1
|
Adjumain S, Daniel P, Sun CX, Bradshaw G, Chew NJ, Tsui V, Lee H, Loi M, Zhukova N, Habarakada D, Yoel A, Vaghjiani VG, Game S, Ludlow LE, Neeman N, Sweet-Cordero EA, Eisenstat DD, Cain JE, Firestein R. Multidimensional, integrative profiling identifies BCL2L1 methylation as a predictor of MCL1 dependency in pediatric malignancies. JCI Insight 2025; 10:e184601. [PMID: 39846250 DOI: 10.1172/jci.insight.184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are the most aggressive brain tumors in children, necessitating innovative therapies to improve outcomes. Unlike adult gliomas, recent research reveals that childhood gliomas have distinct biological features, requiring specific treatment strategies. Here, we focused on deciphering unique genetic dependencies specific to childhood gliomas. Using a pooled CRISPR/Cas9 knockout screening approach on 65 pediatric and 10 adult high-grade glioma (HGG) cell lines, myeloid cell leukemia 1 (MCL1) emerged as a key antiapoptotic gene essential in pediatric but not adult gliomas. We demonstrated that MCL1 is targetable using current small molecule inhibitors, and its inhibition leads to potent anticancer activity across pediatric HGG cell lines irrespective of genotype. Employing predictive modeling approaches on a large set of childhood cancer cell lines with multiomics data features, we identified a potentially previously unreported cluster of CpG sites in the antiapoptotic BCL-xL/BCL2L1 gene, which predicted MCL1 inhibitor response. We extended these data across multiple pediatric tumor types, showing that BCL2L1 methylation is a broad predictor of MCL1 dependency in vitro and in vivo. Overall, our multidimensional, integrated genomic approach identified MCL1 as a promising therapeutic target in several BCL2L1-methylated pediatric cancers, offering a translational strategy to identify patients most likely to benefit from MCL1 inhibitor therapy.
Collapse
Affiliation(s)
- Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Claire Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gabrielle Bradshaw
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole J Chew
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hanbyeol Lee
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Melissa Loi
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nataliya Zhukova
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, Victoria, Australia
- Department of Pediatrics, Monash University, Clayton, Victoria, Australia
| | - Dilru Habarakada
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vijesh G Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Shaye Game
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise E Ludlow
- Children's Cancer Centre Biobank, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Naama Neeman
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - E Alejandro Sweet-Cordero
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - David D Eisenstat
- Department of Pediatrics, Monash University, Clayton, Victoria, Australia
- Children's Cancer Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Group, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Department of Pediatrics, Monash University, Clayton, Victoria, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Zhang Y, Yu Y, Yuan L, Zhang B. EZH2 Promotes Glioma Cell Proliferation, Invasion, and Migration via Mir-142-3p/KCNQ1OT1/HMGB3 Axis : Running Title: EZH2 Promotes Glioma cell Malignant Behaviors. Mol Neurobiol 2024; 61:8668-8687. [PMID: 38556567 DOI: 10.1007/s12035-024-04080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the role and molecular mechanism of EZH2 in glioma cell proliferation, invasion, and migration. EZH2, miR-142-3p, lncRNA KCNQ1OT1, LIN28B, and HMGB3 expressions in glioma tissues and cells were determined using qRT-PCR or Western blot, followed by CCK-8 assay detection of cell viability, Transwell detection of invasion and migration, ChIP analysis of the enrichment of EZH2 and H3K27me3 on miR-142-3p promoter, dual-luciferase reporter assay and RIP validation of the binding of miR-142-3p-KCNQ1OT1 and KCNQ1OT1-LIN28B, and actinomycin D detection of KCNQ1OT1 and HMGB3 mRNA stability. A nude mouse xenograft model and a lung metastasis model were established. EZH2, KCNQ1OT1, LIN28B, and HMGB3 were highly expressed while miR-142-3p was poorly expressed in gliomas. EZH2 silencing restrained glioma cell proliferation, invasion, and migration. EZH2 repressed miR-142-3p expression by elevating the H3K27me3 level. miR-142-3p targeted KCNQ1OT1 expression, and KCNQ1OT1 bound to LIN28B to stabilize HMGB3 mRNA, thereby promoting its protein expression. EZH2 silencing depressed tumor growth and metastasis in nude mice via the miR-142-3p/KCNQ1OT1/HMGB3 axis. In conclusion, EZH2 curbed miR-142-3p expression, thereby relieving the inhibition of KCNQ1OT1 expression by miR-142-3p, enhancing the binding of KCNQ1OT1 to LIN28B, elevating HMGB3 expression, and ultimately accelerating glioma cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Yong Yu
- Epilepsy Center, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Lei Yuan
- Department of Neurosurgery, PLA Rocket Force Characteristic Medical Center, No. 16, Xin Jie Kou Wai Street, Beijing, 100088, China.
| | - Baozhong Zhang
- Department of Neurosurgery, He Bei Hua Ao Hospital, No. 11, the Changcheng West Street, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
3
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
6
|
Saleh Alanazi SH, Farooq Khan M, Alazami AM, Baabbad A, Ahmed Wadaan M. Calotropis procera: A double edged sword against glioblastoma, inhibiting glioblastoma cell line growth by targeting histone deacetylases (HDAC) and angiogenesis. Heliyon 2024; 10:e24406. [PMID: 38304784 PMCID: PMC10831610 DOI: 10.1016/j.heliyon.2024.e24406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Despite substantial investments in anti-glioblastoma (GBM) drug discovery over the last decade, progress is limited to preclinical stages, with clinical studies frequently encountering obstacles. Angiogenic and histone deacetylase inhibitors (HDACi) have shown profound results in pre-clinical studies. Investigating a multicomponent anti-cancer remedy that disrupts the tumor angiogenic blood vessels and simultaneously disrupts HDACs, while inducing minimal side effects, is critically needed. The crude extracts derived from medicinal plants serve as a renewable reservoir of anti-tumor drugs, exhibiting reduced toxicity compared to chemically synthesized formulations. Calotropis procera is a traditional medicinal plant, and its anticancer potential against many cancer cell lines has been reported, however its antiangiogenic and HDAC inhibitory action is largely unknown. The anticancer activity of methanol leaf extract of C. procera was tested in three types of human glioblastoma cell lines. Wild-type and transgenic zebrafish embryos were used to evaluate developmental toxicity and angiogenic activity. A human angiogenic antibody array was used to profile angiogenic proteins in the U251 GM cell line. A real-time reverse transcriptase polymerase chain reaction (RT PCR) assay was used to detect the differential expression of eleven HDAC genes in U251 cells treated with C. procera extract. The extract significantly reduced the proliferation of all three types of GBM cell lines and the cytotoxicity was found to be more pronounced in U251 GM cells, with an IC50 value of 2.63 ± 0.23 μg/ml, possibly by arresting the cell cycle at the G2/M transition. The extract did not exhibit toxic effects in zebrafish embryos, even at concentrations as high as 1000 μg/ml. The extract also inhibited angiogenic blood vessel formation in the transgenic zebrafish model in a dose-dependent manner. The results from the angiogenic antibody array have suggested novel angiogenesis targets that can be utilized to treat GBM. Real-time RT PCR analysis has shown that C. procrea extract caused an upregulation of HDAC5, 7, and 10, while the mRNA of HDAC1, 2, 3 and 8 (Class I HDACs), and HDAC4, 6, and 9 (Class II) were downregulated in U251 GM cells. The cytotoxicity of the C. procera extract on GBM cell lines could be due to its dual action by regulation of both tumor angiogenesis and histone deacetylases enzymes. Through this study, the C. procera leaf extract has been suggested as an effective remedy to treat GBM with minimal toxicity. In addition, various novel angiogenic and HDAC targets has been identified which could be helpful in designing better therapeutic strategies to manage glioblastoma multiforme in human patients.
