1
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
2
|
Roldán Gallardo FF, Martínez Piñerez DE, Reinarz Torrado KF, Berg GA, Herzfeld JD, Da Ros VG, López Seoane M, Maldonado CA, Quintar AA. Extracellular Vesicles Contribute to Oxidized LDL-Induced Stromal Cell Proliferation in Benign Prostatic Hyperplasia. BIOLOGY 2024; 13:827. [PMID: 39452137 PMCID: PMC11504470 DOI: 10.3390/biology13100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Clinical and experimental evidence has linked Benign Prostatic Hyperplasia (BPH) with dyslipidemic and hypercholesterolemic conditions, though the underlying cellular mechanisms remain unclear. This study investigates the impact of dyslipidemia, specifically oxidized LDL (OxLDL), on prostatic stromal cell proliferation and the release of extracellular vesicles (EVs). METHODS Mice were fed a high-fat diet, and human prostatic stromal cells (HPSCs) were treated with OxLDL. Proliferation assays and EV characterization were performed to assess the role of EVs in BPH progression. RESULTS Pro-atherogenic conditions significantly increased cell proliferation in both murine prostatic cells and HPSCs. Treatment with metformin effectively inhibited OxLDL-induced proliferation. Additionally, OxLDL stimulated the production and release of pro-proliferative EVs by HPSCs, which further promoted cellular proliferation. CONCLUSIONS The findings suggest that dyslipidemia drives prostatic stromal cell proliferation and EV secretion, contributing to BPH progression. Metformin demonstrates potential as a therapeutic agent to mitigate these effects, offering insight into novel strategies for BPH management. This study highlights the complex interaction between dyslipidemia, cell proliferation, and extracellular communication in the context of BPH pathogenesis.
Collapse
Affiliation(s)
- Franco F. Roldán Gallardo
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Daniel E. Martínez Piñerez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
| | - Kevin F. Reinarz Torrado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
| | - Gabriela A. Berg
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1000, Argentina
| | - Jael D. Herzfeld
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1000, Argentina
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1000, Argentina
| | | | - Cristina A. Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Amado A. Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| |
Collapse
|
3
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
4
|
Huang C, Zhang J, Wang H, Liang C. Exosomes That Have Different Cellular Origins Followed by the Impact They Have on Prostate Tumor Development in the Tumor Microenvironment. Cancer Rep (Hoboken) 2024; 7:e70001. [PMID: 39229670 PMCID: PMC11372288 DOI: 10.1002/cnr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common urinary tumor with the highest incidence rate and the second among the leading causes of death worldwide for adult males. In the worldwide cancer incidence rate, PCa is on the increase. The cancerous cells in the prostate and cells in the microenvironment surrounding the tumor communicate through signal transduction, which is crucial for the development and spread of PCa. RECENT FINDINGS Exosomes are nanoscale vesicles released into body fluids by various cells that can aid intercellular communication by releasing nucleic acids and proteins. Exosomes published by different types of cells in the tumor microenvironment can have varying impacts on the proliferation and growth of tumor cells via various signaling pathways, modes of action, and secreted cytokines. CONCLUSION The main purpose of this review is to describe the effects of different cell-derived exosomes in the tumor microenvironment of PCa on the progression of tumor cells, as well as to summarize and discuss the prospects for the application of exosomes in the treatment and diagnosis of PCa.
