1
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Yin C, Chokkakula S, Li J, Li W, Yang W, Chong S, Zhou W, Wu H, Wang C. Unveiling research trends in the prognosis of osteosarcoma: A bibliometric analysis from 2000 to 2022. Heliyon 2024; 10:e27566. [PMID: 38515706 PMCID: PMC10955242 DOI: 10.1016/j.heliyon.2024.e27566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Background Osteosarcoma (OSA) is the most prevalent form of malignant bone tumor in children and adolescents, producing osteoid and immature bone. Numerous high quality studies have been published in the OSA field, however, no bibliometric study related to this area has been reported thus far. Therefore, the present study retrieved the published data from 2000 to 2022 to reveal the dynamics, development trends, hotspots and future directions of the OSA. Methods Publications regard to osteogenic sarcoma and prognosis were searched in the core collection on Web of Science database. The retrieved publications were analyzed by publication years, journals, categories, countries, citations, institutions, authors, keywords and clusters using the two widely available bibliometric visualization tools, VOS viewer (Version 1.6.16), Citespace (Version 6.2. R1). Results A total of 6260 publications related to the current topic were retrieved and analyzed, revealing exponential increase in the number of publications with an improvement in the citations on the OSA over time, in which China and the USA are the most productive nations. Shanghai Jiao Tong University, University of Texas System and Harvard University are prolific institutions, having highest collaboration network. Oncology Letters and Journal of Clinical Oncology are the most productive and the most cited journals respectively. The Wang Y is a prominent author and articles published by Bacci G had the highest number of citations indicating their significant impact in the field. According to keywords analysis, osteosarcoma, expression and metastasis were the most apparent keywords whereas the current research hotspots are biomarker, tumor microenvironment, immunotherapy and DNA methylation. Conclusion Our findings offer valuable information for researchers to understand the current research status and the necessity of future research to mitigate the mortality of the OS patients.
Collapse
Affiliation(s)
- Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, South Korea
| | - Jie Li
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Weiguang Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Siomui Chong
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
- Institute of Collaborative Innovation, University of Macau, Macau, China
- Centro Medico Kong Wan (Macau), Macao, China
| | - Wenzheng Zhou
- Department of Orthopaedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Haiyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Chengbin Wang
- Department of Laboratory Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Eichholz T, Döring M, Giardino S, Gruhn B, Seitz C, Flaadt T, Schwinger W, Ebinger M, Holzer U, Mezger M, Teltschik HM, Sparber-Sauer M, Koscielniak E, Abele M, Handgretinger R, Lang P. Haploidentical hematopoietic stem cell transplantation as individual treatment option in pediatric patients with very high-risk sarcomas. Front Oncol 2023; 13:1064190. [PMID: 36895486 PMCID: PMC9990259 DOI: 10.3389/fonc.2023.1064190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Background Prognosis of children with primary disseminated or metastatic relapsed sarcomas remains dismal despite intensification of conventional therapies including high-dose chemotherapy. Since haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is effective in the treatment of hematological malignancies by mediating a graft versus leukemia effect, we evaluated this approach in pediatric sarcomas as well. Methods Patients with bone Ewing sarcoma or soft tissue sarcoma who received haplo-HSCT as part of clinical trials using CD3+ or TCRα/β+ and CD19+ depletion respectively were evaluated regarding feasibility of treatment and survival. Results We identified 15 patients with primary disseminated disease and 14 with metastatic relapse who were transplanted from a haploidentical donor to improve prognosis. Three-year event-free survival (EFS) was 18,1% and predominantly determined by disease relapse. Survival depended on response to pre-transplant therapy (3y-EFS of patients in complete or very good partial response: 36,4%). However, no patient with metastatic relapse could be rescued. Conclusion Haplo-HSCT for consolidation after conventional therapy seems to be of interest for some, but not for the majority of patients with high-risk pediatric sarcomas. Evaluation of its future use as basis for subsequent humoral or cellular immunotherapies is necessary.
Collapse
Affiliation(s)
- Thomas Eichholz
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Michaela Döring
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Stefano Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology and Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Christian Seitz
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Tim Flaadt
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Wolfgang Schwinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Martin Ebinger
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Ursula Holzer
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Markus Mezger
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Heiko-Manuel Teltschik
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany.,University Tübingen, Medical Faculty, Tübingen, Germany
| | - Ewa Koscielniak
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany.,University Tübingen, Medical Faculty, Tübingen, Germany
| | - Michael Abele
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | | | - Peter Lang
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
4
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
5
|
Pearson H H, Bryan G, Kayum C, Gibson F, Darlington AS. Parent values and preferences underpinning treatment decision-making in poor-prognosis childhood cancer: a scoping review. BMC Pediatr 2022; 22:595. [PMID: 36229792 PMCID: PMC9563461 DOI: 10.1186/s12887-022-03635-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Parents of children who are diagnosed with a poor-prognosis cancer want to be involved in making treatment-related decisions for their child. They often make repeated decisions depending on their child’s response to treatment and can experience decisional regret as a consequence. Understanding parent values and preferences when making treatment-related decisions may help enhance discussions with healthcare professionals and identify additional ways of providing support to this parent population. Objectives To explore parent values and preferences underpinning treatment decision-making for children receiving cancer-directed therapy for a poor prognosis cancer. Methods A scoping review of research literature and systematic reviews from qualitative, quantitative, and mixed methods studies was conducted following Joanna Briggs Institute methodology. Articles which included parents of a child who received cancer-directed therapy for a poor-prognosis childhood cancer, under the age of eighteen years were considered. Four electronic databases were searched (CINAHL, Medline, PsychINFO, Web of Science Core Collections). Reference and citation lists of all included full-text articles were also searched. Summative content analysis was used to synthesise findings and develop themes. Results Twelve articles were included. Parent decision-making was affected by underpinning factors: hope for a cure, fear of their child dying and uncertainty. Influencing factors: opinions of others, child’s wishes, and faith and religion had the potential to inform decision-making processes. Parents valued having enough time, being a good parent and being involved in decision-making. Preferences within these values varied resulting in the potential for conflict and ‘trade-offs’ in making decisions. Conclusions Parent decision-making in poor-prognosis childhood cancer is complex and extends beyond values and preferences. Underpinning factors and values are consistent through the decision-making process with influencing factors and preferences varying between parents. Preferences can conflict when parents want to continue cancer-directed therapy whilst maintaining their child’s quality of life or can change depending on a parents’ cognitive state as they realise cure might be unlikely.
Collapse
Affiliation(s)
- Helen Pearson H
- School of Health Sciences, University of Southampton, Southampton, UK. .,The Oak Centre for Children and Young People, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK.
| | - Gemma Bryan
- School of Health Sciences, University of Surrey, Guildford, Surrey, UK
| | - Catherine Kayum
- Member of the Parent and Carer Group, Patient Public Involvement, London, UK
| | - Faith Gibson
- School of Health Sciences, University of Surrey, Guildford, Surrey, UK.,Centre for Outcomes and Experience Research in Children's Health, Illness and Disability (ORCHID), Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | | |
Collapse
|
6
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
7
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
8
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
9
|
Kim Y, Kim D, Sung WJ, Hong J. High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Front Immunol 2022; 13:837004. [PMID: 35242139 PMCID: PMC8886164 DOI: 10.3389/fimmu.2022.837004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial stromal tumor (EST) is an uncommon and unusual mesenchymal tumor of the uterus characterized by multicolored histopathological, immunohistochemical, and molecular features. The morphology of ESTs is similar to normal endometrial stromal cells during the proliferative phase of the menstrual cycle. ESTs were first classified into benign and malignant based on the number of mitotic cells. However, recently WHO has divided ESTs into four categories: endometrial stromal nodules (ESN), undifferentiated uterine sarcoma (UUS), low-grade endometrial stromal sarcoma (LG-ESS), and high-grade endometrial stromal sarcoma (HG-ESS). HG-ESS is the most malignant of these categories, with poor clinical outcomes compared to other types. With advances in molecular biology, ESTs have been further classified with morphological identification. ESTs, including HG-ESS, is a relatively rare type of cancer, and the therapeutics are not being developed compared to other cancers. However, considering the tumor microenvironment of usual stromal cancers, the advance of immunotherapy shows auspicious outcomes reported in many different stromal tumors and non-identified uterine cancers. These studies show the high possibility of successful immunotherapy in HG-ESS patients in the future. In this review, we are discussing the background of ESTs and the BCOR and the development of HG-ESS by mutations of BCOR or other related genes. Among the gene mutations of HG-ESSs, BCOR shows the most common mutations in different ways. In current tumor therapies, immunotherapy is one of the most effective therapeutic approaches. In order to connect immunotherapy with HG-ESS, the understanding of tumor microenvironment (TME) is required. The TME of HG-ESS shows the mixture of tumor cells, vessels, immune cells and non-malignant stromal cells. Macrophages, neutrophils, dendritic cells and natural killer cells lose their expected functions, but rather show pro-tumoral functions by the matricellular proteins, extracellular matrix and other complicated environment in TME. In order to overcome the current therapeutic limitations of HG-ESS, immunotherapies should be considered in addition to the current surgical strategies. Checkpoint inhibitors, cytokine-based immunotherapies, immune cell therapies are good candidates to be considered as they show promising results in other stromal cancers and uterine cancers, while less studied because of the rarity of ESTs. Based on the advance of knowledge of immune therapies in HG-ESS, the new strategies can also be applied to the current therapies and also in other ESTs.