Collapse
Affiliation(s)
- Shamsa Hilal Saleh Alanazi
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Muhammad Farooq Khan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Anas M. Alazami
- Translational Genomics Department, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Almohannad Baabbad
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Ahmed Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Amirian R, Azadi Badrbani M, Izadi Z, Samadian H, Bahrami G, Sarvari S, Abdolmaleki S, Nabavi SM, Derakhshankhah H, Jaymand M. Targeted protein modification as a paradigm shift in drug discovery. Eur J Med Chem 2023; 260:115765. [PMID: 37659194 DOI: 10.1016/j.ejmech.2023.115765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Sarvari
- Department of Pharmaceutical Science, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Sara Abdolmaleki
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | - Seyed Mohammad Nabavi
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy.
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Zhu J, Chen S, Liu Z, Guo J, Cao S, Long S. Recent advances in anticancer peptoids. Bioorg Chem 2023; 139:106686. [PMID: 37399616 DOI: 10.1016/j.bioorg.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Since most tumors become resistant to drugs in a gradual and irreversible manner, making treatment less effective over time, anticancer drugs require continuous development. Peptoids are a class of peptidomimetics that can be easily synthesized and optimized. They exhibit a number of unique characteristics, including protease resistance, non-immunogenicity, do not interfere with peptide functionality and skeleton polarity, and can adopt different conformations. They have been studied for their efficacy in different cancer therapies, and can be considered as a promising alternative molecular category for the development of anticancer drugs. Herein, we discuss the extensive recent advances in peptoids and peptoid hybrids in the treatment of cancers such as prostate, breast, lung, and other ones, in the hope of providing a reference for the further development of peptoid anticancer drugs.
Collapse
Affiliation(s)
- Jidan Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
9
|
Ozair A, Bhat V, Alisch RS, Khosla AA, Kotecha RR, Odia Y, McDermott MW, Ahluwalia MS. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers (Basel) 2023; 15:cancers15041342. [PMID: 36831683 PMCID: PMC9954183 DOI: 10.3390/cancers15041342] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.
Collapse
Affiliation(s)
- Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Vivek Bhat
- St. John’s Medical College, Bangalore 560034, India
| | - Reid S. Alisch
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Atulya A. Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh R. Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael W. McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Correspondence: (M.W.M.); (M.S.A.)
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Correspondence: (M.W.M.); (M.S.A.)
| |
Collapse
|
10
|
Defining a Correlative Transcriptional Signature Associated with Bulk Histone H3 Acetylation Levels in Adult Glioblastomas. Cells 2023; 12:cells12030374. [PMID: 36766715 PMCID: PMC9913072 DOI: 10.3390/cells12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GB) is the most prevalent primary brain cancer and the most aggressive form of glioma because of its poor prognosis and high recurrence. To confirm the importance of epigenetics in glioma, we explored The Cancer Gene Atlas (TCGA) database and we found that several histone/DNA modifications and chromatin remodeling factors were affected at transcriptional and genetic levels in GB compared to lower-grade gliomas. We associated these alterations in our own cohort of study with a significant reduction in the bulk levels of acetylated lysines 9 and 14 of histone H3 in high-grade compared to low-grade tumors. Within GB, we performed an RNA-seq analysis between samples exhibiting the lowest and highest levels of acetylated H3 in the cohort; these results are in general concordance with the transcriptional changes obtained after histone deacetylase (HDAC) inhibition of GB-derived cultures that affected relevant genes in glioma biology and treatment (e.g., A2ML1, CD83, SLC17A7, TNFSF18). Overall, we identified a transcriptional signature linked to histone acetylation that was potentially associated with good prognosis, i.e., high overall survival and low rate of somatic mutations in epigenetically related genes in GB. Our study identifies lysine acetylation as a key defective histone modification in adult high-grade glioma, and offers novel insights regarding the use of HDAC inhibitors in therapy.
Collapse
|
11
|
Rallis KS, George AM, Wozniak AM, Bigogno CM, Chow B, Hanrahan JG, Sideris M. Molecular Genetics and Targeted Therapies for Paediatric High-grade Glioma. Cancer Genomics Proteomics 2022; 19:390-414. [PMID: 35732328 PMCID: PMC9247880 DOI: 10.21873/cgp.20328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Brain tumours are the leading cause of paediatric cancer-associated death worldwide. High-grade glioma (HGG) represents a main cause of paediatric brain tumours and is associated with poor prognosis despite surgical and chemoradiotherapeutic advances. The molecular genetics of paediatric HGG (pHGG) are distinct from those in adults, and therefore, adult clinical trial data cannot be extrapolated to children. Compared to adult HGG, pHGG is characterised by more frequent mutations in PDGFRA, TP53 and recurrent K27M and G34R/V mutations on histone H3. Ongoing trials are investigating novel targeted therapies in pHGG. Promising results have been achieved with BRAF/MEK and PI3K/mTOR inhibitors. Combination of PI3K/mTOR, EGFR, CDK4/6, and HDAC inhibitors are potentially viable options. Inhibitors targeting the UPS proteosome, ADAM10/17, IDO, and XPO1 are more novel and are being investigated in early-phase trials. Despite preclinical and clinical trials holding promise for the discovery of effective pHGG treatments, several issues persist. Inadequate blood-brain barrier penetration, unfavourable pharmacokinetics, dose-limiting toxicities, long-term adverse effects in the developing child, and short-lived duration of response due to relapse and resistance highlight the need for further improvement. Future pHGG management will largely depend on selecting combination therapies which work synergistically based on a sound knowledge of the underlying molecular target pathways. A systematic investigation of multimodal therapy with chemoradiotherapy, surgery, target agents and immunotherapy is paramount. This review provides a comprehensive overview of pHGG focusing on molecular genetics and novel targeted therapies. The diagnostics, genetic discrepancies with adults and their clinical implications, as well as conventional treatment approaches are discussed.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts Cancer Institute, Queen Mary University of London, London, U.K.;
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Alan Mathew George
- Liverpool School of Medicine, University of Liverpool, Liverpool, U.K
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - Anna Maria Wozniak
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Carola Maria Bigogno
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Barbara Chow
- UCL Cancer Institute, University College London, London, U.K
- GKT School of Medicine, King's College London, London, U.K
| | | | - Michail Sideris
- Women's Health Research Unit, Queen Mary University of London, London, U.K
| |
Collapse
|
12
|
Carcamo B, Francia G. Cyclic Metronomic Chemotherapy for Pediatric Tumors: Six Case Reports and a Review of the Literature. J Clin Med 2022; 11:jcm11102849. [PMID: 35628975 PMCID: PMC9144744 DOI: 10.3390/jcm11102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
We report a retrospective case series of six Hispanic children with tumors treated with metronomic chemotherapy. The six cases comprised one rhabdoid tumor of the kidney, one ependymoma, two medulloblastomas, one neuroblastoma, and a type II neurocytoma of the spine. Treatment included oral cyclophosphamide daily for 21 days alternating with oral etoposide daily for 21 days in a backbone of daily valproic acid and celecoxib. In one case, celecoxib was substituted with sulindac. Of the six patients, three showed complete responses, and all patients showed some response to metronomic therapy with only minor hematologic toxicity. One patient had hemorrhagic gastritis likely associated with NSAIDs while off prophylactic antacids. These data add to a growing body of evidence suggesting that continuous doses of valproic acid and celecoxib coupled with alternating metronomic chemotherapy of agents such as etoposide and cyclophosphamide can produce responses in pediatric tumors relapsing to conventional dose chemotherapy.
