1
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
2
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
3
|
Seif F, Sharifi L, Khoshmirsafa M, Mojibi Y, Mohsenzadegan M. A Review of Preclinical Experiments Toward Targeting M2 Macrophages in Prostate Cancer. Curr Drug Targets 2020; 20:789-798. [PMID: 30674255 DOI: 10.2174/1389450120666190123141553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer is malignant cancer leading to high mortality in the male population. The existence of suppressive cells referred to as tumor-associated macrophages (TAM) is a major obstacle in prostate cancer immunotherapy. TAMs contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. In fact, they are main regulators of the complicated interactions between tumor and surrounding microenvironment. M2 macrophages, as a type of TAMs, are involved in the growth and progression of prostate cancer. Recently, they have gained remarkable importance as therapeutic candidates for solid tumors. In this review, we will discuss the roles of M2 macrophages and worth of their potential targeting in prostate cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of prostate cancer tumor growth.
Collapse
Affiliation(s)
- Farhad Seif
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Mojibi
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Song JM, Woo BH, Lee JH, Yoon S, Cho Y, Kim YD, Park HR. Oral Administration of Porphyromonas gingivalis, a Major Pathogen of Chronic Periodontitis, Promotes Resistance to Paclitaxel in Mouse Xenografts of Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20102494. [PMID: 31117164 PMCID: PMC6566430 DOI: 10.3390/ijms20102494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is not a first-line therapy for oral squamous cell carcinoma (OSCC), which is the most common type of oral cancer, because most OSCC shows resistance to chemotherapeutic reagents. Inflammatory signals are suggested to be associated with chemoresistance as well as carcinogenesis in many different cancers, and thus chronic periodontitis, the most common chronic inflammatory disease of the oral cavity, could modulate responsiveness to chemotherapeutic agents used against oral cancer. This study was performed to define the role of chronic periodontitis in oral cancer progression and to determine the responsiveness of oral cancer to a chemotherapeutic reagent. First, we quantified the tumor growth rate and changes in serum cytokine profiles of mice administered Porphyromonas gingivalis, a major pathogen of chronic periodontitis. Compared with uninfected mice, the mice that were chronically administered P. gingivalis showed increased resistance to paclitaxel and a decreased tumor growth rate. In addition, P. gingivalis-treated mice exhibited higher serum levels of interleukin-6 (IL-6) than uninfected mice. Furthermore, the sensitivity of tumor xenografts to paclitaxel in mice administered P. gingivalis was dramatically increased when the mice were administered ibuprofen, an anti-inflammatory drug which supports the modulatory effect of periodontal pathogen-induced inflammation in chemoresistance.
Collapse
Affiliation(s)
- Jae Min Song
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Bok Hee Woo
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Sanggyeong Yoon
- Department of Statistics, College of Natural Science, Pusan National University, Busan 46241, Korea.
| | - Youngseuk Cho
- Department of Statistics, College of Natural Science, Pusan National University, Busan 46241, Korea.
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
5
|
Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Sci Rep 2019; 9:5864. [PMID: 30971831 PMCID: PMC6458149 DOI: 10.1038/s41598-019-42357-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 01/12/2023] Open
Abstract
Metformin was shown to sensitize multidrug resistant breast cancer cells; however, the mechanisms involved in this capacity need to be clarified. We investigated oxidative stress and inflammatory-related pathways during the induction of doxorubicin resistance in MCF-7 and MDA-MB-231 human breast cancer cells (DOX-res group), and evaluated metformin-induced cellular responses that resulted in the prevention of doxorubicin resistance (Met-DOX group). Microarray analysis demonstrated that DOX-res changed the expression of genes involved in oxidative stress (OS) and the TGF- β1 pathway. The DOX-res group presented increased thiols and reduced lipoperoxidation, increased levels of nitric oxide, nuclear NF-kB and Nrf2, and reduced nuclear p53 labelling. Analysis of the TGF-β1 signaling pathway by RT-PCR array showed that DOX-res developed adaptive responses, such as resistance against apoptosis and OS. Metformin treatment modified gene expression related to OS and the IFN-α signaling pathway. The Met-DOX group was more sensitive to DOX-induced OS, presented lower levels of nitric oxide, nuclear NF-kB and Nrf2, and increased nuclear p53. Analysis of the IFN-α signaling pathway showed that Met-DOX presented more sensitivity to apoptosis and OS. Our findings indicate that metformin is a promising tool in the prevention of chemoresistance in patients with breast cancer submitted to doxorubicin-based treatments.