Collapse
Affiliation(s)
- Youngah Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea.,Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| |
Collapse
|
10
|
de la Nava D, Selvi KM, Alonso MM. Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Front Immunol 2022; 13:866892. [PMID: 35493490 PMCID: PMC9043602 DOI: 10.3389/fimmu.2022.866892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has seen tremendous strides in the last decade, acquiring a prominent position at the forefront of cancer treatment since it has been proven to be efficacious for a wide variety of tumors. Nevertheless, while immunotherapy has changed the paradigm of adult tumor treatment, this progress has not yet been translated to the pediatric solid tumor population. For this reason, alternative curative therapies are urgently needed for the most aggressive pediatric tumors. In recent years, oncolytic virotherapy has consolidated as a feasible strategy for cancer treatment, not only for its tumor-specific effects and safety profile but also for its capacity to trigger an antitumor immune response. This review will summarize the current status of immunovirotherapy to treat cancer, focusing on pediatric solid malignancies. We will revisit previous basic, translational, and clinical research and discuss advances in overcoming the existing barriers and limitations to translate this promising therapeutic as an every-day cancer treatment for the pediatric and young adult populations.
Collapse
Affiliation(s)
- Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kadir Mert Selvi
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
11
|
Fleuren EDG, Terry RL, Meyran D, Omer N, Trapani JA, Haber M, Neeson PJ, Ekert PG. Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors. Biomedicines 2021; 9:1798. [PMID: 34944614 PMCID: PMC8698536 DOI: 10.3390/biomedicines9121798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.
Collapse
Affiliation(s)
- Emmy D. G. Fleuren
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Randwick 2031, Australia
| | - Rachael L. Terry
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Inserm, Université de Paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75475 Paris, France
| | - Natacha Omer
- Translational Innate Immunotherapy, University of Queensland Diamantina Institute (UQDI), Brisbane 4102, Australia;
- Oncology Services Group, Queensland Children’s Hospital, Brisbane 4101, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Randwick 2031, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia
| |
Collapse
|
12
|
Wang Z, Liang J, Jiang S, Zhao G, Lu J, Jiang B. The Effect of miR-138 on the Function of Follicular Helper T Cells and the Differentiation of B Cells in Osteosarcoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2057782. [PMID: 34858518 PMCID: PMC8632467 DOI: 10.1155/2021/2057782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the effect of miR-138 on the function of follicular helper T (Tfh) cells and the differentiation of B cells in osteosarcoma. METHODS Clinically collect peripheral blood from osteosarcoma (OS) patients and healthy volunteers (HC), as well as OS tumor tissues (OS tumor) and adjacent tissues with normal histology (normal group). The CD4+CXCR5+Tfh cells of OS patients were screened and isolated by flow cytometry, and the expression of Tfh cell membrane surface antigens PD-1 and CTLA-4 was detected. In addition, qRT-PCR was used to detect the expression of miR-138 in tissues and Tfh cells, and the correlation relationship between miR-138 and PD-1 and CTLA-4 was analyzed. After interference or overexpression of miR-138 in Tfh cells, coculture with untreated B cells was done, and the levels of IL-10, IL-12, IL-21, and INF-γ in Tfh cell culture medium and the levels of IgM, IgG, and IgA in B cell culture medium after coculture were measured by ELISA. Flow cytometry was used to detect the expression of B cell membrane surface antigens CD27 and CD38 after coculture. RESULTS The rate of PD-1- and CTLA-4 positive cells in the peripheral blood and tissues of the OS group was significantly increased, the expression of miR-138 was significantly reduced, and the expression of miR-138 was negatively correlated with the expression of PD-1 and CTLA-4. In addition, upregulation of miR-138 can lead to a significant increase in the level of IL-10 in the supernatant of Tfh cells and a significant decrease in the levels of IL-12, IL-21, and INF-γ, which in turn leads to increased levels of IgM, IgG, and IgA released by B cells. At the same time, it significantly increases the rate of CD27- and CD38-positive cells and promotes the maturation of B cells. Downregulating miR-138 has the opposite effect. CONCLUSION Downregulating the expression of miR-138 in osteosarcoma can improve the dysfunction of CD4+CXCR5+Tfh cells and promote the differentiation of B cells.
Collapse
Affiliation(s)
- Zhitao Wang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Shandong, China
| | - Jianxiao Liang
- Department of Radiology, Dongying People's Hospital, Shandong, China
| | - Shanyong Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Shandong, China
| | - Gang Zhao
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Shandong, China
| | - Jianshu Lu
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Shandong, China
| | - Baoen Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Shandong, China
| |
Collapse
|
13
|
Suri M, Soni N, Okpaleke N, Yadav S, Shah S, Iqbal Z, Alharbi MG, Kalra HS, Hamid P. A Deep Dive Into the Newest Avenues of Immunotherapy for Pediatric Osteosarcoma: A Systematic Review. Cureus 2021; 13:e18349. [PMID: 34725602 PMCID: PMC8555755 DOI: 10.7759/cureus.18349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer affecting children and young adults, most often occurring at the metaphysis of long bones. At present, treatment with combinations of surgery and chemotherapy for the localized OS has only brought minuscule improvements in prognosis. In comparison, the advanced, metastatic, or recurrent forms of OS are often non-responsive to chemotherapy, adding to the dire need to develop new and efficient therapies. The question of interest investigated in this systematic review is whether immunotherapy can play a meaningful role in improving the clinical outcomes of children with OS. This article aims to summarize the preclinical and clinical research conducted thus far on potential therapeutic avenues for pediatric OS using immunotherapy, including methods like checkpoint inhibition, adoptive cellular therapy with T-cells, chimeric antigen receptor T (CAR-T), and natural killer (NK) cells. It also highlights the influence of the innate and adaptive immune system on the tumor microenvironment, allowing for OS progression and metastasis. This systematic review contains 27 articles and analyses of multiple clinical trials employing immunotherapeutic drugs to 785 osteosarcoma participants and over 243 pediatric patients. The articles were obtained through PubMed, PubMed Central, and ClinicalTrials.gov and individually assessed for quality using the Assessment of Multiple Systematic Reviews (AMSTAR) checklist and the Cochrane risk-of-bias tool. The reviews reveal that immunotherapy's most significant impact on pediatric OS includes combining immune checkpoint blockers with traditional chemotherapy and surgery. However, due to the bimodal distribution of this aggressive malignancy, these studies cannot precisely estimate the overall effect and any potential life-threatening adverse events following therapy in children. Further research is required to fully assess the impact of these immunotherapies, including more extensive multinational clinical trials to focus on the pediatric population.
Collapse
Affiliation(s)
- Megha Suri
- Medicine-Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Soni
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nkiruka Okpaleke
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shikha Yadav
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suchitra Shah
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zafar Iqbal
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed G Alharbi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harjeevan S Kalra
- Internal Medicine/Emergency Medicine/Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Pearson H, Gibson F, Darlington ASE. Parent values and preferences underpinning treatment decision making in poor prognosis childhood cancer: a scoping review protocol. BMJ Open 2021; 11:e046284. [PMID: 33986060 PMCID: PMC8126319 DOI: 10.1136/bmjopen-2020-046284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Parents of a child with cancer want to be involved in making treatment decisions for their child. Underpinning and informing these decisions are parents' individual values and preferences. Parents of a child who has a poor prognosis cancer and who subsequently dies can experience decisional regret. To support parents, and potentially reduce decisional regret, identifying the values and preferences of parents who are making these treatment decisions may enhance the support that can be provided by healthcare professionals. An increased understanding will support future work in this area and identify research gaps that could strengthen support strategies in clinical practice. The aim of this scoping review is to explore parent values and preferences underpinning treatment decision making when their child is receiving cancer-directed therapy for a poor prognosis cancer. METHODS AND ANALYSIS The Joanna Briggs Institute scoping review methodology will be followed. An initial database search of CINHAL and MEDLINE will be conducted to analyse the keywords using subject headings and Medical Subject Headings terms. Articles will be initially screened on title and abstract. The reference and citation lists of the full-text articles to be included will be searched using Web of Science. Articles will be independently reviewed by two reviewers and any discrepancies discussed with a third reviewer. Data extracted will be presented in tabular, diagrams and descriptive summaries. ETHICS AND DISSEMINATION Ethical approval is not required for this scoping review. This review will inform further research with parents to understand their values and preferences when making repeated treatment decisions when their child has a poor prognosis cancer. All outputs will be disseminated through peer-reviewed publications and conference presentations.This scoping review is registered on the Open Science Framework (https://osf.io/n7j9f).