Collapse
Affiliation(s)
- Benjamin Carcamo
- Department of Pediatric Hematology Oncology, El Paso Children’s Hospital, El Paso, TX 79905, USA
- Department of Pediatrics, Texas Tech University Health Science Center, El Paso, TX 79430, USA
- Correspondence: (B.C.); (G.F.); Tel.: +1-915-479-8970 (B.C.); +1-915-747-8025 (G.F.); Fax: +1-915-242-8437 (B.C.); +1-915-747-5808 (G.F.)
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA
- Correspondence: (B.C.); (G.F.); Tel.: +1-915-479-8970 (B.C.); +1-915-747-8025 (G.F.); Fax: +1-915-242-8437 (B.C.); +1-915-747-5808 (G.F.)
| |
Collapse
|
13
|
Pediatric Brain Tumors: Signatures from the Intact Proteome. Int J Mol Sci 2022; 23:ijms23063196. [PMID: 35328618 PMCID: PMC8949132 DOI: 10.3390/ijms23063196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The present investigation aimed to explore the intact proteome of tissues of pediatric brain tumors of different WHO grades and localizations, including medulloblastoma, pilocytic astrocytoma, and glioblastoma, in comparison with the available data on ependymoma, to contribute to the understanding of the molecular mechanisms underlying the onset and progression of these pathologies. Tissues have been homogenized in acidic water−acetonitrile solutions containing proteases inhibitors and analyzed by LC−high resolution MS for proteomic characterization and label-free relative quantitation. Tandem MS spectra have been analyzed by either manual inspection or software elaboration, followed by experimental/theoretical MS fragmentation data comparison by bioinformatic tools. Statistically significant differences in protein/peptide levels between the different tumor histotypes have been evaluated by ANOVA test and Tukey’s post-hoc test, considering a p-value > 0.05 as significant. Together with intact protein and peptide chains, in the range of molecular mass of 1.3−22.8 kDa, several naturally occurring fragments from major proteins, peptides, and proteoforms have been also identified, some exhibiting proper biological activities. Protein and peptide sequencing allowed for the identification of different post-translational modifications, with acetylations, oxidations, citrullinations, deamidations, and C-terminal truncations being the most frequently characterized. C-terminal truncations, lacking from two to four amino acid residues, particularly characterizing the β-thymosin peptides and ubiquitin, showed a different modulation in the diverse tumors studied. With respect to the other tumors, medulloblastoma, the most frequent malignant brain tumor of the pediatric age, was characterized by higher levels of thymosin β4 and β10 peptides, the latter and its des-IS form particularly marking this histotype. The distribution pattern of the C-terminal truncated forms was also different in glioblastoma, particularly underlying gender differences, according to the definition of male and female glioblastoma as biologically distinct diseases. Glioblastoma was also distinguished for the peculiar identification of the truncated form of the α-hemoglobin chain, lacking the C-terminal arginine, and exhibiting oxygen-binding and vasoconstrictive properties different from the intact form. The proteomic characterization of the undigested proteome, following the top-down approach, was challenging to originally investigate the post-translational events that differently characterize pediatric brain tumors. This study provides a contribution to elucidate the molecular profiles of the solid tumors most frequently affecting the pediatric age, and which are characterized by different grades of aggressiveness and localization.
Collapse
|
14
|
Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13225678. [PMID: 34830833 PMCID: PMC8616465 DOI: 10.3390/cancers13225678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, due in great part to treatment resistance driven by complex DNA repair mechanisms. pHGGs have recently been divided into molecular subtypes based on mutations affecting the N-terminal tail of the histone variant H3.3 and the ATRX/DAXX histone chaperone that deposits H3.3 at repetitive heterochromatin loci that are of paramount importance to the stability of our genome. This review addresses the functions of H3.3 and ATRX/DAXX in chromatin dynamics and DNA repair, as well as the impact of mutations affecting H3.3/ATRX/DAXX on treatment resistance and how the vulnerabilities they expose could foster novel therapeutic strategies. Abstract Despite their low incidence, pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric neuro-oncology. Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. Notably, mutations in H3.3 are frequently associated with mutations affecting ATRX and DAXX, which encode a chaperone complex that deposits H3.3 into heterochromatic regions, including telomeres. The K27M and G34R/V mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms, and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by differences in tumor localization, clinical outcome, as well as concurrent epigenetic and genetic alterations. Contrasting with our understanding of the molecular biology of pHGGs, there has been little improvement in the treatment of pHGGs, with the current mainstays of therapy—genotoxic chemotherapy and ionizing radiation (IR)—facing the development of tumor resistance driven by complex DNA repair pathways. Chromatin and nucleosome dynamics constitute important modulators of the DNA damage response (DDR). Here, we summarize the major DNA repair pathways that contribute to resistance to current DNA damaging agent-based therapeutic strategies and describe the telomere maintenance mechanisms encountered in pHGGs. We then review the functions of H3.3 and its chaperones in chromatin dynamics and DNA repair, as well as examining the impact of their mutation/alteration on these processes. Finally, we discuss potential strategies targeting DNA repair and epigenetic mechanisms as well as telomere maintenance mechanisms, to improve the treatment of pHGGs.