Collapse
Affiliation(s)
- Cong Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Jialong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Min L, Bu F, Meng J, Liu X, Guo Q, Zhao L, Li Z, Li X, Zhu S, Zhang S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. eLife 2024; 12:RP88675. [PMID: 39121006 PMCID: PMC11315448 DOI: 10.7554/elife.88675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Jingxin Meng
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | | | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | | | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking UniversityBeijingChina
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| |
Collapse
|
7
|
Wang X, Zhang Y, Wu Y, Wang C, Li S, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Ning Y, Zhao H. Integration of miRNA in exosomes and single-cell RNA-seq profiles in endemic osteoarthritis, Kashin-Beck disease. Biofactors 2024; 50:725-737. [PMID: 38156801 DOI: 10.1002/biof.2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Kashin-Beck disease (KBD) is an endemic, chronic degenerative joint disease in China. Exosomes miRNAs, as signaling molecules in intercellular communication, can transfer specific biological martials into target cell to regulate their function and might participate in the pathogenesis of KBD. We isolated serum and chondrocytes-derived exosomes, miRNA sequencing revealed exosomes miRNA profiles and differentially expressed miRNAs (DE-miRNAs) were identified. The target genes were predicted of known and novel DE-miRNAs with TargetScan 5.0 and miRanda 3.3a database. Single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in KBD. And we performed comparative analysis between the serum and chondrocytes-derived exosomes DE-miRNA target genes and differentially expressed genes of each cell clusters. A total of 20 DE-miRNAs were identified in serum-derived exosomes. In the miRNA expression of chondrocytes-derived exosomes, 53 DE-miRNAs were identified. 16,063 predicted targets were identified as the target genes in the serum-derived exosomes, 57,316 predicted targets were identified as the target genes in the chondrocytes-derived exosomes. Seven clusters were labeled by cell type according to the expression of previously described markers. Three hundred fifteen common genes were found among serum/chondrocytes-derived exosomes DE-miRNA target genes and DEGs identified by scRNA-seq analysis. We firstly integratly analyzed the serum and chondrocytes exosomes miRNA with single-cell RNA sequencing (scRNA-seq) data of KBD chondrocyte, the results showed that DE-miRNAs in exosomes might play a potential role in regulating genes expression in different KBD chondrocytes clusters by exosomes mediating cell-cell communications functions, which could improve the new diagnosis and treatment methods for KBD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
8
|
Teng Z, Jin C, Wang S, Han Z, Zhang Y, Wang Y. Predicting surgical efficacy and diagnosing histological inflammation: the clinical significance of prostate exosome proteins in benign prostatic hyperplasia. Transl Androl Urol 2024; 13:930-939. [PMID: 38983479 PMCID: PMC11228684 DOI: 10.21037/tau-23-655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 07/11/2024] Open
Abstract
Background Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) among the aging male population. Recent studies have shown that histological inflammation (HI) plays a significant role in BPH, with prostatic exosomal protein (PSEP) identified as a potential biomarker for prostate diseases. Therefore, this study aimed to explore the effect of HI on LUTS in patients with BPH, and to further explore the clinical value of PSEP as a diagnostic biomarker of BPH complicated with HI and whether PSEP could be used as an index to predict the improvement of LUTS after operation. Methods This study was an open-label, cohort study. The study enrolled all patients who were clinical diagnosed as BPH with LUTS and prepared to receive operation of the prostate at the Department of Urology of the Second Hospital of Hebei Medical University. International Prostate Symptom Score (IPSS) were used to evaluate the LUTS of the BPH. And the enrolled patients were divided into four groups, including none, mild HI, moderate HI, and severe HI, based on postoperative pathological results. Then the relationships between HI and IPSS, the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI), as well as PSEP were analyzed. Simple and multiple linear regression analyses were performed on the preoperative IPSS and the difference of IPSS before and after surgery was examined. SPSS software version 26 was used for statistical analysis and Prism 9.0 was used to make violin plots. Results A total of 69 patients were enrolled in the study. The violin plot results indicated IPSS and NIH-CPSI scores exhibited significant increases in correlation with the severity levels of HI (P<0.001; P<0.001). Among BPH patients with total prostate-specific antigen (t-PSA) levels higher than 4.0 ng/mL, a significant correlation was observed between PSEP levels and HI (P=0.04). Besides, simple and multiple linear regression analysis showed that HI (P<0.001) or PSEP (P=0.03) was significantly associated with IPSS and improvement of LUTS, assessed by postoperative and preoperative IPSS differences. Conclusions The study indicated that IPSS and PSEP (when t-PSA >4 ng/mL) were correlated with the severity of HI in patients with BPH. PSEP was linearly correlated with IPSS and the degree of reduction in IPSS after surgery. Consequently, PSEP may serve as a promising predictor for assessing surgical efficacy and diagnosing the severity of HI in patients with BPH.
Collapse
Affiliation(s)
- Zhihai Teng
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenggen Jin
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Song Wang
- Department of Urology, Hengshui People’s Hospital, Hengshui, China
| | - Zhenwei Han
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaxuan Wang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Shams SGE, Ocampo RJ, Rahman S, Makhlouf MM, Ali J, Elnashar MM, Ebrahim HL, Abd Elmageed ZY. Decoding the secrets of small extracellular vesicle communications: exploring the inhibition of vesicle-associated pathways and interception strategies for cancer treatment. Am J Cancer Res 2024; 14:1957-1980. [PMID: 38859839 PMCID: PMC11162651 DOI: 10.62347/jwmx3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer disease is the second leading cause of death worldwide. In 2023, about 2 million new cancer cases and 609,820 cancer deaths are projected to occur in the United States. The driving forces of cancer progression and metastasis are widely varied and comprise multifactorial events. Although there is significant success in treating cancer, patients still present with tumors at advanced stages. Therefore, the discovery of novel oncologic pathways has been widely developed. Tumor cells communicate with each other through small extracellular vesicles (sEVs), which contribute to tumor-stromal interaction and promote tumor growth and metastasis. sEV-specific inhibitors are being investigated as a next-generation cancer therapy. A literature search was conducted to discuss different options for targeting sEV pathways in cancer cells. However, there are some challenges that need to be addressed in targeting sEVs: i) specificity and toxicity of sEV inhibitor, ii) targeted delivery of sEV inhibitors, iii) combination of sEV inhibitors with current standard chemotherapy to improve patients' clinical outcomes, and iv) data reproducibility and applicability at distinct levels of the disease. Despite these challenges, sEV inhibitors have immense potential for effectively treating cancer patients.