Collapse
|
6
|
Woo BH, Kim DJ, Choi JI, Kim SJ, Park BS, Song JM, Lee JH, Park HR. Oral cancer cells sustainedly infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potential. Oncotarget 2018; 8:46981-46992. [PMID: 28388583 PMCID: PMC5564538 DOI: 10.18632/oncotarget.16550] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/03/2017] [Indexed: 12/29/2022] Open
Abstract
Major obstacles to improving the prognosis of patients with oral squamous cell carcinoma (OSCC) are the acquisition of resistance to chemotherapeutic agents and development of metastases. Recently, inflammatory signals are suggested to be one of the most important factors in modulating chemoresistance and establishing metastatic lesions. In addition, epidemiological studies have demonstrated that periodontitis, the most common chronic inflammatory condition of the oral cavity, is closely associated with oral cancer. However, a correlation between chronic periodontitis and chemoresistance/metastasis has not been well established. Herein, we will present our study on whether sustained infection with Porphyromonas gingivalis, a major pathogen of chronic periodontitis, could modify the response of OSCC cells to chemotherapeutic agents and their metastatic capability in vivo. Tumor xenografts composed of P. gingivalis–infected OSCC cells demonstrated a higher resistance to Taxol through Notch1 activation, as compared with uninfected cells. Furthermore, P. gingivalis–infected OSCC cells formed more metastatic foci in the lung than uninfected cells.
Collapse
Affiliation(s)
- Bok Hee Woo
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Da Jeong Kim
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Jeom Il Choi
- Department of Periodontology, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Sung Jo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Bong Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Jae Min Song
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Ji Hye Lee
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea.,Institute of Translational Dental Sciences, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| | - Hae Ryoun Park
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea.,Institute of Translational Dental Sciences, Pusan National University, Mulgeum-up, Yangsan 50612, South Korea
| |
Collapse
|
7
|
Hou C, Li Y, Liu H, Dang M, Qin G, Zhang N, Chen R. Profiling the interactome of protein kinase C ζ by proteomics and bioinformatics. Proteome Sci 2018; 16:5. [PMID: 29491746 PMCID: PMC5828088 DOI: 10.1186/s12953-018-0134-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Protein kinase C ζ (PKCζ), an isoform of the atypical protein kinase C, is a pivotal regulator in cancer. However, the molecular and cellular mechanisms whereby PKCζ regulates tumorigenesis and metastasis are still not fully understood. In this study, proteomics and bioinformatics analyses were performed to establish a protein-protein interaction (PPI) network associated with PKCζ, laying a stepping stone to further understand the diverse biological roles of PKCζ. Methods Protein complexes associated with PKCζ were purified by co-immunoprecipitation from breast cancer cell MDA-MB-231 and identified by LC-MS/MS. Two biological replicates and two technical replicates were analyzed. The observed proteins were filtered using the CRAPome database to eliminate the potential false positives. The proteomics identification results were combined with PPI database search to construct the interactome network. Gene ontology (GO) and pathway analysis were performed by PANTHER database and DAVID. Next, the interaction between PKCζ and protein phosphatase 2 catalytic subunit alpha (PPP2CA) was validated by co-immunoprecipitation, Western blotting and immunofluorescence. Furthermore, the TCGA database and the COSMIC database were used to analyze the expressions of these two proteins in clinical samples. Results The PKCζ centered PPI network containing 178 nodes and 1225 connections was built. Network analysis showed that the identified proteins were significantly associated with several key signaling pathways regulating cancer related cellular processes. Conclusions Through combining the proteomics and bioinformatics analyses, a PKCζ centered PPI network was constructed, providing a more complete picture regarding the biological roles of PKCζ in both cancer regulation and other aspects of cellular biology. Electronic supplementary material The online version of this article (10.1186/s12953-018-0134-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunyu Hou
- 1Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300070 China.,2Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Yuan Li
- 1Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300070 China.,2Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Huiqin Liu
- 1Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300070 China.,2Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Mengjiao Dang
- 3School of Microelectronics, Tianjin University, Tianjin, 300072 China
| | - Guoxuan Qin
- 3School of Microelectronics, Tianjin University, Tianjin, 300072 China
| | - Ning Zhang
- 1Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300070 China.,2Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Ruibing Chen
- 1Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300070 China.,2Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
8
|
Fan HH, Li L, Zhang YM, Yang J, Li MC, Zeng FY, Deng F. PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumour Biol 2017. [PMID: 28631559 DOI: 10.1177/1010428317701442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages are key regulators of the complex interplay between tumor and tumor microenvironment. M2 Macrophages, one type of tumor-associated macrophages, are involved in prostate cancer growth and progression. Protein kinase C zeta has been shown to suppress prostate cancer cell growth, invasion, and metastasis as a tumor suppressor; however, its role in chemotaxis and activation of tumor-associated macrophages remains unclear. Here, we investigated the role of protein kinase C zeta of prostate cancer cells in regulation of macrophage chemotaxis and M2 phenotype activation. Immunohistochemistry was performed to analyze the expression of protein kinase C zeta and the number of CD206+ M2 macrophages in human prostate tissue. Macrophage chemotaxis and polarization were examined using Transwell migration assays and a co-culture system. Quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were used to detect M2 markers, protein kinase C zeta, interleukin-4, and interleukin-10 expression. We found the expression of protein kinase C zeta increased in prostate cancer tissues, especially in the early stage, and was negatively associated with tumor grade and the number of CD206+ macrophages. Inhibition of protein kinase C zeta expression in prostate cancer cells promoted chemotaxis of peripheral macrophages and acquisition of M2 phenotypic features. These results were further supported by the finding that silencing of endogenous protein kinase C zeta promoted the expression of prostate cancer cell-derived interleukin-4 and interleukin-10. These results suggest that protein kinase C zeta plays an important role in reducing infiltration of tumor-associated macrophages and activation of a pro-tumor M2 phenotype, which may constitute an important mechanism by which protein kinase C zeta represses cancer progression.