Collapse
|
15
|
Review of the genomic landscape of common pediatric CNS tumors and how data sharing will continue to shape this landscape in the future. Mol Biol Rep 2021; 48:7537-7544. [PMID: 34643931 DOI: 10.1007/s11033-021-06811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Over the past decade we have witnessed a rapid increase in our understanding of the molecular characteristics of pediatric central nervous system (CNS) tumors. Studies that utilize genomic sequencing have revealed a heterogeneous group of genetic drivers in pediatric CNS tumors including point mutations, gene fusions, and copy number alterations. This manuscript provides an overview of somatic genomic alterations in the most common pediatric CNS tumors including low grade gliomas, high grade gliomas, medulloblastomas, and ependymomas. Additionally, we will discuss the need and opportunity for genomic and clinical data sharing through the children's brain tumor network and other international initiatives.
Collapse
|
16
|
Fan Y, Peng X, Wang Y, Li B, Zhao G. Comprehensive Analysis of HDAC Family Identifies HDAC1 as a Prognostic and Immune Infiltration Indicator and HDAC1-Related Signature for Prognosis in Glioma. Front Mol Biosci 2021; 8:720020. [PMID: 34540896 PMCID: PMC8442956 DOI: 10.3389/fmolb.2021.720020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The histone deacetylase (HDAC) family limited accessibility to chromatin containing tumor suppressor genes by removing acetyl groups, which was deemed a path for tumorigenesis. Considering glioma remained one of the most common brain cancers with a dichotomy prognosis and limited therapy responses, HDAC inhibitors were an area of intensive research. However, the expression profiles and prognostic value of the HDACs required more elucidation. Methods: Multiple biomedical databases were incorporated, including ONCOMINE, GEPIA, TCGA, CGGA, GEO, TIMER, cBioPortal, and Metascape, to study expression profiles, prognostic value, immune infiltration, mutation status, and enrichment of HDACs in glioma. STRING and GeneMANIA databases were used to identify HDAC1-related molecules. LASSO regression, Cox regression, Kaplan-Meier plot, and receiver operating characteristic (ROC) analyses were performed for HDAC1-related signature construction and validation. Results: HDAC1 was significantly overexpressed in glioma, while HDAC11 was downregulated in glioblastoma. Except for HDAC 6/9/10, the HDAC family expression was significantly associated with glioma grade. Most of the HDAC family also correlated with glioma genetic mutations. Higher HDAC1 expression level predicted more dismal overall survival (OS) (p < 0.0001) and disease-free survival (DFS) (p < 0.0001), but a higher level of HDAC11 held more favorable OS (p = 2.1e-14) and DFS (p = 4.8e-08). HDAC4 displayed the highest mutation ratio, at 2.6% of the family. The prognostic value of HDAC1 was validated with ROC achieving 0.70, 0.77, 0.75, and 0.80 as separability for 1-, 3-, 5-, and 10-years OS predictions in glioma, respectively. Moreover, HDAC1 expression positively correlated with neutrophil (r = 0.60, p = 2.88e-47) and CD4+ T cell infiltration (r = 0.52, p = 3.96e-35) in lower-grade glioma. The final HDAC1-related signature comprised of FKBP3, HDAC1 (Hazard Ratio:1.49, 95%Confidence Interval:1.20-1.86), PHF21A, RUNX1T1, and RBL1, and was verified by survival analysis (p < 0.0001) and ROC with 0.80, 0.84, 0.83, and 0.88 as separability for 1-, 3-, 5-, and 10-years OS predictions, respectively. The signature was enriched in chromatin binding. Conclusion: HDAC family was of clinical significance for glioma. Most of the HDAC family significantly correlated with the glioma grade, IDH1 mutation, and 1p/19q codeletion. HDAC1 was both a prognostic and immune infiltration indicator and a central component of the HDAC1-related signature for precise prognosis prediction in glioma.
Collapse
Affiliation(s)
- Yuxiang Fan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Peng
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Darrigues E, Elberson BW, De Loose A, Lee MP, Green E, Benton AM, Sink LG, Scott H, Gokden M, Day JD, Rodriguez A. Brain Tumor Biobank Development for Precision Medicine: Role of the Neurosurgeon. Front Oncol 2021; 11:662260. [PMID: 33981610 PMCID: PMC8108694 DOI: 10.3389/fonc.2021.662260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuro-oncology biobanks are critical for the implementation of a precision medicine program. In this perspective, we review our first year experience of a brain tumor biobank with integrated next generation sequencing. From our experience, we describe the critical role of the neurosurgeon in diagnosis, research, and precision medicine efforts. In the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125 brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases (29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next generation sequencing. Eleven patients qualified for targeted therapy based on identification of actionable gene mutations. One patient with a hereditary cancer predisposition syndrome was also identified. An iterative quality improvement process was implemented to streamline the workflow between the operating room, pathology, and the research laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly improved standard operating procedure. Intraoperative selection and processing of tumor tissue by the neurosurgeon was integral to increasing success with cell culture assays. Currently, our institutional protocol integrates standard histopathological diagnosis, next generation sequencing, and functional assays on surgical specimens to develop precision medicine protocols for our patients. This perspective reviews the critical role of neurosurgeons in brain tumor biobank implementation and success as well as future directions for enhancing precision medicine efforts.
Collapse
Affiliation(s)
- Emilie Darrigues
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin W Elberson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Annick De Loose
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison P Lee
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ebonye Green
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ashley M Benton
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ladye G Sink
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hayden Scott
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Day
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
18
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
19
|
Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:ijms22020540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
|
20
|
Haase S, Nuñez FM, Gauss JC, Thompson S, Brumley E, Lowenstein P, Castro MG. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21249654. [PMID: 33348922 PMCID: PMC7766684 DOI: 10.3390/ijms21249654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the molecular characteristics, development, evolution, and therapeutic perspectives for pediatric high-grade glioma (pHGG) arising in cerebral hemispheres. Recently, the understanding of biology of pHGG experienced a revolution with discoveries arising from genomic and epigenomic high-throughput profiling techniques. These findings led to identification of prevalent molecular alterations in pHGG and revealed a strong connection between epigenetic dysregulation and pHGG development. Although we are only beginning to unravel the molecular biology underlying pHGG, there is a desperate need to develop therapies that would improve the outcome of pHGG patients, as current therapies do not elicit significant improvement in median survival for this patient population. We explore the molecular and cell biology and clinical state-of-the-art of pediatric high-grade gliomas (pHGGs) arising in cerebral hemispheres. We discuss the role of driving mutations, with a special consideration of the role of epigenetic-disrupting mutations. We will also discuss the possibilities of targeting unique molecular vulnerabilities of hemispherical pHGG to design innovative tailored therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando M. Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jessica C. Gauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sarah Thompson
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily Brumley
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
21
|
Valor LM, Hervás-Corpión I. The Epigenetics of Glioma Stem Cells: A Brief Overview. Front Oncol 2020; 10:602378. [PMID: 33344253 PMCID: PMC7738619 DOI: 10.3389/fonc.2020.602378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
Glioma stem cells (GSCs) are crucial in the formation, perpetuation and recurrence of glioblastomas (GBs) due to their self-renewal and proliferation properties. Although GSCs share cellular and molecular characteristics with neural stem cells (NSCs), GSCs show unique transcriptional and epigenetic features that may explain their relevant role in GB and may constitute druggable targets for novel therapeutic approaches. In this review, we will summarize the most important findings in GSCs concerning epigenetic-dependent mechanisms.