Collapse
Affiliation(s)
- Shams GE Shams
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Ron-Joseph Ocampo
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Sanna Rahman
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Maysoon M Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Jihad Ali
- School of Medicine, Medipol UniversityKavacik, Beykoz 34810, Istanbul, Turkey
| | - Magdy M Elnashar
- School of Medicine, Pharmacy and Biomedical Sciences, Curtin UniversityBentley, WA 6102, Australia
| | - Hassan L Ebrahim
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Zakaria Y Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| |
Collapse
|
10
|
Al-Daffaie FM, Al-Mudhafar SF, Alhomsi A, Tarazi H, Almehdi AM, El-Huneidi W, Abu-Gharbieh E, Bustanji Y, Alqudah MAY, Abuhelwa AY, Guella A, Alzoubi KH, Semreen MH. Metabolomics and Proteomics in Prostate Cancer Research: Overview, Analytical Techniques, Data Analysis, and Recent Clinical Applications. Int J Mol Sci 2024; 25:5071. [PMID: 38791108 PMCID: PMC11120916 DOI: 10.3390/ijms25105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) is a significant global contributor to mortality, predominantly affecting males aged 65 and above. The field of omics has recently gained traction due to its capacity to provide profound insights into the biochemical mechanisms underlying conditions like prostate cancer. This involves the identification and quantification of low-molecular-weight metabolites and proteins acting as crucial biochemical signals for early detection, therapy assessment, and target identification. A spectrum of analytical methods is employed to discern and measure these molecules, revealing their altered biological pathways within diseased contexts. Metabolomics and proteomics generate refined data subjected to detailed statistical analysis through sophisticated software, yielding substantive insights. This review aims to underscore the major contributions of multi-omics to PCa research, covering its core principles, its role in tumor biology characterization, biomarker discovery, prognostic studies, various analytical technologies such as mass spectrometry and Nuclear Magnetic Resonance, data processing, and recent clinical applications made possible by an integrative "omics" approach. This approach seeks to address the challenges associated with current PCa treatments. Hence, our research endeavors to demonstrate the valuable applications of these potent tools in investigations, offering significant potential for understanding the complex biochemical environment of prostate cancer and advancing tailored therapeutic approaches for further development.
Collapse
Affiliation(s)
- Fatima M. Al-Daffaie
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| | - Sara F. Al-Mudhafar
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
| | - Aya Alhomsi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
| | - Hamadeh Tarazi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| | - Ahmed M. Almehdi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Adnane Guella
- Nephrology Department, University Hospital Sharjah, Sharjah 27272, United Arab Emirates;
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| |
Collapse
|
11
|
Insuasty D, Mutis M, Trilleras J, Illicachi LA, Rodríguez JD, Ramos-Hernández A, San-Juan-Vergara HG, Cadena-Cruz C, Mora JR, Paz JL, Méndez-López M, Pérez EG, Aliaga ME, Valencia J, Márquez E. Synthesis, Photophysical Properties, Theoretical Studies, and Living Cancer Cell Imaging Applications of New 7-(Diethylamino)quinolone Chalcones. ACS OMEGA 2024; 9:18786-18800. [PMID: 38708212 PMCID: PMC11064003 DOI: 10.1021/acsomega.3c07242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 05/07/2024]
Abstract
In this article, three unsymmetrical 7-(diethylamino)quinolone chalcones with D-π-A-D and D-π-A-π-D type push-pull molecular arrangements were synthesized via a Claisen-Schmidt reaction. Using 7-(diethylamino)quinolone and vanillin as electron donor (D) moieties, these were linked together through the α,β-unsaturated carbonyl system acting as a linker and an electron acceptor (A). The photophysical properties were studied, revealing significant Stokes shifts and strong solvatofluorochromism caused by the ICT and TICT behavior produced by the push-pull effect. Moreover, quenching caused by the population of the TICT state in THF-H2O mixtures was observed, and the emission in the solid state evidenced a red shift compared to the emission in solution. These findings were corroborated by density functional theory (DFT) calculations employing the wb97xd/6-311G(d,p) method. The cytotoxic activity of the synthesized compounds was assessed on BHK-21, PC3, and LNCaP cell lines, revealing moderate activity across all compounds. Notably, compound 5b exhibited the highest activity against LNCaP cells, with an LC50 value of 10.89 μM. Furthermore, the compounds were evaluated for their potential as imaging agents in living prostate cells. The results demonstrated their favorable cell permeability and strong emission at 488 nm, positioning them as promising candidates for cancer cell imaging applications.