Collapse
Affiliation(s)
- Hui-Hui Fan
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Li
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Ming Zhang
- 3 Department of Clinical Laboratory, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jie Yang
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mao-Cheng Li
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang-Yin Zeng
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- 4 Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Chang LC, Sang-Ngern M, Pezzuto JM, Ma C. The Daniel K. Inouye College of Pharmacy Scripts: Poha Berry ( Physalis peruviana) with Potential Anti-inflammatory and Cancer Prevention Activities. HAWAI'I JOURNAL OF MEDICINE & PUBLIC HEALTH : A JOURNAL OF ASIA PACIFIC MEDICINE & PUBLIC HEALTH 2016; 75:353-359. [PMID: 27920947 PMCID: PMC5125362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Daniel K. Inouye College of Pharmacy, during a historic event in Spring 2016, graduated the first two students in the Pacific region to earn a PhD in pharmaceutical sciences at the University of Hawai'i at Hilo. The college offers PhD programs in these five disciplines: Cancer Biology, Medicinal Chemistry, Pharmaceutics, Pharmacognosy, and Pharmacology. One of the Pharmacognosy dissertations focused on plant-derived natural products with potential anti-inflammatory and cancer chemopreventive activities. Physalis peruviana (Pp) L. originated in tropical South America. It has become naturalized and is found readily on the Island of Hawai'i. The edible fruits are commonly known as cape gooseberry or poha in Hawai'i. In part of our study, three new withanolides, physaperuvin G (1), physaperuvins I-J (2-3), along with four known withanolides, namely, 4β-hydroxywithanolide E (4), withaperuvin C (5), and physalactone (6), coagulin (7) were isolated from the aerial parts of P. peruviana. In addition, two known compounds, phyperunolide F (8), and withanolide S (9), were isolated and identified from the poha berry fruits. The structures and absolute stereochemistry of new compounds from poha were elucidated by several spectroscopy methods: Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray diffraction, and mass spectrometry analyses. All isolated poha compounds (aerial parts and fruits) were evaluated for their anti-inflammatory activity with lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells, and tumor necrosis factor alpha (TNF-α)-activated nuclear factor-kappa B (NF-κB) with transfected human embryonic kidney cells 293. Most of the isolated natural compounds showed activity with these assays. Additional studies were performed with models of colon cancer. Specifically, 4β-hydroxywithanolide E (4HWE) inhibited the growth of colon cancer monolayer and spheroid cultures. The compound induced cell cycle arrest at low concentrations and apoptosis at higher concentrations. These data suggest the ingestion of poha berries may have some effect on the prevalence of colon cancer. Additionally, poha isolates compounds were evaluated for their growth inhibitory effects with U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbor aberrantly-active signal transducer and activation of transcription 3 (STAT3), compared to normal NIH-3T3 mouse fibroblasts. This work has led to the filing of three provisional patents with the University of Hawai'i Office of Technology Transfer and Economic Development.