Collapse
Affiliation(s)
- Luis M Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Irati Hervás-Corpión
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
22
|
Georgescu MM, Islam MZ, Li Y, Circu ML, Traylor J, Notarianni CM, Kline CN, Burns DK. Global activation of oncogenic pathways underlies therapy resistance in diffuse midline glioma. Acta Neuropathol Commun 2020; 8:111. [PMID: 32680567 PMCID: PMC7367358 DOI: 10.1186/s40478-020-00992-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive pediatric brain tumors with dismal prognosis due to therapy-resistant tumor growth and invasion. We performed the first integrated histologic/genomic/proteomic analysis of 21 foci from three pontine DMG cases with supratentorial dissemination. Histone H3.3-K27M was the driver mutation, usually at high variant allele fraction due to recurrent chromosome 1q copy number gain, in combination with germline variants in ATM, FANCM and MYCN genes. Both previously reported and novel recurrent copy number variations and somatic pathogenic mutations in chromatin remodeling, DNA damage response and PI3K/MAPK growth pathways were variably detected, either in multiple or isolated foci. Proteomic analysis showed global upregulation of histone H3, lack of H3-K27 trimethylation, and further impairment of polycomb repressive complex 2 by ASXL1 downregulation. Activation of oncogenic pathways resulted from combined upregulation of N-MYC, SOX2, p65/p50 NF-κB and STAT3 transcription factors, EGFR, FGFR2, PDGFRα/β receptor tyrosine kinases, and downregulation of PHLPP1/2, PTEN and p16/INK4A tumor suppressors. Upregulation of SMAD4, PAI-1, CD44, and c-SRC in multiple foci most likely contributed to invasiveness. This integrated comprehensive analysis revealed a complex spatiotemporal evolution in diffuse intrisic pontine glioma, recommending pontine and cerebellar biopsies for accurate populational genetic characterization, and delineated common signaling pathways and potential therapeutic targets. It also revealed an unsuspected activation of a multitude of oncogenic pathways, including cancer cell reprogramming, explaining the resistance of DMG to current therapies.
Collapse
|
23
|
Raviraj R, Nagaraja SS, Selvakumar I, Mohan S, Nagarajan D. The epigenetics of brain tumors and its modulation during radiation: A review. Life Sci 2020; 256:117974. [PMID: 32553924 DOI: 10.1016/j.lfs.2020.117974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
The brain tumor is the abnormal growth of heterogeneous cells around the central nervous system and spinal cord. Most clinically prominent brain tumors affecting both adult and pediatric are glioblastoma, medulloblastoma, and ependymoma and they are classified according to their origin of tissue. Chemotherapy, radiotherapy, and surgery are important treatments available to date. However, these treatments fail due to multiple reasons, including chemoresistance and radiation resistance of cancer cells. Thus, there is a need of new therapeutic designs to target cell signaling and molecular events which are responsible for this resistance. Recently epigenetic changes received increased attention because it helps in understanding chromatin-mediated disease mechanism. The epigenetic modification alters chromatin structure that affects the docking site of many drugs which cause chemo-resistance of cancer therapy. This review centers the mechanism of how epigenetic changes affect the transcription repression and activation of various genes including Polycomb gene, V-Myc avian myelocytomatosis viral oncogene (MYCN). This review also put forth the pathway of radiation-induced reactive oxygen species generation and its role in epigenetic changes in the cellular level and its impact on tissue physiology. Additionally, there is a strong relationship between the behavior of an individual and environment-induced epigenetic regulation of gene expression. The review also discusses Transcriptome heterogeneity and role of tumor microenvironment in glioblastoma. Overall, this review emphasis important and novel epigenetic targets that could be of therapeutic benefit, which helps in overcoming the unsolved chromatin alteration in brain cancer.
Collapse
Affiliation(s)
- Raghavi Raviraj
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - SunilGowda Sunnaghatta Nagaraja
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Ilakya Selvakumar
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Suma Mohan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Devipriya Nagarajan
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India.