Collapse
Affiliation(s)
- Helen Pearson
- Royal Marsden NHS Foundation Trust, London, UK
- Faculty of Medicine Health and Life Sciences, University of Southampton, Southampton, UK
| | - Faith Gibson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | | |
Collapse
|
15
|
Hennessy M, Wahba A, Felix K, Cabrera M, Segura MG, Kundra V, Ravoori MK, Stewart J, Kleinerman ES, Jensen VB, Gopalakrishnan V, Pena R, Quach P, Kim G, Kivimäe S, Madakamutil L, Overwijk WW, Zalevsky J, Gordon N. Bempegaldesleukin (BEMPEG; NKTR-214) efficacy as a single agent and in combination with checkpoint-inhibitor therapy in mouse models of osteosarcoma. Int J Cancer 2021; 148:1928-1937. [PMID: 33152115 PMCID: PMC7984260 DOI: 10.1002/ijc.33382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/04/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022]
Abstract
Survival of patients with relapsed/refractory osteosarcoma has not improved in the last 30 years. Several immunotherapeutic approaches have shown benefit in murine osteosarcoma models, including the anti-programmed death-1 (anti-PD-1) and anti-cytotoxic T-lymphocyte antigen-4 (anti-CTLA-4) immune checkpoint inhibitors. Treatment with the T-cell growth factor interleukin-2 (IL-2) has shown some clinical benefit but has limitations due to poor tolerability. Therefore, we evaluated the efficacy of bempegaldesleukin (BEMPEG; NKTR-214), a first-in-class CD122-preferential IL-2 pathway agonist, alone and in combination with anti-PD-1 or anti-CTLA-4 immune checkpoint inhibitors in metastatic and orthotopic murine models of osteosarcoma. Treatment with BEMPEG delayed tumor growth and increased overall survival of mice with K7M2-WT osteosarcoma pulmonary metastases. BEMPEG also inhibited primary tumor growth and metastatic relapse in lungs and bone in the K7M3 orthotopic osteosarcoma mouse model. In addition, it enhanced therapeutic activity of anti-CTLA-4 and anti-PD-1 checkpoint blockade in the DLM8 subcutaneous murine osteosarcoma model. Finally, BEMPEG strongly increased accumulation of intratumoral effector T cells and natural killer cells, but not T-regulatory cells, resulting in improved effector:inhibitory cell ratios. Collectively, these data in multiple murine models of osteosarcoma provide a path toward clinical evaluation of BEMPEG-based regimens in human osteosarcoma.
Collapse
Affiliation(s)
| | - Andrew Wahba
- Children's Memorial Hermann HospitalUT Health Science CenterHoustonTexasUSA
| | - Kumar Felix
- Department of Pharmaceutical SciencesHampton UniversityHamptonVirginiaUSA
| | - Mariella Cabrera
- Department of PediatricsLincoln Medical and Mental Health CenterNew YorkNew YorkUSA
| | | | - Vikas Kundra
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Murali K. Ravoori
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John Stewart
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Eugenie S. Kleinerman
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vanessa Behrana Jensen
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Phi Quach
- Nektar TherapeuticsSan FranciscoCaliforniaUSA
| | - Grace Kim
- Nektar TherapeuticsSan FranciscoCaliforniaUSA
- Verge GenomicsSouth San FranciscoCaliforniaUSA
| | | | - Loui Madakamutil
- Nektar TherapeuticsSan FranciscoCaliforniaUSA
- InvivoscribeSan DiegoCAUSA
| | | | | | - Nancy Gordon
- Division of Pediatrics, Department of Pediatrics ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
16
|
Nakata E, Fujiwara T, Kunisada T, Ito T, Takihira S, Ozaki T. Immunotherapy for sarcomas. Jpn J Clin Oncol 2021; 51:523-537. [PMID: 33611603 DOI: 10.1093/jjco/hyab005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a heterogeneous group of malignancies of mesenchymal origin; their molecular and genomic mechanisms differ with regard to histology. These characteristics lead to the presentation of varied immunological profiles based on the tumor microenvironment. Various immunotherapies are considered for the treatment of sarcoma. These treatments are performed either in isolation or in combination with other methods such as cytotoxic chemotherapy or the use of molecular target agents. Among these, two recently emerging immunotherapies include T-cell receptor gene therapy and immune checkpoint inhibitor therapy, which are expected to be effective for many types of sarcoma. A sarcoma with a disease-specific translocation and a limited number of mutations, such as synovial sarcoma, expresses high levels of self-antigens, like the New York esophageal squamous cell carcinoma 1, which has been targeted in T-cell receptor gene therapy. On the other hand, sarcomas with a greater number of mutations, such as undifferentiated pleomorphic sarcomas, myxofibrosarcoma and dedifferentiated liposarcomas, can be good candidates for immune checkpoint inhibitors. Among immune checkpoint inhibitor therapies, programmed cell death-1 blockade (nivolumab and pembrolizumab) and cytotoxic T-lymphocyte-associated antigen 4 blockade (ipilimumab) have been investigated most often in sarcoma. Although the sole use of immune checkpoint inhibitors provides limited efficacy, combined immunotherapy with immune checkpoint inhibitors or molecular target agents, especially antiangiogenic agents, has shown moderate results against some types of sarcoma, such as the alveolar soft part sarcoma. Several clinical trials utilizing immunotherapy, including T-cell receptor gene therapy and immune checkpoint inhibitors, in sarcomas are under progress. By clarifying the tumor microenvironment and biomarker-predictive capacity of immunotherapy in sarcomas, better clinical trials can be designed; this could lead to improved outcomes for immunotherapy in sarcoma.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Tastuo Ito
- Department of Hygiene, Kawasaki Medical University, Kurashiki City, Okayama, Japan
| | - Shota Takihira
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| |
Collapse
|
17
|
Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett 2020; 500:1-10. [PMID: 33359211 DOI: 10.1016/j.canlet.2020.12.024] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone and has a high propensity for local invasion and metastasis. Although combining surgery with chemotherapy has immensely improved the outcomes of osteosarcoma patients, the prognosis of metastatic or recurrent osteosarcomas is still unsatisfactory. Immunotherapy has proven to be a promising therapeutic strategy against human malignancies and improved understanding of the immune response to OS, and biomarker development has increased the number of patients who benefit from immunotherapies in recent years. Here, we review recent advances in immunotherapy in osteosarcoma and discuss the mechanisms and status of immunotherapies in both preclinical and clinical trials as well as future therapies on the horizon. These advances may pave the way for novel treatments requisite for patients with osteosarcoma in need of new therapies.
Collapse
|
18
|
Koo J, Hayashi M, Verneris MR, Lee-Sherick AB. Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Front Oncol 2020; 10:581107. [PMID: 33381449 PMCID: PMC7769312 DOI: 10.3389/fonc.2020.581107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
For many pediatric sarcoma patients, multi-modal therapy including chemotherapy, radiation, and surgery is sufficient to cure their disease. However, event-free and overall survival rates for patients with more advanced disease are grim, necessitating the development of novel therapeutic approaches. Within many pediatric sarcomas, the normal immune response, including recognition and destruction of cancer cells, is lost due to the highly immune suppressive tumor microenvironment (TME). In this setting, tumor cells evade immune detection and capitalize on the immune suppressed microenvironment, leading to unchecked proliferation and metastasis. Recent preclinical and clinical approaches are aimed at understanding this immune suppressive microenvironment and employing cancer immunotherapy in an attempt to overcome this, by renewing the ability of the immune system to recognize and destroy cancer cells. While there are several factors that drive the attenuation of immune responses in the sarcoma TME, one of the most remarkable are tumor associated macrophage (TAMs). TAMs suppress immune cytolytic function, promote tumor growth and metastases, and are generally associated with a poor prognosis in most pediatric sarcoma subtypes. In this review, we summarize the mechanisms underlying TAM-facilitated immune evasion and tumorigenesis and discuss the potential therapeutic application of TAM-focused drugs in the treatment of pediatric sarcomas.