Collapse
Affiliation(s)
- Daniel Insuasty
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Mario Mutis
- Grupo
de Investigación en Compuestos Heterocíclicos, Facultad
de Ciencias Básicas, Universidad
del Atlántico, Puerto Colombia 081007, Colombia
| | - Jorge Trilleras
- Grupo
de Investigación en Compuestos Heterocíclicos, Facultad
de Ciencias Básicas, Universidad
del Atlántico, Puerto Colombia 081007, Colombia
| | - Luis A. Illicachi
- Grupo
de Investigación en Química y Biotecnología,
Facultad de Ciencias Básicas, Universidad
Santiago de Cali, Calle 5. No. 62-00, Cali 760032, Colombia
| | - Juan D. Rodríguez
- Programa
de medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 7 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Andrea Ramos-Hernández
- Grupo
Química Supramolecular Aplicada, Semillero Electroquímica
Aplicada, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| | - Homero G. San-Juan-Vergara
- Departamento
de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Christian Cadena-Cruz
- Departamento
de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - José R. Mora
- Instituto
de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería
Química, Universidad San Francisco
de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Apartado, 15081 Lima, Perú
| | - Maximiliano Méndez-López
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Edwin G. Pérez
- Organic
Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Margarita E. Aliaga
- Physical
Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jhesua Valencia
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Edgar Márquez
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| |
Collapse
|
12
|
Cañón-Beltrán K, Cajas YN, Almpanis V, Egido SG, Gutierrez-Adan A, González EM, Rizos D. MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway. Biol Res 2024; 57:11. [PMID: 38520036 PMCID: PMC10960404 DOI: 10.1186/s40659-024-00488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and their cargoes, including MicroRNAs (miRNAs) play a crucial role in cell-to-cell communication. We previously demonstrated the upregulation of bta-mir-148b in EVs from oviductal fluid of cyclic cows. This miRNA is linked to the TGF-β pathway in the cell proliferation. Our aim was to verify whether miR-148b is taken up by embryos through gymnosis, validate its target genes, and investigate the effect of miR-148b supplementation on early embryo development and quality. METHODS Zygotes were cultured in SOF + 0.3% BSA (Control) or supplemented with: 1 µM miR-148b mimics during: D1-D7 (miR148b) or D1-D4 (miR148b-OV: representing miRNA effect in the oviduct) or D4-D7 (miR148b-UT: representing miRNA effect in the uterus) or 1 µM control mimics was used during: D1-D7 (CMimic). Embryos at ≥ 16-cells and D7 blastocysts (BD7) were collected to examine the mRNA abundance of transcripts linked to the TGF-β pathway (TGFBR2, SMAD1, SMAD2, SMAD3, SMAD5, BMPR2, RPS6KB1, POU5F1, NANOG), total cell number (TC), trophectoderm (TE), and inner cell mass (ICM) were also evaluated. One-way ANOVA was used for all analyses. RESULTS We demonstrated that miR-148b can be taken up in both 16-cell embryos and BD7 by gymnosis, and we observed a decrease in SMAD5 mRNA, suggesting it's a potential target of miR-148b. Cleavage and blastocysts rates were not affected in any groups; however, supplementation of miR-148b mimics had a positive effect on TC, TE and ICM, with values of 136.4 ± 1.6, 92.5 ± 0.9, 43.9 ± 1.3 for miR148b and 135.3 ± 1.5, 92.6 ± 1.2, 42.7 ± 0.8, for miR148b-OV group. Furthermore, mRNA transcripts of SMAD1 and SMAD5 were decreased (P ≤ 0.001) in 16-cell embryos and BD7 from miR148b and miR148b-OV groups, while POU5F1 and NANOG were upregulated (P ≤ 0.001) in BD7 and TGFBR2 was only downregulated in 16-cell embryos. pSMAD1/5 levels were higher in the miR148b and miR148b-OV groups. CONCLUSIONS Our findings suggest that supplementation of bta-miR-148b mimics during the entire culture period (D1 - D7) or from D1 - D4 improves embryo quality and influences the TGF-β signaling pathway by altering the transcription of genes associated with cellular differentiation and proliferation. This highlights the importance of miR-148b on embryo quality and development.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
- Programa de Medicina Veterinaria y Zootecnia, Corporación Universitaria del Huila (CORHUILA), Grupo Kyron, Huila, Colombia
| | - Yulia N Cajas
- Department Agrarian Production, Technical University of Madrid (UPM), Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Vasileios Almpanis
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Sandra Guisado Egido
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain.