| |
Collapse
|
24
|
Jovčevska I. Next Generation Sequencing and Machine Learning Technologies Are Painting the Epigenetic Portrait of Glioblastoma. Front Oncol 2020; 10:798. [PMID: 32500035 PMCID: PMC7243123 DOI: 10.3389/fonc.2020.00798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Even with a rare occurrence of only 1.35% of cancer cases in the United States of America, brain tumors are considered as one of the most lethal malignancies. The most aggressive and invasive type of brain tumor, glioblastoma, accounts for 60–70% of all gliomas and presents with life expectancy of only 12–18 months. Despite trimodal treatment and advances in diagnostic and therapeutic methods, there are no significant changes in patient outcome. Our understanding of glioblastoma was significantly improved with the introduction of next generation sequencing technologies. This led to the identification of different genetic and molecular subtypes, which greatly improve glioblastoma diagnosis. Still, because of the poor life expectancy, novel diagnostic, and treatment methods are broadly explored. Epigenetic modifications like methylation and changes in histone acetylation are such examples. Recently, in addition to genetic and molecular characteristics, epigenetic profiling of glioblastomas is also used for sample classification. Further advancement of next generation sequencing technologies is expected to identify in detail the epigenetic signature of glioblastoma that can open up new therapeutic opportunities for glioblastoma patients. This should be complemented with the use of computational power i.e., machine and deep learning algorithms for objective diagnostics and design of individualized therapies. Using a combination of phenotypic, genotypic, and epigenetic parameters in glioblastoma diagnostics will bring us closer to precision medicine where therapies will be tailored to suit the genetic profile and epigenetic signature of the tumor, which will grant longer life expectancy and better quality of life. Still, a number of obstacles including potential bias, availability of data for minorities in heterogeneous populations, data protection, and validation and independent testing of the learning algorithms have to be overcome on the way.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
van Tilburg CM, Milde T, Witt R, Ecker J, Hielscher T, Seitz A, Schenk JP, Buhl JL, Riehl D, Frühwald MC, Pekrun A, Rossig C, Wieland R, Flotho C, Kordes U, Gruhn B, Simon T, Linderkamp C, Sahm F, Taylor L, Freitag A, Burhenne J, Foerster KI, Meid AD, Pfister SM, Karapanagiotou-Schenkel I, Witt O. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clin Epigenetics 2019; 11:188. [PMID: 31823832 PMCID: PMC6902473 DOI: 10.1186/s13148-019-0775-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3–18 years) with relapsed or therapy-refractory malignancies. Results A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m2/day with weekly dose escalations of 50 mg/m2 until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m2/day was determined (maximum, 580 mg/m2/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher Cmax. Five patients achieved prolonged disease control (> 12 months) and showed a higher Cmax (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion An SDR of 130 mg/m2/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker. Trial registration ClinicalTrials.gov, NCT01422499. Registered 24 August 2011,
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Till Milde
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ruth Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Angelika Seitz
- Division of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens-Peter Schenk
- Division of Pediatric Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane L Buhl
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dennis Riehl
- DKTK Immune Monitoring Unit, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany
| | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Regina Wieland
- Department of Pediatric Oncology and Hematology, Essen University Hospital, Essen, Germany
| | - Christian Flotho
- Division of Pediatric Oncology and Hematology, Freiburg University Hospital, Freiburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Cologne University Hospital, Cologne, Germany
| | - Christin Linderkamp
- Department of Pediatric Oncology and Hematology, Hannover University Hospital, Hanover, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lenka Taylor
- Pharmacy Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Freitag
- NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Olaf Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany. .,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
26
|
Peters K, Pratt D, Koschmann C, Leung D. Prolonged survival in a patient with a cervical spine H3K27M-mutant diffuse midline glioma. BMJ Case Rep 2019; 12:12/10/e231424. [PMID: 31628092 DOI: 10.1136/bcr-2019-231424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report a case of prolonged survival in a patient with known cervical intramedullary H3K27M-mutant diffuse midline glioma. A 39-year-old man presented for evaluation with several months of progressive upper extremity pain and weakness. MRI of the cervical spine revealed an intramedullary ring-enhancing lesion centred at C3-C4. Following subtotal surgical resection, a diagnosis of glioblastoma (GBM) was confirmed. Subsequent testing at a later date revealed an H3K27M mutation. He was initially treated with radiation and concomitant and adjuvant temozolomide. He had multiply recurrent disease and was treated with various regimens, including the histone deacetylase inhibitor valproic acid. The patient passed away 31 months (~2.5 years) after diagnosis. Our case is one of few reported adult spinal cord GBMs possessing the H3K27M mutation, and one with the longest reported overall survival in the literature to date.
Collapse
Affiliation(s)
- Kelsey Peters
- Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew Pratt
- Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carl Koschmann
- Paediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Denise Leung
- Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Golub D, Iyengar N, Dogra S, Wong T, Bready D, Tang K, Modrek AS, Placantonakis DG. Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Front Oncol 2019; 9:417. [PMID: 31165048 PMCID: PMC6534082 DOI: 10.3389/fonc.2019.00417] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
The identification of heterozygous neomorphic isocitrate dehydrogenase (IDH) mutations across multiple cancer types including both solid and hematologic malignancies has revolutionized our understanding of oncogenesis in these malignancies and the potential for targeted therapeutics using small molecule inhibitors. The neomorphic mutation in IDH generates an oncometabolite product, 2-hydroxyglutarate (2HG), which has been linked to the disruption of metabolic and epigenetic mechanisms responsible for cellular differentiation and is likely an early and critical contributor to oncogenesis. In the past 2 years, two mutant IDH (mutIDH) inhibitors, Enasidenib (AG-221), and Ivosidenib (AG-120), have been FDA-approved for IDH-mutant relapsed or refractory acute myeloid leukemia (AML) based on phase 1 safety and efficacy data and continue to be studied in trials in hematologic malignancies, as well as in glioma, cholangiocarcinoma, and chondrosarcoma. In this review, we will summarize the molecular pathways and oncogenic consequences associated with mutIDH with a particular emphasis on glioma and AML, and systematically review the development and preclinical testing of mutIDH inhibitors. Existing clinical data in both hematologic and solid tumors will likewise be reviewed followed by a discussion on the potential limitations of mutIDH inhibitor monotherapy and potential routes for treatment optimization using combination therapy.
Collapse
Affiliation(s)
- Danielle Golub
- Department of Neurosurgery, New York University School of Medicine, NYU Langone Health, New York, NY, United States.,Clinical and Translational Science Institute, New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Nishanth Iyengar
- New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Siddhant Dogra
- New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Taylor Wong
- Department of Neurosurgery, New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Devin Bready
- Department of Neurosurgery, New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Karen Tang
- Clinical and Translational Science Institute, New York University School of Medicine, NYU Langone Health, New York, NY, United States.,Division of Hematology/Oncology, Department of Pediatrics, New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Aram S Modrek
- Department of Radiation Oncology, New York University School of Medicine, NYU Langone Health, New York, NY, United States
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, NYU Langone Health, New York, NY, United States.,Kimmel Center for Stem Cell Biology, New York University School of Medicine, NYU Langone Health, New York, NY, United States.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, United States.,Brain Tumor Center, New York University School of Medicine, NYU Langone Health, New York, NY, United States.,Neuroscience Institute, New York University School of Medicine, NYU Langone Health, New York, NY, United States
| |
Collapse
|
28
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zimu Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pengfei Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jia Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
29
|
Krichevsky AM, Uhlmann EJ. Oligonucleotide Therapeutics as a New Class of Drugs for Malignant Brain Tumors: Targeting mRNAs, Regulatory RNAs, Mutations, Combinations, and Beyond. Neurotherapeutics 2019; 16:319-347. [PMID: 30644073 PMCID: PMC6554258 DOI: 10.1007/s13311-018-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant brain tumors are rapidly progressive and often fatal owing to resistance to therapies and based on their complex biology, heterogeneity, and isolation from systemic circulation. Glioblastoma is the most common and most aggressive primary brain tumor, has high mortality, and affects both children and adults. Despite significant advances in understanding the pathology, multiple clinical trials employing various treatment strategies have failed. With much expanded knowledge of the GBM genome, epigenome, and transcriptome, the field of neuro-oncology is getting closer to achieve breakthrough-targeted molecular therapies. Current developments of oligonucleotide chemistries for CNS applications make this new class of drugs very attractive for targeting molecular pathways dysregulated in brain tumors and are anticipated to vastly expand the spectrum of currently targetable molecules. In this chapter, we will overview the molecular landscape of malignant gliomas and explore the most prominent molecular targets (mRNAs, miRNAs, lncRNAs, and genomic mutations) that provide opportunities for the development of oligonucleotide therapeutics for this class of neurologic diseases. Because malignant brain tumors focally disrupt the blood-brain barrier, this class of diseases might be also more susceptible to systemic treatments with oligonucleotides than other neurologic disorders and, thus, present an entry point for the oligonucleotide therapeutics to the CNS. Nevertheless, delivery of oligonucleotides remains a crucial part of the treatment strategy. Finally, synthetic gRNAs guiding CRISPR-Cas9 editing technologies have a tremendous potential to further expand the applications of oligonucleotide therapeutics and take them beyond RNA targeting.