Collapse
Affiliation(s)
- Leng Chee Chang
- Associate Professor, Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI (LCC)
| | - Mayuramas Sang-Ngern
- Associate Professor, Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI (LCC)
| | - John M Pezzuto
- Associate Professor, Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI (LCC)
| | - Carolyn Ma
- Dr. Ma is a Board Certified Oncology Pharmacy Specialist with experiences in health systems administration and pharmacy academe
| |
Collapse
|
10
|
Duan Y, Li Z, Cheng S, Chen Y, Zhang L, He J, Liao Q, Yang L, Gong Z, Sun LQ. Nasopharyngeal carcinoma progression is mediated by EBER-triggered inflammation via the RIG-I pathway. Cancer Lett 2015; 361:67-74. [PMID: 25721089 DOI: 10.1016/j.canlet.2015.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
EBERs (EBER1 and EBER2) are suggested to be involved in cellular transformation and tumor growth. Cytoplasmic pattern recognition receptor-RIG-I, which is characterized by the recognition of viral dsRNAs, could efficiently trigger the downstream pathways of innate immunity. Although some previous reports have shown that EBERs and RIG-I associate with hematological malignancies, the role of EBERs-RIG-I signaling in solid tumors remains to be clarified. Here we demonstrate that EBER mediation of the inflammatory response via RIG-I contributes to NPC development in vitro and in vivo. We first verified that the expression level of RIG-I was associated with EBER transcription in a dose-dependent manner in NPC cells and specimens from NPC patients. Furthermore, pro-inflammatory cytokine transcription and release were sharply reduced after RIG-I knockdown compared with the control shRNA group in the presence of EBERs, accompanied by an attenuation of the NF-κB and MAPK signaling pathways. Consequently, the tumor burden was greatly alleviated in the RIG-I knockdown group in a xenograft model. In addition, macrophage colony-stimulating factor (M-CSF) and monocyte chemoattractant protein (MCP-1), which promote the maturation and attraction of tumor-associated macrophages, were stimulated upon the introduction of EBERs, and this upregulation conceivably led to the tumor-promoting subset transition of the macrophages. Taken together, our results reveal that EBERs could promote NPC progression through RIG-I-mediated cancer-related inflammation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma
- Cell Differentiation
- Coculture Techniques
- Cytokines/genetics
- Cytokines/metabolism
- DEAD Box Protein 58
- DEAD-box RNA Helicases/antagonists & inhibitors
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Disease Progression
- Female
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/analysis
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nasopharyngeal Carcinoma
- Nasopharyngeal Neoplasms/immunology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yumei Duan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; The department of pathology of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shiyue Cheng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Chen
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Liao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lifang Yang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Cancer Research Institute, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
11
|
Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nat Commun 2015; 6:6201. [PMID: 25648527 DOI: 10.1038/ncomms7201] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022] Open
Abstract
The common pathological manifestation of cystic fibrosis (CF) is associated with an excessive lung inflammatory response characterized by interleukin-1β accumulation. CF airway epithelial cells show an exacerbated pro-inflammatory response to Pseudomonas aeruginosa; however, it is unclear whether this heightened inflammatory response is intrinsic to cells lacking CF transmembrane conductance regulator (CFTR). Here we demonstrate that the degree and quality of the inflammatory response in CF are supported by P. aeruginosa-dependent mitochondrial perturbation, in which flagellin is the inducer and mitochondrial Ca(2+) uniporter (MCU) is a signal-integrating organelle member for NLRP3 activation and IL-1β and IL-18 processing. Our work elucidates the regulation of the NLRP3 inflammasome by mitochondrial Ca(2+) in the P. aeruginosa-dependent inflammatory response and deepens our understanding of the significance of mitochondria in the Ca(2+)-dependent control of inflammation.
Collapse
|
12
|
Höll M, Koziel R, Schäfer G, Pircher H, Pauck A, Hermann M, Klocker H, Jansen-Dürr P, Sampson N. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog 2015; 55:27-39. [PMID: 25559363 PMCID: PMC4949723 DOI: 10.1002/mc.22255] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/31/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of male cancer death in Western nations. Thus, new treatment modalities are urgently needed. Elevated production of reactive oxygen species (ROS) by NADPH oxidase (Nox) enzymes is implicated in tumorigenesis of the prostate and other tissues. However, the identity of the Nox enzyme(s) involved in prostate carcinogenesis remains largely unknown. Analysis of radical prostatectomy tissue samples and benign and malignant prostate epithelial cell lines identified Nox5 as an abundantly expressed Nox isoform. Consistently, immunohistochemical staining of a human PCa tissue microarray revealed distinct Nox5 expression in epithelial cells of benign and malignant prostatic glands. shRNA‐mediated knockdown of Nox5 impaired proliferation of Nox5‐expressing (PC‐3, LNCaP) but not Nox5‐negative (DU145) PCa cell lines. Similar effects were observed upon ROS ablation via the antioxidant N‐acetylcysteine confirming ROS as the mediators. In addition, Nox5 silencing increased apoptosis of PC‐3 cells. Concomitantly, protein kinase C zeta (PKCζ) protein levels and c‐Jun N‐terminal kinase (JNK) phosphorylation were reduced. Moreover, the effect of Nox5 knockdown on PC‐3 cell proliferation could be mimicked by pharmacological inhibition of JNK. Collectively, these data indicate that Nox5 is expressed at functionally relevant levels in the human prostate and clinical PCa. Moreover, findings herein suggest that Nox5‐derived ROS and subsequent depletion of PKCζ and JNK inactivation play a critical role in modulating intracellular signaling cascades involved in the proliferation and survival of PCa cells. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monika Höll
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander Pauck
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|