Collapse
Affiliation(s)
- Jane Koo
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Masanori Hayashi
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Michael R Verneris
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Alisa B Lee-Sherick
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
19
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Recent Advances and Challenges in the Treatment of Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12071758. [PMID: 32630642 PMCID: PMC7409313 DOI: 10.3390/cancers12071758] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma, the most common soft tissue sarcoma noted in childhood, requires multimodality treatment, including chemotherapy, surgical resection, and/or radiation therapy. The majority of the patients with localized rhabdomyosarcoma can be cured; however, the long-term outcomes in patients with metastatic rhabdomyosarcoma remain poor. The standard chemotherapy regimen for patients with rhabdomyosarcoma is the combination of vincristine, actinomycin, and cyclophosphamide/ifosfamide. In recent clinical trials, modifications of the standard chemotherapy protocol have shown improvements in the outcomes in patients with rhabdomyosarcoma. In various type of malignancies, new treatments, such as molecular targeted drugs and immunotherapies, have shown superior clinical outcomes compared to those of standard treatments. Therefore, it is necessary to assess the benefits of these treatments in patients with rhabdomyosarcoma. Moreover, recent basic and clinical studies on rhabdomyosarcoma have reported promising therapeutic targets and novel therapeutic approaches. This article reviews the recent challenges and advances in the management of rhabdomyosarcoma.
Collapse
|
20
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Wedekind MF, Cripe TP. Oncolytic Viruses and Their Potential as a Therapeutic Opportunity in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:77-89. [PMID: 32767235 DOI: 10.1007/978-3-030-43085-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma remains an unmet medical need. Oncolytic viruses are gaining traction as novel cancer therapeutics. These viruses are either naturally nonpathogenic or engineered to be safe by specific genetic deletions yet retain the ability to infect and kill human cancer cells and elicit anticancer immunity. Some versions are being specifically designed and tested in patients with osteosarcoma, though due to their generalized mechanism of action most are being tested in patients across a broad range of cancer types. The activity of these viruses is impacted not only by the susceptibility of tumor cells to infection but also by the tumor microenvironment (TME) and by tumor immunogenicity. Here we review the field of oncolytic viruses with a particular emphasis on highlighting any available data in preclinical osteosarcoma models or in patients with osteosarcoma. While in general the viruses have been shown safe to administer to patients by a variety of routes, their therapeutic efficacy to date has been limited. Given the low rate of adverse events and the likely absence of long-term side effects, the utility of oncolytic viruses will most likely be realized when used in combination with other agents.
Collapse
Affiliation(s)
| | - Timothy P Cripe
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
NFIL3 Acts as a Nuclear Factor to Increase Osteosarcoma Progression. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4068521. [PMID: 31886210 PMCID: PMC6907048 DOI: 10.1155/2019/4068521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022]
Abstract
Purpose Osteosarcoma is one of the most common primary malignant, aggressive bone neoplasms. However, the mechanisms of osteosarcoma proliferation, migration, and invasion are not well understood. To explore the possible mechanism of osteosarcoma progression, we used a public database for gene analysis to identify the possible factors that are important in osteosarcoma progression. Nuclear factor interleukin 3 (NFIL3) regulated was highly expressed in sarcoma tissues. In this study, we meant to probe the function of NFIL3 in osteosarcoma proliferation, migration, and invasion. Methods The expression of NFIL3 in osteosarcoma tissues was analysed via RT-PCR and immunohistochemistry staining. In order to elucidate the function of NFIL3 in osteosarcoma, we performed cell growth assays and colony formation assays to explore the role of NFIL3 in proliferation in osteosarcoma cells. Futhermore, we analysed osteosarcoma cell migration and invasion via wound healing assays and transwell migration and invasion assays. Results NFIL3 is overexpressed in osteosarcoma tissues; 15 of the 20 osteosarcoma tissues analysed highly expressed NFIL3. Our in vitro experiments confirmed that NFIL3 promoted the proliferation of M6-63 and SaOS2 cells (P < 0.01). In addition, NFIL3 promoted the migration and invasion of osteosarcoma cells (P < 0.05). Conclusion NFIL3 is highly expressed in osteosarcoma tissues and thus promotes the proliferation, migration, and invasion of osteosarcoma cells. NFIL3 is potential to become a new target for development of novel treatment strategies of osteosarcoma.
Collapse
|
23
|
Elimination of Osteosarcoma by Necroptosis with Graphene Oxide-Associated Anti-HER2 Antibodies. Int J Mol Sci 2019; 20:ijms20184360. [PMID: 31491952 PMCID: PMC6770144 DOI: 10.3390/ijms20184360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
The prognosis for non-resectable or recurrent osteosarcoma (OS) remains poor. The finding that the majority of OS overexpress the protooncogene HER2 raises the possibility of using HER2 as a therapeutic target. However, clinical trials on the anti-HER2 antibody trastuzumab (TRA) in treating OS find no therapeutic benefit. HER2 overexpression in OS is not generally associated with gene amplification, with low-level expression regarded as HER2 “negative”, as per criteria used to classify breast cancer HER2 status. Nevertheless, active HER2-targeting approaches, such as virus-based HER2 vaccines or CAR-T cells have generated promising results. More recently, it has been found that the noncovalent association of TRA with nanomaterial graphene oxide (GO) generates stable TRA/GO complexes capable of rapidly killing OS cells. TRA/GO induces oxidative stress and strong HER2 signaling to elicit immediate degradation of both cIAP (cellular inhibitor of apoptosis protein) and caspase 8, leading to activation of necroptosis. This is an attractive mechanism of cancer cell death as chemo/apoptosis-resistant tumors may remain susceptible to necroptosis. In addition, necroptosis is potentially immunogenic to promote tumor immunity, as opposed to apoptosis that tends to silence tumor immunity. Currently, no established anticancer therapeutics are known to eliminate cancers by necroptosis. The aim of this article is to review the rationale and mechanisms of TRA/GO-mediated cytotoxicity.
Collapse
|
24
|
Kiselevskii MV, Anisimova NY, Sitdikova SM, Donenko FV, Popilyuk SF, L'vov VL, Kalyuzhin OV. A Combination of Muramylpeptides from Gram-Negative Bacteria Corrects Hematological and Immunological Disorders Induced by Cyclophosphamide. Bull Exp Biol Med 2019; 167:371-374. [PMID: 31346878 DOI: 10.1007/s10517-019-04529-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/25/2022]
Abstract
We have studied the effect of a combination of three natural muramylpeptides containing a meso-diaminopimelic acid residue (polyramyl) on the subpopulations of circulating T cells, spleen morphology, and leukocyte level in the blood of C57Bl/6 mice with cyclophosphamideinduced immunosuppression. Intraperitoneal injections of cyclophosphamide in a dose of 100 mg/kg on days 1, 3, 5, and 7 of the experiment reduced leukocyte count and the relative number of CD4+ T cells in the blood, and also depleted the cellular composition of splenic white pulp on day 10. Subcutaneous injections of polyramyl in a dose of 200 μg/mouse on days 8 and 9 practically completely restored blood leukocytes count and morphology of the splenic white pulp. Moreover, administration of polyramyl induced marked tendency to increase in the relative number of CD4+ T cells and CD4/CD8 ratio in mice with cyclophosphamideinduced immunosuppression.
