, chronic wasting, blindness, and fatal lymphoma development in infected, susceptible host birds. This disease and its protective vaccines are highly relevant research targets, given their enormous impact within the poultry industry. Further, Marek's disease (MD) serves as a valuable model for the investigation of oncogenic viruses and herpesvirus patterns of viral latency and persistence--as pertinent to human health as to poultry health. The objectives of this article are to review MDV interactions with its host from a variety of genomic, molecular, and cellular perspectives. In particular, we focus on cytogenetic studies, which precisely assess the physical status of the MDV genome in the context of the chicken host genome. Combined, the cytogenetic and genomic research indicates that MDV-host genome interactions, specifically integration of the virus into the host telomeres, is a key feature of the virus life cycle, contributing to the viral achievement of latency, transformation, and reactivation of lytic replication. We present a model that outlines the variety of virus-host interactions, at the multiple levels, and with regard to the disease states.
Collapse
Affiliation(s)
- M C McPherson
- Department of Animal Science, University of California, Davis, CA 95616
| | - M E Delany
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
24
|
Avey D, Brewers B, Zhu F. Recent advances in the study of Kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin 2015; 30:130-45. [PMID: 25924994 PMCID: PMC8200917 DOI: 10.1007/s12250-015-3595-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Brittany Brewers
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| |
Collapse
|
25
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
26
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
27
|
Basu N, Skinner HG, Litzelman K, Vanderboom R, Baichoo E, Boardman LA. Telomeres and telomere dynamics: relevance to cancers of the GI tract. Expert Rev Gastroenterol Hepatol 2013; 7:733-48. [PMID: 24161135 PMCID: PMC3892561 DOI: 10.1586/17474124.2013.848790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aberrations in telomere length and telomere maintenance contribute to cancer development. In this article, we review the basic principles of telomere length in normal and tumor tissue and the presence of the two main telomere maintenance pathways as they pertain to gastrointestinal tract cancer. Peripheral blood telomeres are shorter in patients with many types of gastrointestinal tract cancers. Telomere length in tumor DNA also appears to shorten early in cancer development. Tumor telomere shortening is often accompanied by telomerase activation to protect genetically damaged DNA from normal cell senescence or apoptosis, allowing immortalized but damaged DNA to persist. Alternative lengthening of telomeres is another mechanism used by cancer to maintain telomere length in cancer cells. Telomerase and alternative lengthening of telomeres activators and inhibitors may become important chemopreventive or chemotherapeutic agents as our understanding of telomere biology, specific telomere-related phenotypes and its relationship to carcinogenesis increases.
Collapse
Affiliation(s)
- Nivedita Basu
- Division of Gastroenterology and Hepatology Department of Medicine Mayo Clinic 200 First Street SW Rochester, MN 55905 Tel: 507-266-4338; Fax: 507-266-0350
| | - Halcyon G. Skinner
- Department of Population Health Sciences School of Medicine and Public Health University of Wisconsin Madison, WI 53726 Tel: 608-265-4654
| | - Kristin Litzelman
- Department of Population Health Sciences School of Medicine and Public Health University of Wisconsin Madison, WI 53726 Tel: 608-265-4654
| | - Russell Vanderboom
- Division of Gastroenterology and Hepatology Department of Medicine Mayo Clinic 200 First Street SW Rochester, MN 55905 Tel: 507-266-4338; Fax: 507-266-0350
| | - Esha Baichoo
- Division of Gastroenterology and Hepatology Department of Medicine Mayo Clinic 200 First Street SW Rochester, MN 55905 Tel: 507-266-4338; Fax: 507-266-0350
| | - Lisa A. Boardman
- Division of Gastroenterology and Hepatology Department of Medicine Mayo Clinic 200 First Street SW Rochester, MN 55905 Tel: 507-266-4338; Fax: 507-266-0350
| |
Collapse
|
28
|
Knecht H, Righolt C, Mai S. Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin's Lymphoma. Cancers (Basel) 2013; 5:714-25. [PMID: 24216998 PMCID: PMC3730322 DOI: 10.3390/cancers5020714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/27/2022] Open
Abstract
In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at the single cell level has substantially improved our understanding of the molecular pathogenesis of HL. Gene expression profiling, comparative genomic hybridization analysis, micro-RNA expression profiling and viral oncogene sequencing have deepened our knowledge of numerous facets of H- and RS-cell gene expression deregulation. The question remains whether disturbed signaling pathways and deregulated transcription factors are at the origin of refractory/relapsing Hodgkin’s lymphoma or whether these hallmarks are at least partially related to another major factor. We recently showed that the 3D nuclear organization of telomeres and chromosomes marked the transition from H- to RS-cells in HL cell lines. This transition is associated with progression of telomere dysfunction, shelterin disruption and progression of complex chromosomal rearrangements. We reported analogous findings in refractory/relapsing HL and identified the shelterin proteins TRF1, TRF2 and POT1 as targets of the LMP1 oncogene in post-germinal center B-cells. Here we summarize our findings, including data not previously published, and propose a model in which progressive disruption of nuclear integrity, a form of genomic instability, is the key-player in refractory/relapsing HL. Therapeutic approaches should take these findings into account.
Collapse
Affiliation(s)
- Hans Knecht
- Division d'Hématologie, Département de Médecine, CHUS, Université de Sherbrooke, Québec, J1H 5N4, Canada.
| | | | | |
Collapse
|