Collapse
Affiliation(s)
- Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA.
| | - Erik J Uhlmann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA
| |
Collapse
|
30
|
Combined Inhibition of HDAC and EGFR Reduces Viability and Proliferation and Enhances STAT3 mRNA Expression in Glioblastoma Cells. J Mol Neurosci 2019; 68:49-57. [PMID: 30887411 DOI: 10.1007/s12031-019-01280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 01/03/2023]
Abstract
Changes in expression of histone deacetylases (HDACs), which epigenetically regulate chromatin structure, and mutations and amplifications of the EGFR gene, which codes for the epidermal growth factor receptor (EGFR), have been reported in glioblastoma (GBM), the most common and malignant type of brain tumor. There are likely interplays between HDACs and EGFR in promoting GBM progression, and HDAC inhibition can cooperate with EGFR blockade in reducing the growth of lung cancer cells. Here, we found that either HDAC or EGFR inhibitors dose-dependently reduced the viability of U87 and A-172 human GBM cells. In U87 cells, the combined inhibition of HDACs and EGFR was more effective than inhibiting either target alone in reducing viability and long-term proliferation. In addition, HDAC or EGFR inhibition, alone or combined, led to G0/G1 cell cycle arrest. The EGFR inhibitor alone or combined with HDAC inhibition increased mRNA expression of the signal transducer and activator of transcription 3 (STAT3), which can act either as an oncogene or a tumor suppressor in GBM. These data provide early evidence that combining HDAC and EGFR inhibition may be an effective strategy to reduce GBM growth, through a mechanism possibly involving STAT3.
Collapse
|
31
|
Liu Y, Zhang Y, Hua W, Li Z, Wu B, Liu W. Clinical and Molecular Characteristics of Thalamic Gliomas: Retrospective Report of 26 Cases. World Neurosurg 2019; 126:e1169-e1182. [PMID: 30885860 DOI: 10.1016/j.wneu.2019.03.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Thalamic glioma is a type of midline glioma with poor outcomes. In the present study, we investigated the clinical and molecular features of thalamic gliomas in Chinese patients. METHODS The data from 26 patients with thalamic glioma who had undergone surgery at Shanghai Huashan Hospital from January 2011 to August 2015 were retrospectively analyzed. Various clinical and molecular factors were evaluated to explore their effects on prognosis. H3K27M mutation status and its association with relevant molecular factors were also investigated. RESULTS The mean age of the patients was 38.88 years, and no significant difference was found in sex. The most common initial symptoms were headaches (38.46%; 10 of 26) and motor deficits (30.77%; 8 of 26). The H3K27M mutation was identified in 12 patients, and mutant thalamic glioma showed less frequent O-6-methylguanine DNA methyltransferase (MGMT) promoter methylation compared with the wild-type group (P = 0.015; χ1 test). Multivariate analysis showed that the H3K27M mutation was an independent unfavorable prognostic factor for overall survival. MGMT promoter unmethylation and the TP53 mutation were identified as negative prognostic factors for progression-free survival. CONCLUSIONS Our results revealed the clinical and molecular characteristics of thalamic glioma in China. Our data have shown the absence of MGMT promoter methylation in H3K27M mutant thalamic glioma, validating it as a hallmark of H3K27M mutant gliomas. In addition, H3K27M mutation was identified as the sole unfavorable prognostic factor on overall survival. MGMT promoter unmethylation and TP53 mutation were identified as independent prognostic factors for progression-free survival.
Collapse
Affiliation(s)
- Yikui Liu
- Department of Neurosurgery, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiqi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Biwu Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenli Liu
- GenomiCare Biotechnology Company, Shanghai, China
| |
Collapse
|
32
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
33
|
Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme. Int J Mol Sci 2018; 20:ijms20010103. [PMID: 30597867 PMCID: PMC6337164 DOI: 10.3390/ijms20010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.
Collapse
|
34
|
Reßing N, Marquardt V, Gertzen CGW, Schöler A, Schramm A, Kurz T, Gohlke H, Aigner A, Remke M, Hansen FK. Design, synthesis and biological evaluation of β-peptoid-capped HDAC inhibitors with anti-neuroblastoma and anti-glioblastoma activity. MEDCHEMCOMM 2018; 10:1109-1115. [PMID: 31391882 DOI: 10.1039/c8md00454d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs) have been identified as promising epigenetic drug targets for the treatment of neuroblastoma and glioblastoma. In this work, we have rationally designed a novel class of peptoid-based histone deacetylase inhibitors (HDACi). A mini library of β-peptoid-capped HDACi was synthesized using a four-step protocol. All compounds were screened in biochemical assays for their inhibition of HDAC1 and HDAC6 and docking studies were performed to rationalize the observed selectivity profile. The synthesized compounds were further examined for tumor cell-inhibitory activity against a panel of neuroblastoma and glioblastoma cell lines. In particular, non-selective compounds with potent activity against HDAC1 and HDAC6 showed strong antiproliferative effects. The most promising HDACi, compound 6i, displayed submicromolar tumor cell-inhibitory potential (IC50: 0.21-0.67 μM) against all five cancer cell lines investigated and exceeded the activity of the FDA-approved HDACi vorinostat.
Collapse
Affiliation(s)
- Nina Reßing
- Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Leipzig University , Medical Faculty , Brüderstr. 34 , 04103 Leipzig , Germany . .,Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| | - Viktoria Marquardt
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany.,Department of Pediatric Oncology , Hematology, and Clinical Immunology, Medical Faculty , Heinrich-Heine-University , Moorenstr. 5 , 40225 Düsseldorf , Germany.,Department of Neuropathology , Medical Faculty , Heinrich-Heine-University , Moorenstr. 5 , 40225 Düsseldorf , Germany.,Division of Pediatric Neuro-Oncogenomics , German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Partner site Essen/Düsseldorf , Moorenstr. 5 , 40225 Düsseldorf , Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany.,John von Neumann Institute for Computing (NIC) , Jülich Supercomputing Centre (JSC) and Institute for Complex Systems - Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Andrea Schöler
- Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Leipzig University , Medical Faculty , Brüderstr. 34 , 04103 Leipzig , Germany .