Collapse
Affiliation(s)
- M V Kiselevskii
- Laboratory of Cellular Immunity, N. N. Blokhin National Medical Research Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N Yu Anisimova
- Laboratory of Cellular Immunity, N. N. Blokhin National Medical Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S M Sitdikova
- Laboratory of Cellular Immunity, N. N. Blokhin National Medical Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - F V Donenko
- Laboratory of Cellular Immunity, N. N. Blokhin National Medical Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S F Popilyuk
- CORUS Pharma Company, Resident of Biomedical Technologies Cluster, Skolkovo Foundation, Skolkovo, Moscow Region, Russia
| | - V L L'vov
- Laboratory No. 16 for Preparatory Biochemistry of Antigens, State Research Center Institute of Immunology, Federal Medial-Biological Agency, Volokolamsk, Russia
| | - O V Kalyuzhin
- Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
25
|
Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 2019. [PMID: 30508092 DOI: 10.1093/intimm/dxy079.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CD11b+ myeloid subpopulations, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), play crucial roles in the suppression of T-cell-mediated anti-tumor immunity. Regulation of these cell types is a primary goal for achieving efficient cancer immunotherapy. We found that metformin (Met) induces CD11b+-cell-mediated growth inhibition of a K7M2neo osteosarcoma independent of T cells, as growth inhibition of K7M2neo was still observed in wild-type (WT) mice depleted of T cells by antibodies and in SCID; this contrasted with the effect of Met on Meth A fibrosarcoma, which was entirely T-cell-dependent. Moreover, the inhibitory effect seen in SCID was abrogated by anti-CD11b antibody injection. PMN-MDSCs were significantly reduced in both spleens and tumors following Met treatment. In TAMs, production of IL-12 and TNF-α, but not IL-10, became apparent, and elevation of MHC class II with reduction of CD206 was observed, indicating a shift from an M2- to M1-like phenotype via Met administration. Metabolically, Met treatment decreased basal respiration and the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio of CD11b+ cells in tumors, but not in the spleen. In addition, decreased reactive oxygen species (ROS) production and proton leakage in MDSCs and TAMs were consistently observed in tumors. Uptake of both 2-deoxy-2-d-glucose (2-NBDG) and BODIPY® decreased in MDSCs, but only BODIPY® incorporation was decreased in TAMs. Overall, our results suggest that Met redirects the metabolism of CD11b+ cells to lower oxidative phosphorylation (OXPHOS) while elevating glycolysis, thereby pushing the microenvironment to a state that inhibits the growth of certain tumors.
Collapse
|
26
|
Uehara T, Eikawa S, Nishida M, Kunisada Y, Yoshida A, Fujiwara T, Kunisada T, Ozaki T, Udono H. Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 2019; 31:187-198. [PMID: 30508092 PMCID: PMC6440441 DOI: 10.1093/intimm/dxy079] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
CD11b+ myeloid subpopulations, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), play crucial roles in the suppression of T-cell-mediated anti-tumor immunity. Regulation of these cell types is a primary goal for achieving efficient cancer immunotherapy. We found that metformin (Met) induces CD11b+-cell-mediated growth inhibition of a K7M2neo osteosarcoma independent of T cells, as growth inhibition of K7M2neo was still observed in wild-type (WT) mice depleted of T cells by antibodies and in SCID; this contrasted with the effect of Met on Meth A fibrosarcoma, which was entirely T-cell-dependent. Moreover, the inhibitory effect seen in SCID was abrogated by anti-CD11b antibody injection. PMN-MDSCs were significantly reduced in both spleens and tumors following Met treatment. In TAMs, production of IL-12 and TNF-α, but not IL-10, became apparent, and elevation of MHC class II with reduction of CD206 was observed, indicating a shift from an M2- to M1-like phenotype via Met administration. Metabolically, Met treatment decreased basal respiration and the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio of CD11b+ cells in tumors, but not in the spleen. In addition, decreased reactive oxygen species (ROS) production and proton leakage in MDSCs and TAMs were consistently observed in tumors. Uptake of both 2-deoxy-2-d-glucose (2-NBDG) and BODIPY® decreased in MDSCs, but only BODIPY® incorporation was decreased in TAMs. Overall, our results suggest that Met redirects the metabolism of CD11b+ cells to lower oxidative phosphorylation (OXPHOS) while elevating glycolysis, thereby pushing the microenvironment to a state that inhibits the growth of certain tumors.
Collapse
Affiliation(s)
- Takenori Uehara
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shingo Eikawa
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Mikako Nishida
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yuki Kunisada
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Toshiyuki Kunisada
- Medical Materials for Musculoskeletal Reconstitution, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
27
|
Fan TM, Selting KA. Exploring the Potential Utility of Pet Dogs With Cancer for Studying Radiation-Induced Immunogenic Cell Death Strategies. Front Oncol 2019; 8:680. [PMID: 30697532 PMCID: PMC6340932 DOI: 10.3389/fonc.2018.00680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy serves as a foundational pillar for the therapeutic management of diverse solid tumors through the generation of lethal DNA damage and induction of cell death. While the direct cytotoxic effects of radiation therapy remain a cornerstone for cancer management, in the era of immunooncology there is renewed and focused interest in exploiting the indirect bystander activities of radiation, termed abscopal effects. In radioimmunobiologic terms, abscopal effects describe the radiotherapy-induced regression of cancerous lesions distant from the primary site of radiation delivery and rely upon the induction of immunogenic cell death and consequent systemic anticancer immune activation. Despite the promise of radiation therapy for awaking potent anticancer immune responses, the purposeful harnessing of abscopal effects with radiotherapy remain clinically elusive. In part, failure to fully leverage and clinically implement the promise of radiation-induced abscopal effects stems from limitations associated with existing conventional tumor models which inadequately recapitulate the complexity of malignant transformation and the dynamic nature of tumor immune surveillance. To supplement this existing gap in modeling systems, pet dogs diagnosed with solid tumors including melanoma and osteosarcoma, which are both metastatic and immunogenic in nature, could potentially serve as unique resources for exploring the fundamental underpinnings required for maximizing radiation-induced abscopal effects. Given the spontaneous course of cancer development in the context of operative immune mechanisms, pet dogs treated with radiotherapy for metastatic solid tumors might be leveraged as valuable model systems for realizing the science and best clinical practices necessary to generate potent abscopal effects with anti-metastatic immune activities.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| | - Kimberly A Selting
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| |
Collapse
|
28
|
Yu R, Mai Y, Zhao Y, Hou Y, Liu Y, Yang J. Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy. J Drug Target 2018; 27:780-789. [PMID: 30589361 DOI: 10.1080/1061186x.2018.1547734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes are versatile delivery systems and immunological adjuvants that not only can load various antigens, such as proteins, peptides, nucleic acids and carbohydrates, but also can combine them with immunostimulators. Liposomes have great potential in the development of new types of vaccines, and much effort has been devoted to enhancing vaccine efficacy in recent years. Different types of immune cells such as macrophages and dendritic cells play an important role in the immune response and in preventing or treating cancer, allergy or many other infectious diseases. Targeting liposome-based delivery systems to certain immune cells and organs is one of the most effective measures in such treatments. Extensive research has shown that liposomes combined with immunostimulators or modified with pattern recognition receptor ligands can target various immune cells and the lymphatic system, thus not only inducing and promoting the desired immune response but also decreasing adverse effects throughout the body and avoiding targeting irrelevant cell types or tissues. Therefore, in this review, we outline some targeting strategies that can be adopted in the design of liposomal vaccines to improve vaccine efficacy, and we summarise the related liposome-based vaccine applications in several diseases. These applications have great potential to treat or prevent some infectious and intractable diseases.
Collapse
Affiliation(s)
- Rui Yu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yaping Mai
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yue Zhao
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yanhui Hou
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yanhua Liu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Jianhong Yang
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| |
Collapse
|
29
|
Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr Blood Cancer 2018; 65:e27227. [PMID: 29923370 DOI: 10.1002/pbc.27227] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is the most common bone tumor in children and young adults, with few advances in survival and treatment, especially for metastatic disease, in the last 30 years. Recently, immunotherapy has begun to show promise in various adult cancers, but the utility of this approach for osteosarcoma remains relatively unexplored. In this review, we outline the mechanisms and status of immunotherapies currently in clinical trials as well as future therapies on the horizon, and discuss their potential application for osteosarcoma.
Collapse
Affiliation(s)
- Mary F Wedekind
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Lars M Wagner
- Division of Hematology-Oncology, Department of Pediatrics, Kentucky Children's Hospital, Lexington, Kentucky
| | - Timothy P Cripe
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
30
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
31
|
Suzuki M, Kushner BH, Kramer K, Basu EM, Roberts SS, Hammond WJ, LaQuaglia MP, Wolden SL, Cheung NKV, Modak S. Treatment and outcome of adult-onset neuroblastoma. Int J Cancer 2018; 143:1249-1258. [PMID: 29574715 DOI: 10.1002/ijc.31399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
Adult-onset neuroblastoma is rare and little is known about its biology and clinical course. There is no established therapy for adult-onset neuroblastoma. Anti-GD2 immunotherapy is now standard therapy in children with high-risk neuroblastoma; however, its use has not been reported in adults. Forty-four adults (18-71 years old) diagnosed with neuroblastoma between 1979 and 2015 were treated at Memorial Sloan Kettering Cancer Center. Five, 1, 5 and 33 patients had INSS stage 1, 2, 3 and 4 diseases, respectively. Genetic abnormalities included somatic ATRX (58%) and ALK mutations (42%) but not MYCN-amplification. In the 11 patients with locoregional disease, 10-year progression-free (PFS) and overall survival (OS) was 35.4 ± 16.1% and 61.4 ± 15.3%, respectively. Among 33 adults with stage 4 neuroblastoma, 7 (21%) achieved complete response (CR) after induction chemotherapy and/or surgery. Seven patients with primary refractory neuroblastoma (all with osteomedullary but no soft tissue disease) received anti-GD2 antibodies, mouse or humanized 3F8. Antibody-related adverse events were similar to those in children, response rate being 71.4%. In patients with stage 4 disease at diagnosis, 5-year PFS was 9.7± 5.3% and most patients who were alive with disease at 5 years died of neuroblastoma over the next 5 years, 10-year OS being only 19.0 ± 8.2%. Patients who achieved CR after induction had superior PFS and OS (p = 0.006, p = 0.031, respectively). Adult-onset neuroblastoma appeared to have different biology from pediatric or adolescent NB, and poorer outcome. Complete disease control appeared to improve long-term survival. Anti-GD2 immunotherapy was well tolerated and might be beneficial.