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain.
| |
Collapse
|
13
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Li Y, Cao Y, Liu W, Chen F, Zhang H, Zhou H, Zhao A, Luo N, Liu J, Wu L. Candidate biomarkers of EV-microRNA in detecting REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis 2024; 10:18. [PMID: 38200052 PMCID: PMC10781790 DOI: 10.1038/s41531-023-00628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) lacks reliable, non-invasive biomarker tests for early intervention and management. Thus, a minimally invasive test for the early detection and monitoring of PD and REM sleep behavior disorder (iRBD) is a highly unmet need for developing drugs and planning patient care. Extracellular vehicles (EVs) are found in a wide variety of biofluids, including plasma. EV-mediated functional transfer of microRNAs (miRNAs) may be viable candidates as biomarkers for PD and iRBD. Next-generation sequencing (NGS) of EV-derived small RNAs was performed in 60 normal controls, 56 iRBD patients and 53 PD patients to profile small non-coding RNAs (sncRNAs). Moreover, prospective follow-up was performed for these 56 iRBD patients for an average of 3.3 years. Full-scale miRNA profiles of plasma EVs were evaluated by machine-learning methods. After optimizing the library construction method for low RNA inputs (named EVsmall-seq), we built a machine learning algorithm that identified diagnostic miRNA signatures for distinguishing iRBD patients (AUC 0.969) and PD patients (AUC 0.916) from healthy individuals; and PD patients (AUC 0.929) from iRBD patients. We illustrated all the possible expression patterns across healthy-iRBD-PD hierarchy. We also showed 20 examples of miRNAs with consistently increasing or decreasing expression levels from controls to iRBD to PD. In addition, four miRNAs were found to be correlated with iRBD conversion. Distinct characteristics of the miRNA profiles among normal, iRBD and PD samples were discovered, which provides a panel of promising biomarkers for the identification of PD patients and those in the prodromal stage iRBD.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Cao
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Wei Liu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Fangzheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongdao Zhang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haisheng Zhou
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ligang Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Lee KY, Beatson EL, Knechel MA, Sommer ER, Napoli GC, Risdon EN, Leon AF, Depaz RD, Strope JD, Price DK, Chau CH, Figg WD. Detection of Extracellular Vesicle-Derived RNA as Potential Prostate Cancer Biomarkers: Role of Cancer-type SLCO1B3 and ABCC3. J Cancer 2024; 15:615-622. [PMID: 38213719 PMCID: PMC10777027 DOI: 10.7150/jca.90836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
Extracellular vesicles (EVs) provide a minimally invasive liquid biopsy source of tumor-specific markers for patients who have already undergone prostatectomies. Our laboratory has previously demonstrated enrichment of the cancer-type solute carrier organic anion transporter family 1B3 (ct-SLCO1B3) and the ATP Binding Cassette Subfamily Member C (ABCC3) in castration-resistant cell lines (CRPC). However, their expression in EVs has yet to be explored. Our study demonstrated that ct-SLCO1B3 and ABCC3 are highly detectable in CRPC cell line-derived EVs. We also showed that ct-SLCO1B3 and ABCC3 were detectable in a CRPC xenograft mouse model, both intratumorally and in plasma-derived EVs. Our results provide evidence for EV-contained ct-SLCO1B3 and ABCC3 as novel, EV-based tumor markers for prostate cancer progression.
Collapse
Affiliation(s)
- Kristi Y. Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erica L. Beatson
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martina A. Knechel
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elijah R. Sommer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giulia C. Napoli
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily N. Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andres F. Leon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roger D. Depaz
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D. Strope
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K. Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Gardani CFF, Pedrazza EL, Paz VS, Zanirati GG, da Costa JC, Andrejew R, Ulrich H, Scholl JN, Figueiró F, Rockenbach L, Morrone FB. Exploring CD39 and CD73 Expression as Potential Biomarkers in Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:1619. [PMID: 38004484 PMCID: PMC10675019 DOI: 10.3390/ph16111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PC) is the most diagnosed tumor in males and ranks as the second leading cause of male mortality in the western world. The CD39 and CD73 enzymes play a crucial role in cancer regulation by degrading nucleotides and forming nucleosides. This study aimed to investigate the expression of the CD39 and CD73 enzymes as potential therapeutic targets for PC. The initial part of this study retrospectively analyzed tissue samples from 23 PC patients. Using the TissueFAXSTM cytometry platform, we found significantly higher levels of CD39-labeling its intensity compared to CD73. Additionally, we observed a correlation between the Gleason score and the intensity of CD39 expression. In the prospective arm, blood samples were collected from 25 patients at the time of diagnosis and after six months of treatment to determine the expression of CD39 and CD73 in the serum extracellular vesicles (EVs) and to analyze nucleotide hydrolysis. Notably, the expression of CD39 in the EVs was significantly increased compared to the CD73 and/or combined CD39/CD73 expression levels at initial collection. Furthermore, our results demonstrated positive correlations between ADP hydrolysis and the transurethral resection and Gleason score. Understanding the role of ectonucleotidases is crucial for identifying new biomarkers in PC.