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology , University Children's Hospital Essen , University of Duisburg-Essen , Hufelandstr. 55 , 45122 Essen , Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany.,John von Neumann Institute for Computing (NIC) , Jülich Supercomputing Centre (JSC) and Institute for Complex Systems - Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology , Independent Division for Clinical Pharmacology , Leipzig University , Medical Faculty , Härtelstr. 16-18 , 04107 Leipzig , Germany
| | - Marc Remke
- Department of Pediatric Oncology , Hematology, and Clinical Immunology, Medical Faculty , Heinrich-Heine-University , Moorenstr. 5 , 40225 Düsseldorf , Germany.,Department of Neuropathology , Medical Faculty , Heinrich-Heine-University , Moorenstr. 5 , 40225 Düsseldorf , Germany.,Division of Pediatric Neuro-Oncogenomics , German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Partner site Essen/Düsseldorf , Moorenstr. 5 , 40225 Düsseldorf , Germany
| | - Finn K Hansen
- Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Leipzig University , Medical Faculty , Brüderstr. 34 , 04103 Leipzig , Germany . .,Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
35
|
Back M, Rodriguez M, Jayamanne D, Khasraw M, Lee A, Wheeler H. Understanding the Revised Fourth Edition of the World Health Organization Classification of Tumours of the Central Nervous System (2016) for Clinical Decision-making: A Guide for Oncologists Managing Patients with Glioma. Clin Oncol (R Coll Radiol) 2018; 30:556-562. [DOI: 10.1016/j.clon.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022]
|
36
|
Singleton WGB, Bienemann AS, Woolley M, Johnson D, Lewis O, Wyatt MJ, Damment SJP, Boulter LJ, Killick-Cole CL, Asby DJ, Gill SS. The distribution, clearance, and brainstem toxicity of panobinostat administered by convection-enhanced delivery. J Neurosurg Pediatr 2018; 22:288-296. [PMID: 29856296 DOI: 10.3171/2018.2.peds17663] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 μM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 μM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 μM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.
Collapse
Affiliation(s)
- William G B Singleton
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
| | - Alison S Bienemann
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
| | - Max Woolley
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
- 2Neurological Applications Department, Renishaw PLC, Wotton under Edge, Gloucestershire; and
| | - David Johnson
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
- 2Neurological Applications Department, Renishaw PLC, Wotton under Edge, Gloucestershire; and
| | - Owen Lewis
- 2Neurological Applications Department, Renishaw PLC, Wotton under Edge, Gloucestershire; and
| | - Marcella J Wyatt
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
| | | | - Lisa J Boulter
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
| | - Clare L Killick-Cole
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
| | - Daniel J Asby
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
| | - Steven S Gill
- 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol
- 2Neurological Applications Department, Renishaw PLC, Wotton under Edge, Gloucestershire; and
| |
Collapse
|
37
|
Pathologic Findings and Clinical Course of Midline Paraventricular Gliomas Diagnosed Using a Neuroendoscope. World Neurosurg 2018. [DOI: 10.1016/j.wneu.2018.02.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Klonou A, Spiliotakopoulou D, Themistocleous MS, Piperi C, Papavassiliou AG. Chromatin remodeling defects in pediatric brain tumors. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:248. [PMID: 30069450 DOI: 10.21037/atm.2018.04.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain tumors are regarded as the most prevalent solid neoplasms in children and the principal reason of death in this population. Even though surgical resection, radiotherapy and chemotherapy have improved outcome, a significant number of patients die in 6-12 months after diagnosis while those who survive, frequently experience side effects and relapses. Several studies suggest that many types of cancer including pediatric brain tumors are characterized by alterations in epigenetic profiles with deregulated chromatin remodeling and posttranslational covalent histone modifications playing a prominent role. Moreover, interplay of genetic and epigenetic changes has been associated to tumor growth and invasion as well as to modulation of patient's response to current treatment. Therefore, detection of tumor-specific histone changes and elucidation of the underlying gene defects will allow successful tailoring of personalized treatment. The goal of this review is to provide an update of genetic and epigenetic alterations that characterize pediatric brain tumors focusing on histone modifications, aiming at directing future molecular and epigenetic therapeutic targeting.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Spiliotakopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Bavle A, Chintagumpala M. Pediatric high-grade glioma: a review of biology, prognosis, and treatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13566-018-0344-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Kawamura Y, Takouda J, Yoshimoto K, Nakashima K. New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biol Toxicol 2018; 34:425-440. [PMID: 29383547 DOI: 10.1007/s10565-017-9420-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
Neural stem cells (NSCs) undergo self-renewal and generate neurons and glial cells under the influence of specific signals from surrounding environments. Glioblastoma multiforme (GBM) is a highly lethal brain tumor arising from NSCs or glial precursor cells owing to dysregulation of transcriptional and epigenetic networks that control self-renewal and differentiation of NSCs. Highly tumorigenic glioblastoma stem cells (GSCs) constitute a small subpopulation of GBM cells, which share several characteristic similarities with NSCs. GSCs exist atop a stem cell hierarchy and generate heterogeneous populations that participate in tumor propagation, drug resistance, and relapse. During multimodal treatment, GSCs de-differentiate and convert into cells with malignant characteristics, and thus play critical roles in tumor propagation. In contrast, differentiation therapy that induces GBM cells or GSCs to differentiate into a neuronal or glial lineage is expected to inhibit their proliferation. Since stem cell differentiation is specified by the cells' epigenetic status, understanding their stemness and the epigenomic situation in the ancestor, NSCs, is important and expected to be helpful for developing treatment modalities for GBM. Here, we review the current findings regarding the epigenetic regulatory mechanisms of NSC fate in the developing brain, as well as those of GBM and GSCs. Furthermore, considering the similarities between NSCs and GSCs, we also discuss potential new strategies for GBM treatment.
Collapse
Affiliation(s)
- Yoichiro Kawamura
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Takouda
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
41
|
Cai X, Sughrue ME. Glioblastoma: new therapeutic strategies to address cellular and genomic complexity. Oncotarget 2017; 9:9540-9554. [PMID: 29507709 PMCID: PMC5823664 DOI: 10.18632/oncotarget.23476] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is the most invasive and devastating primary brain tumor with a median overall survival rate about 18 months with aggressive multimodality therapy. Its unique characteristics of heterogeneity, invasion, clonal populations maintaining stem cell-like cells and recurrence, have limited responses to a variety of therapeutic approaches, and have made GBM the most difficult brain cancer to treat. A great effort and progress has been made to reveal promising molecular mechanisms to target therapeutically. Especially with the emerging of new technologies, the mechanisms underlying the pathology of GBM are becoming more clear. The purpose of this review is to summarize the current knowledge of molecular mechanisms of GBM and highlight the novel strategies and concepts for the treatment of GBM.
Collapse
Affiliation(s)
- Xue Cai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
42
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
43
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|