Collapse
Affiliation(s)
- Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William J Hammond
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
32
|
Verzella D, Bennett J, Fischietti M, Thotakura AK, Recordati C, Pasqualini F, Capece D, Vecchiotti D, D'Andrea D, Di Francesco B, De Maglie M, Begalli F, Tornatore L, Papa S, Lawrence T, Forbes SJ, Sica A, Alesse E, Zazzeroni F, Franzoso G. GADD45β Loss Ablates Innate Immunosuppression in Cancer. Cancer Res 2018; 78:1275-1292. [PMID: 29279355 PMCID: PMC5935595 DOI: 10.1158/0008-5472.can-17-1833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022]
Abstract
T-cell exclusion from the tumor microenvironment (TME) is a major barrier to overcoming immune escape. Here, we identify a myeloid-intrinsic mechanism governed by the NF-κB effector molecule GADD45β that restricts tumor-associated inflammation and T-cell trafficking into tumors. In various models of solid cancers refractory to immunotherapies, including hepatocellular carcinoma and ovarian adenocarcinoma, Gadd45b inhibition in myeloid cells restored activation of proinflammatory tumor-associated macrophages (TAM) and intratumoral immune infiltration, thereby diminishing oncogenesis. Our results provide a basis to interpret clinical evidence that elevated expression of GADD45B confers poor clinical outcomes in most human cancers. Furthermore, they suggest a therapeutic target in GADD45β for reprogramming TAM to overcome immunosuppression and T-cell exclusion from the TME.Significance: These findings define a myeloid-based immune checkpoint that restricts T-cell trafficking into tumors, with potentially important therapeutic implications to generally improve the efficacy of cancer immunotherapy. Cancer Res; 78(5); 1275-92. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Female
- Humans
- Immune Tolerance/immunology
- Immunosuppression Therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tumor Cells, Cultured
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mariafausta Fischietti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anil K Thotakura
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Camilla Recordati
- Mouse & Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Fabio Pasqualini
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Salvatore Papa
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
- Current address: Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, United Kingdom
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonio Sica
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
33
|
Abstract
Cancer immunotherapies, widely heralded as transformational for many adult cancer patients, are becoming viable options for selected subsets of pediatric cancer patients. Many therapies are currently being investigated, from immunomodulatory agents to adoptive cell therapy, bispecific T-cell engagers, oncolytic virotherapy, and checkpoint inhibition. One of the most exciting immunotherapies recently FDA approved is the use of CD19 chimeric antigen receptor T cells for pre-B-cell acute lymphoblastic leukemia. With this approval and others, immunotherapy for pediatric cancers is gaining traction. One of the caveats to many of these immunotherapies is the challenge of predictive biomarkers; determining which patients will respond to a given therapy is not yet possible. Much research is being focused on which biomarkers will be predictive and prognostic for these patients. Despite many benefits of immunotherapy, including less long-term side effects, some treatments are fraught with immediate side effects that range from mild to severe, although most are manageable. With few downsides and the potential for disease cures, immunotherapy in the pediatric population has the potential to move to the front-line of therapeutic options.
Collapse
Affiliation(s)
- Mary Frances Wedekind
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Nicholas L. Denton
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Chun-Yu Chen
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Timothy P. Cripe
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| |
Collapse
|
34
|
Liang J, Zhao H, Hu J, Liu Y, Li Z. SPOCD1 promotes cell proliferation and inhibits cell apoptosis in human osteosarcoma. Mol Med Rep 2017; 17:3218-3225. [PMID: 29257309 DOI: 10.3892/mmr.2017.8263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumors that typically affects adolescents and children. The spen paralogue and orthologue C‑terminal domain containing 1 (SPOCD1) is a newly identified molecule that has been indicated to discriminate progressive from non‑progressive bladder cancers. However, the role of SPOCD1 in human solid tumors remains largely unknown. In the present study, SPOCD1 was upregulated in clinical osteosarcoma tissues compared with adjacent non‑cancerous tissues. Furthermore, SPOCD1 was upregulated in osteosarcoma cell lines and expression was particularly increased in highly invasive cells MG63 and SAOS2. Further investigation revealed that downregulation of SPOCD1 inhibited the MG63 and SAOS2 osteosarcoma cell colony formation and proliferation capacity. In addition, cell apoptosis was promoted by knockdown of SPOCD1 in MG63 and SAOS2 cells. These effects were confirmed by measuring the Ki67 and PCNA expression. In addition, SPOCD1 positively regulated the expression of vascular endothelial growth factor A (VEGF‑A). Knockdown of VEGF‑A blunted SPOCD1 downregulation‑mediated inhibition of cell proliferation and induction of cell apoptosis. These results suggested that SPOCD1 may act as a pro‑oncogenic factor in osteosarcoma. Inhibition of VEGF may aid in treating osteosarcoma in clinic.
Collapse
Affiliation(s)
- Jinqian Liang
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Hong Zhao
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jianhua Hu
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yong Liu
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Zheng Li
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
35
|
Association of anti-HER2 antibody with graphene oxide for curative treatment of osteosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:581-593. [PMID: 29170110 DOI: 10.1016/j.nano.2017.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/21/2017] [Accepted: 11/03/2017] [Indexed: 01/26/2023]
Abstract
The finding of HER2 overexpression in osteosarcoma (OS) makes HER2 a potential therapeutic target. However, studies indicate OS cells are nonresponsive to anti-HER2 antibody trastuzumab (TRA) therapy. We established stable, non-covalent association of TRA with nanomaterial graphene oxide (GO) to generated multivalent TRA/GO complexes that demonstrated markedly enhanced HER2-binding activity and capacity to rapidly kill OS cells. TRA/GO simultaneously induced oxidative stress and HER2 signaling in the target cells, leading to rapid depletion of the cellular inhibitors of apoptosis protein (cIAP) and caspase-8, formation of RIP1/RIPK3/MLKL necroptosome and necroptosis of the OS cells. Intravenous administration of TRA/GO eradicated established xenograft the OS in immunodeficient mice, resulting in indefinite survival of the animals, whereas TRA in its original form failed to do so. No appreciable side effects were observed with TRA/GO therapy. The results demonstrate a novel, nontoxic, curative therapy for a HER2pos cancer in a preclinical animal model.
Collapse
|
36
|
Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat Rev 2017; 58:22-33. [PMID: 28622628 PMCID: PMC5524462 DOI: 10.1016/j.ctrv.2017.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors (ICI) have shown great promise in a wide spectrum of adult solid and hematological malignancies, achieving objective tumor responses and prolonging survival. However, there is limited clinical success amongst pediatric patients. In this review, we summarize the current understanding of ICI and present an up-to-date overview of recent and ongoing clinical trials of ICI in pediatric malignancies. In addition, we will discuss immunologic and clinical difficulties in this young population, as well as future prospects for combination of ICI with other immune-based and conventional treatments.