Collapse
Affiliation(s)
- Carla Fernanda Furtado Gardani
- Escola de Medicina, Programa de Pós-Graduaҫão em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (C.F.F.G.); (L.R.)
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Eduardo Luiz Pedrazza
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Victória Santos Paz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Gabriele Goulart Zanirati
- Instituto do Cérebro da PUCRS, InsCer, Avenida Ipiranga, 6690, Jardim Botânico, Porto Alegre 906010-000, RS, Brazil; (G.G.Z.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Instituto do Cérebro da PUCRS, InsCer, Avenida Ipiranga, 6690, Jardim Botânico, Porto Alegre 906010-000, RS, Brazil; (G.G.Z.); (J.C.d.C.)
| | - Roberta Andrejew
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-000, SP, Brazil; (R.A.); (H.U.)
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-000, SP, Brazil; (R.A.); (H.U.)
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, RS, Brazil; (J.N.S.); (F.F.)
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, RS, Brazil; (J.N.S.); (F.F.)
| | - Liliana Rockenbach
- Escola de Medicina, Programa de Pós-Graduaҫão em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (C.F.F.G.); (L.R.)
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Fernanda Bueno Morrone
- Escola de Medicina, Programa de Pós-Graduaҫão em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (C.F.F.G.); (L.R.)
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
- Instituto do Cérebro da PUCRS, InsCer, Avenida Ipiranga, 6690, Jardim Botânico, Porto Alegre 906010-000, RS, Brazil; (G.G.Z.); (J.C.d.C.)
- Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduaҫão em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| |
Collapse
|
17
|
Li Y, Shi X, Jia E, Qin S, Yu F. Extracellular vesicle biomarkers for prostate cancer diagnosis: A systematic review and meta-analysis. Urol Oncol 2023; 41:440-453. [PMID: 37914569 DOI: 10.1016/j.urolonc.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023]
Abstract
Extracellular vesicle (EV) biomarkers have promising diagnostic and screening capabilities for several cancers, and growing evidence indicates that EV biomarkers can be used as diagnostic markers for prostate cancer (CaP). However, data on the diagnostic accuracy of EV biomarkers for CaP diagnosis are conflicting. We performed a systematic review and meta-analysis, aimed to summarize the diagnostic performance of EV biomarkers for CaP. We systematically searched PubMed, Medline, and Web of Science from inception to 12 September 2022 for studies that assessed the diagnostic accuracy of EV biomarkers for CaP. We summarized the pooled sensitivity and specificity calculated using a random-effects model. We identified 19 studies involving 976 CaP patients and 676 noncancerous controls; one study conducted independent validation tests. Ten studies emphasized EV RNAs, 6 on EV proteins, and 9 on biomarker panels. MiR-141, miR-221, and PSMA were the most frequently reported RNAs and proteins for CaP diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 70% (95% CI: 68%-71%), 79% (95% CI: 77%-80%), 85% (95% CI: 81%-87%), and 83% (95% CI: 80%-86%), respectively. The pooled sensitivity and specificity of the EV panels were 84% (95% CI: 82%-86%) and 86% (95% CI: 84%-88%), respectively. The studies may have been somewhat limited by the EV isolation and detection techniques. EV biomarkers showed promising diagnostic capability for CaP. Addressing deficiencies in EV isolation and detection techniques has important implications for the application of these novel noninvasive biomarkers in clinical practice.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Erna Jia
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaoyou Qin
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Clos-Sansalvador M, Monguió-Tortajada M, Grau-Leal F, Ruiz de Porras V, Garcia SG, Sanroque-Muñoz M, Font-Morón M, Franquesa M, Borràs FE. Agarose spot migration assay to measure the chemoattractant potential of extracellular vesicles: applications in regenerative medicine and cancer metastasis. BMC Biol 2023; 21:236. [PMID: 37884994 PMCID: PMC10605981 DOI: 10.1186/s12915-023-01729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The recruitment of effector cells is one of the novel functions described for extracellular vesicles (EVs) that needs further study. For instance, cell recruitment by mesenchymal stromal cell derived-EVs (MSC-EVs) is one of the features by which MSC-EVs may induce regeneration and ameliorate tissue injury. On the other hand, increasing evidence suggests that cancer EVs play an important role in the preparation of the pre-metastatic niche (PMN) by recruiting their primary tumour cells. Understanding and measuring the potential of MSC-EVs or cancer-EVs to induce cell migration and recruitment is essential for cell-free therapeutic approaches and/or for a better knowledge of cancer metastasis, respectively. In this context, classical in vitro migration assays do not completely mimic the potential situation by which EVs exert their chemotactic capacity. RESULTS We adapted an agarose spot migration assay as an in vitro system to evaluate the cell recruitment capacity of locally delivered or localized EVs. Cell migration was tracked for 12 h or 48 h, respectively. Thereafter, endpoint migration images and time-lapse videos were analysed to quantify several parameters aiming to determine the migration of cells to either MSC-EV or pro-metastatic EV. The number of cells contained inside the agarose spots, the migration distance, the area occupied by cells, the directionality of the cell movement, and the Euclidean distance were measured. This multi-parametric evaluation revealed the potential of different MSC-EV preparations to recruit endothelial cells and to detect an enhanced recruitment capacity of highly metastatic PC3-derived EVs (PC3-EVs) compared to low-metastatic LNCaP-EVs in a tumour cell-specific manner. CONCLUSIONS Overall, this agarose spot migration assay may offer a diversity of measurements and migration settings not provided by classical migration assays and reveal its potential use in the EV field in two different contexts with recruitment in common: regeneration and cancer metastasis.
Collapse
Affiliation(s)
- Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Monguió-Tortajada
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP) & Cardiology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Catalonia, Spain
| | - Ferran Grau-Leal
- RCPB Group, CARE Program, Germans Trias i Pujol Research Institute (IGTP); ProCURE Program, Catalan Institute of Oncology, Carretera de Can Ruti, Camí de Les Escoles S/N, Badalona, 08916, Spain
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Spain
| | - Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain.
| | - Francesc E Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
19
|
Yazdani M, Saberi N, Baradaran A, Mohajeri Z. Diagnostic value of total serum/free prostate specific antigen and prostate cancer antigen-3 levels in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:414-419. [PMID: 37941653 PMCID: PMC10628628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/16/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The purpose of this study was to compare serum total and free prostate specific antigen (PSA) levels and serum prostate cancer antigen-3 (PCA3) levels in patients with prostate cancer in 2018 and 2019. METHODS This research was a prospective case-control study. The case group included all patients with suspected prostate cancer, and the control group included individuals without prostate disease who were referred to Ali Asghar and Nour Hospital in Isfahan, Iran, from October 2018 to October 2020. The serum total PSA, free PSA, and PCA3 levels in both groups were measured using the ELISA method with standard kits and compared between the groups. RESULTS The two groups were matched in terms of age and body mass index (BMI). The results showed that the mean free PSA level in the control group was significantly higher than that in the case group (P<0.05). Conversely, the mean total PSA level in the case group was significantly higher than that in the control group (P<0.05). However, no significant difference was observed in the mean PCA3 levels between the case and control groups. In addition, the total PSA variable with a cutoff of ≤3.14 exhibited 93% sensitivity and 82% specificity, demonstrating the highest diagnostic accuracy in distinguishing between prostate cancer and healthy individuals. Similarly, the PCA3 value with a cutoff of ≤3.5 had a sensitivity and specificity of 70% and 72%, respectively. CONCLUSION Overall, the study results indicated that total PSA and PCA3 levels have higher diagnostic accuracy in distinguishing patients with suspected prostate cancer from healthy individuals.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Department of Urology, School of Medicine, Kidney Transplantation Research Center, Khorshid Hospital, Isfahan University of Medical SciencesIsfahan, Iran
| | - Narjes Saberi
- Department of Urology, School of Medicine, Kidney Transplantation Research Center, Khorshid Hospital, Isfahan University of Medical SciencesIsfahan, Iran
| | - Azar Baradaran
- Department of Pathology, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Zahra Mohajeri
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| |
Collapse
|
20
|
Chen TY, Mihalopoulos M, Zuluaga L, Rich J, Ganta T, Mehrazin R, Tsao CK, Tewari A, Gonzalez-Kozlova E, Badani K, Dogra N, Kyprianou N. Clinical Significance of Extracellular Vesicles in Prostate and Renal Cancer. Int J Mol Sci 2023; 24:14713. [PMID: 37834162 PMCID: PMC10573190 DOI: 10.3390/ijms241914713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Jordan Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Teja Ganta
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Che-Kai Tsao
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Ash Tewari
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Navneet Dogra
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
- The Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| |
Collapse
|
21
|