Collapse
|
37
|
Su H, Zhu G, Rong X, Zhou Y, Jiang P, Chen P. Upregulation of ATG4A promotes osteosarcoma cell epithelial-to-mesenchymal transition through the Notch signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7975-7982. [PMID: 31966649 PMCID: PMC6965260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/12/2017] [Indexed: 06/10/2023]
Abstract
Osteosarcoma is a malignant tumor in children and adolescents. Previous studies showed that ATG4A is an autophagy-related gene involved in cancers. In this study, we aimed to identify the biological role of ATG4A in osteosarcoma. The expression levels of ATG4A were analyzed in osteosarcoma tissues by using reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and western blotting. ATG4A was knocked-down or overexpressed in SAOS2 and HOS cell lines by transfection. Cell counting kit-8 (CCK-8) and clone formation assay were used to assess the effects of ATG4A on cell proliferation. Wound healing and Transwell assays were performed to evaluate the effects of ATG4A on cell migration and invasion, respectively. Epithelial-mesenchymal transition (EMT) markers and Notch signaling pathway targeting molecules were examined by western blotting. The results indicated that ATG4A was up-regulated in osteosarcoma tissues. In SAOS2 cells, knockdown of ATG4A inhibited the proliferation, migration and invasion, up-regulated the expression of E-cadherin and down-regulated the expression of vimentin, Notch1 and Hes1. In HOS cells, overexpression of ATG4A promoted the proliferation, migration and invasion, up-regulated the expression of vimentin, Notch1 and Hes1 and down-regulated the expression of E-cadherin. In conclusion, these findings demonstrate that ATG4A is up-regulated in osteosarcoma tissues. In osteosarcoma cells, ATG4A promotes the EMT process partly by the Notch signaling pathway. These results suggest that ATG4A might represent a potential therapeutic target for patients with osteosarcoma.
Collapse
Affiliation(s)
- Han Su
- Department of Orthopedic, Wuxi Second Hospital Affiliated to Nanjing Medical University Wuxi, China
| | - Guoxing Zhu
- Department of Orthopedic, Wuxi Second Hospital Affiliated to Nanjing Medical University Wuxi, China
| | - Xiaoxu Rong
- Department of Orthopedic, Wuxi Second Hospital Affiliated to Nanjing Medical University Wuxi, China
| | - Yan Zhou
- Department of Orthopedic, Wuxi Second Hospital Affiliated to Nanjing Medical University Wuxi, China
| | - Ping Jiang
- Department of Orthopedic, Wuxi Second Hospital Affiliated to Nanjing Medical University Wuxi, China
| | - Peng Chen
- Department of Orthopedic, Wuxi Second Hospital Affiliated to Nanjing Medical University Wuxi, China
| |
Collapse
|
38
|
Eckert F, Jelas I, Oehme M, Huber SM, Sonntag K, Welker C, Gillies SD, Strittmatter W, Zips D, Handgretinger R, Schilbach K. Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 2017; 6:e1323161. [PMID: 28680762 DOI: 10.1080/2162402x.2017.1323161] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
NHS-IL12 is an immunocytokine, a fusion protein of IL12's functional domains and a necrosis-targeting antibody, which has shown significant effects against human rhabdomyosarcoma xenografts in a humanized tumor model, including terminal growth arrest and differentiation of the tumor cells. Here, we locally irradiated the tumors, increasing necrosis and consequently intratumoral immune cytokine availability, and asked whether this effect may surmount efficacy of single treatment modality. Humanized mice bearing bilateral rhabdomyosarcoma xenografts were evaluated for tumor burden and survival after irradiation, systemic NHS-IL12 therapy or a combination of both. Intratumoral immune compartments were characterized by immunohistochemistry and molecular methods. TH1-cytokine dependency of underlying effector mechanisms were investigated in vitro in several human tumor cell lines. NHS-IL12 when combined with irradiation terminally arrested tumor growth and significantly improved survival. Combination treatment induced dense intratumoral T-cell infiltrates, clonal epitope-specific T-cell expansions, expression of cytotoxins, decreased pro-tumorigenic cytokines and induced senescence and differentiation in the cancer cells. Senescence and differentiation were reproduced in vitro and confirmed to be dependent on TH1 cytokines IFNγ and TNF-α. NHS-IL12 and irradiation together induced broad intratumoral TH1 biased NK and T-cell compartments, established antitumoral cytokine profiles and irreversibly growth arrested tumor cells, leading to systemic cancer control and improved survival. For the first time, we describe immune-induced senescence as a novel mechanism resulting from a treatment regimen combining irradiation with immunotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivan Jelas
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Moritz Oehme
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Sonntag
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christian Welker
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Yen MS, Chen JR, Wang PH, Wen KC, Chen YJ, Ng HT. Uterine sarcoma part III-Targeted therapy: The Taiwan Association of Gynecology (TAG) systematic review. Taiwan J Obstet Gynecol 2017; 55:625-634. [PMID: 27751406 DOI: 10.1016/j.tjog.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/29/2022] Open
Abstract
Uterine sarcoma is a very aggressive and highly lethal disease. Even after a comprehensive staging surgery or en block cytoreduction surgery followed by multimodality therapy (often chemotherapy and/or radiation therapy), many patients relapse or present with distant metastases, and finally die of diseases. The worst outcome of uterine sarcomas is partly because of their rarity, unknown etiology, and highly divergent genetic aberration. Uterine sarcomas are often classified into four distinct subtypes, including uterine leiomyosarcoma, low-grade uterine endometrial stromal sarcoma, high-grade uterine endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Currently, evidence from tumor biology found that these tumors showed alternation and/or mutation of genomes and the intracellular signal pathway. In addition, some preclinical studies showed promising results for targeting receptor tyrosine kinase signaling, phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway, various kinds of growth factor pathways, Wnt/beta-catenin signaling pathway, transforming growth factor β/bone morphogenetic protein signal pathway, aurora kinase A, MDM2 proto-oncogene, histone deacetylases, sex hormone receptors, certain types of oncoproteins, and/or loss of tumor suppressor genes. The current review is attempted to summarize the recurrent advance of targeted therapy for uterine sarcomas.
Collapse
Affiliation(s)
- Ming-Shyen Yen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Foundation of Female Cancer, Taipei, Taiwan
| | - Jen-Ruei Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Heung-Tat Ng
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Foundation of Female Cancer, Taipei, Taiwan
| | | |
Collapse
|
40
|
Wagner LM, Adams VR. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors. Onco Targets Ther 2017; 10:2097-2106. [PMID: 28442918 PMCID: PMC5396947 DOI: 10.2147/ott.s124008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While remarkable advances have been made in the treatment of pediatric leukemia over the past decades, new therapies are needed for children with advanced solid tumors and high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune checkpoint inhibitors acting through the programmed cell death-1 (PD-1) pathway has shown efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial data available, and suggest potential applications for further study.
Collapse
Affiliation(s)
| | - Val R Adams
- Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
41
|
Abstract
BACKGROUND Early lymphocyte recovery following chemotherapy has been associated with improved outcome in many cancers, including in one small study of osteosarcoma patients. MATERIALS AND METHODS To confirm this finding, we retrospectively reviewed data from 53 patients with newly diagnosed osteosarcoma who had blood counts on day 14 (±1 d) following the first cycle of cisplatin and doxorubicin. RESULTS The median absolute lymphocyte count (ALC) 14 days after starting the first cycle of chemotherapy (ALC-14) was 1990 cells/μL (range: 600 to 6470). For 32 patients with an ALC-14≥1800 cells/μL, the 5-year progression-free survival (PFS) was 69%, compared with 33% for patients with an ALC-14 of <1800 cell/μL (P=0.036). In multivariable analysis of factors including age, sex, metastatic disease, and favorable histologic response to induction chemotherapy, ALC-14 was significantly associated with PFS (P=0.0081) and overall survival (P=0.0131). The use of ALC-14 appears to further stratify PFS and overall survival among patients when grouped by histologic response. CONCLUSIONS We confirmed that early lymphocyte recovery was associated with outcome in pediatric osteosarcoma. Although presumably reflecting immune-mediated tumor control, the precise mechanism for this is unclear. Further study of peripheral blood lymphocyte subpopulations in prospectively treated patients is underway.
Collapse
|
42
|
Abstract
Absolute lymphocyte count (ALC) recovery rapidly occurring at 14 days after start of chemotherapy for osteosarcoma and Ewing sarcoma is a good prognostic factor. Conversely, lymphopenia is associated with significantly decreased sarcoma survival. Clearly, the immune system can contribute towards better survival from sarcoma. This chapter will describe treatment and host factors that influence immune function and how effective local control and systemic interventions of sarcoma therapy can cause inflammation and/or immune suppression but are currently the standard of care. Preclinical and clinical efforts to enhance immune function against sarcoma will be reviewed. Interventions to enhance immune function against sarcoma have included regional therapy (surgery, cryoablation, radiofrequency ablation, electroporation, and radiotherapy), cytokines, macrophage activators (mifamurtide), vaccines, natural killer (NK) cells, T cell receptor (TCR) and chimeric antigen receptor (CAR) T cells, and efforts to decrease inflammation. The latter is particularly important because of new knowledge about factors influencing expression of checkpoint inhibitory molecules, PD1 and CTLA-4, in the tumor microenvironment. Since these molecules can now be blocked using anti-PD1 and anti-CTLA-4 antibodies, how to translate this knowledge into more effective immune therapies in the future as well as how to augment effectiveness of current interventions (e.g., radiotherapy) is a challenge. Barriers to implementing this knowledge include cost of agents that release immune checkpoint blockade and coordination of cost-effective outpatient sarcoma treatment. Information on how to research clinical trial eligibility criteria and how to access current immune therapy trials against sarcoma are shared, too.
Collapse
Affiliation(s)
- Peter M Anderson
- Department of Pediatric Hematology/Oncology/BMT, Cleveland Clinic S20, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
43
|
Chemotherapy and Multidisciplinary Approaches to Pediatric Sarcomas. Sarcoma 2017. [DOI: 10.1007/978-3-319-43121-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Westrøm S, Bønsdorff TB, Abbas N, Bruland ØS, Jonasdottir TJ, Mælandsmo GM, Larsen RH. Evaluation of CD146 as Target for Radioimmunotherapy against Osteosarcoma. PLoS One 2016; 11:e0165382. [PMID: 27776176 PMCID: PMC5077112 DOI: 10.1371/journal.pone.0165382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/11/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Osteosarcoma is a rare form of cancer but with a substantial need for new active drugs. There is a particular need for targeted therapies to combat metastatic disease. One possible approach is to use an antibody drug conjugate or an antibody radionuclide conjugate to target the osteosarcoma metastases and circulating tumor cells. Herein we have evaluated a radiolabeled monoclonal antibody targeting CD146 both in vitro and in vivo. METHODS AND RESULTS A murine monoclonal anti-CD146 IgG1 isotype antibody, named OI-3, was developed along with recombinant chimeric versions with human IgG1 or human IgG3 Fc sequences. Using flow cytometry, selective binding of OI-3 to human osteosarcoma cell lines OHS, KPDX and Saos-2 was confirmed. The results confirm a higher expression level of CD146 on human osteosarcoma cells than HER2 and EGFR; antigens targeted by commercially available therapeutic antibodies. The biodistribution of 125I-labeled OI-3 antibody variants was compared with 125I-labeled chimeric anti-EGFR antibody cetuximab in nude mice with subcutaneous OHS osteosarcoma xenografts. OI-3 was able to target CD146 expressing tumors in vivo and showed improved tumor to tissue targeting ratios compared with cetuximab. Subsequently, the three OI-3 variants were conjugated with p-SCN-Bn-DOTA and labeled with a more therapeutically relevant radionuclide, 177Lu, and their biodistributions were studied in the nude mouse model. The 177Lu-labeled OI-3 variants were stable and had therapeutically relevant biodistribution profiles. Dosimetry estimates showed higher absorbed radiation dose to tumor than all other tissues after administration of the chimeric IgG1 OI-3 variant. CONCLUSION Our results indicate that CD146 can be targeted in vivo by the radiolabeled OI-3 antibodies.
Collapse
Affiliation(s)
- Sara Westrøm
- Oncoinvent AS, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Øyvind S. Bruland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Gunhild M. Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
45
|
Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol 2016; 13:357-368. [PMID: 27651036 DOI: 10.2217/fon-2016-0261] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-grade osteosarcomas are the most common primary malignant tumors of bone. With complete surgical resection and multi-agent chemotherapy up to 70% of patients with high-grade osteosarcomas and localized extremity tumors can become long-term survivors. The prognosis, however, is poor for patients with nonresectable, primary metastatic or relapsed disease. Outcome is essentially unchanged for three decades. Herein, we describe selected novel insights into the genomics, biology and immunology of the disease and discuss selected strategies, which hold promise to overcome the current stagnation in the therapeutic success in childhood osteosarcoma.
Collapse
Affiliation(s)
- Leo Kager
- Department of Pediatrics, St Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute, Vienna, Austria
| | - Gevorg Tamamyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Clinic of Chemotherapy, Muratsan Hospital Complex of Yerevan State Medical University, Yerevan, Armenia
| | - Stefan Bielack
- Klinikum Stuttgart, Olgahospital, Pediatrics 5 - Oncology, Hematology, Immunology, Stuttgart, Germany
| |
Collapse
|
46
|
Wang Z, Li B, Ren Y, Ye Z. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities. Front Immunol 2016; 7:353. [PMID: 27683579 PMCID: PMC5021687 DOI: 10.3389/fimmu.2016.00353] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Even though combining surgery with chemotherapy has significantly improved the prognosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are often non-responsive to chemotherapy, making development of novel efficient therapeutic methods an urgent need. Adoptive immunotherapy has the potential to be a useful non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, including immunotherapies using naturally occurring or genetically modified T cells, have been found to hold promise in the treatment of hematologic malignancies and solid tumors. In this review, we will discuss possible T-cell-based therapies against osteosarcoma with a special emphasis on combination strategies to improve the effectiveness of adoptive T cell transfer and, thus, to provide a rationale for the clinical development of immunotherapies.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Binghao Li
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Yingqing Ren
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Zhaoming Ye
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
47
|
Inagaki Y, Hookway E, Williams KA, Hassan AB, Oppermann U, Tanaka Y, Soilleux E, Athanasou NA. Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours. Clin Sarcoma Res 2016; 6:13. [PMID: 27482375 PMCID: PMC4968446 DOI: 10.1186/s13569-016-0053-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background A chronic inflammatory cell infiltrate is commonly seen in response to primary malignant tumours of bone. This is known to contain tumour-associated macrophages (TAMs) and lymphocytes; dendritic cells (DCs) and mast cells (MCs) have also been identified but whether these and other inflammatory cells are seen commonly in specific types of bone sarcoma is uncertain. Methods In this study we determined the nature of the inflammatory cell infiltrate in 56 primary bone sarcomas. Immunohistochemistry using monoclonal antibodies was employed to assess semiquantitatively CD45+ leukocyte infiltration and the extent of the DC, MC, TAM and T and B lymphocyte infiltrate. Results The extent of the inflammatory infiltrate in individual sarcomas was very variable. A moderate or heavy leukocyte infiltrate was more commonly seen in conventional high-grade osteosarcoma, undifferentiated pleomorphic sarcoma and giant cell tumour of bone (GCTB) than in Ewing sarcoma, chordoma and chondrosarcoma. CD14+/CD68+ TAMs and CD3+ T lymphocytes were the major components of the inflammatory cell response but (DC-SIGN/CD11c+) DCs were also commonly noted when there was a significant TAM and T lymphocyte infiltrate. MCs were identified mainly at the periphery of sarcomas, including the osteolytic tumour-bone interface. Discussion Our findings indicate that, although variable, some malignant bone tumours (e.g. osteosarcoma, GCTB) are more commonly associated with a pronounced inflammatory cell infiltrate than others (e.g. chondrosarcoma. Ewing sarcoma); the infiltrate is composed mainly of TAMs but includes a significant DC, T lymphocyte and MC infiltrate. Conclusion Tumours that contain a heavy inflammatory cell response, which includes DCs, TAMs and T lymphocytes, may be more amenable to immunomodulatory therapy. MCs are present mainly at the tumour edge and are likely to contribute to osteolysis and tumour invasion.
Collapse
Affiliation(s)
- Y Inagaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK ; Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - E Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - K A Williams
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - A B Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - U Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - Y Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - E Soilleux
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - N A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Overall survival rates for osteosarcoma have remained essentially unchanged over the past 3 decades despite attempts to improve outcome via dose intensification and modification based on response. This review describes recent findings from contemporary clinical trials, advances in the comprehension of osteosarcoma biology and genomic complexity, and potential opportunities using targeted and immune-mediated therapies. RECENT FINDINGS Recent results from international collaborative trials have failed to demonstrate an ability to improve outcomes using a design in which the randomized question is dictated based on histologic response to preoperative chemotherapy. Novel prognostic markers assessable at diagnosis are vital to identifying subsets of osteosarcoma. Clinical trials focus has now shifted to serial phase II studies of novel agents to evaluate for activity in recurrent and refractory disease. In-depth analyses have revealed profound genomic instability and heterogeneity across patients, with nearly universal TP53 aberration. Although driver mutational events have not clearly been established, frequent derangements in specific pathways may suggest opportunities for therapeutic exploitation. Genomic complexity may lend support to a role for immune-mediated therapies. SUMMARY Rigorous preclinical investigations are potentially generating novel strategies for the treatment of osteosarcoma that will inform the next generation of clinical trials, with the opportunity to identify agents that will improve survival outcomes.
Collapse
Affiliation(s)
- Michael W. Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Richard Gorlick
- Divison of Pediatric Hematology/Oncology, The Children's Hospital At Montefiore, Bronx, NY, USA
| |
Collapse
|