Geng N, Qi Y, Qin W, Li S, Jin H, Jiang Y, Wang X, Wei S, Wang P. Two microRNAs of plasma-derived small extracellular vesicles as biomarkers for metastatic non-small cell lung cancer. BMC Pulm Med 2023; 23:259. [PMID: 37452310 PMCID: PMC10347730 DOI: 10.1186/s12890-023-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) of plasma-derived small extracellular vesicles (sEVs) have been proven to be associated with metastasis in several types of cancer. This study aimed to detect miRNAs of plasma-derived sEVs as potential biomarkers for metastatic non-small cell lung cancer (NSCLC). METHODS We assessed the miRNA profiles of plasma-derived sEVs from healthy individuals as the control group (CT group), NSCLC patients without distant organ metastasis as the NM-NSCLC group and patients with distant organ metastasis as the M-NSCLC group. Next-generation sequencing (NGS) was performed on samples, and differentially expressed miRNAs (DEMs) of the three groups were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) and ClueGO were used to predict potential pathways of DEMs. MiRNA enrichment analysis and annotation tool (miEAA) was used to understand changes in the tumour microenvironment in NSCLC. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analysis was used to validate target miRNAs. RESULT NGS was performed on 38 samples of miRNAs of plasma-derived sEVs, and DEMs were screened out between the above three groups. Regarding the distribution of DEMs in the NM-NSCLC and M-NSCLC groups, KEGG pathway analysis showed enrichment in focal adhesion and gap junctions and ClueGO in the Rap1 and Hippo signaling pathways; miEAA found that fibroblasts were over-represented. From our screening, miRNA-200c-3p and miRNA-4429 were found to be predictive DEMs among the CT, NM-NSCLC and M-NSCLC groups, and qRT‒PCR was applied to verify the results. Finally, it was revealed that expression levels of miR-200c-3p and miR-4429 were significantly upregulated in M-NSCLC patients. CONCLUSION This study identified miRNA-200c-3p and miRNA-4429 as potential biomarkers for NSCLC metastasis.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yaopu Qi
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Wenwen Qin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Si Li
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Hao Jin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yifang Jiang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Xiuhuan Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Shanna Wei
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
22
|
Bajo-Santos C, Priedols M, Kaukis P, Paidere G, Gerulis-Bergmanis R, Mozolevskis G, Abols A, Rimsa R. Extracellular Vesicles Isolation from Large Volume Samples Using a Polydimethylsiloxane-Free Microfluidic Device. Int J Mol Sci 2023; 24:7971. [PMID: 37175677 PMCID: PMC10178709 DOI: 10.3390/ijms24097971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular vesicles (EV) have many attributes important for biomedicine; however, current EV isolation methods require long multi-step protocols that generally involve bulky equipment that cannot be easily translated to clinics. Our aim was to design a new cyclic olefin copolymer-off-stoichiometry thiol-ene (COC-OSTE) asymmetric flow field fractionation microfluidic device that could isolate EV from high-volume samples in a simple and efficient manner. We tested the device with large volumes of urine and conditioned cell media samples, and compared it with the two most commonly used EV isolation methods. Our device was able to separate particles by size and buoyancy, and the attained size distribution was significantly smaller than other methods. This would allow for targeting EV size fractions of interest in the future. However, the results were sample dependent, with some samples showing significant improvement over the current EV separation methods. We present a novel design for a COC-OSTE microfluidic device, based on bifurcating asymmetric flow field-flow fractionation (A4F) technology, which is able to isolate EV from large volume samples in a simple, continuous-flow manner. Its potential to be mass-manufactured increases the chances of implementing EV isolation in a clinical or industry-friendly setting, which requires high repeatability and throughput.
Collapse
Affiliation(s)
- Cristina Bajo-Santos
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Miks Priedols
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Pauls Kaukis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Gunita Paidere
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| | | | - Gatis Mozolevskis
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| | - Arturs Abols
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Roberts Rimsa
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| |
Collapse
|
23
|
Huang G, Jiang Z, Zhu W, Wu Z. Exosomal circKDM4A Induces CUL4B to Promote Prostate Cancer Cell Malignancy in a miR-338-3p-Dependent Manner. Biochem Genet 2023; 61:390-409. [PMID: 35930171 DOI: 10.1007/s10528-022-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Circular RNA lysine demethylase 4A (circKDM4A) is also named circ_0012098 and its abnormal expression has been confirmed in serum exosomes of prostate cancer (PC) patients. However, whether PC progression involves the exosomal circ_0012098 remains unknown. RNA expression of circKDM4A, microRNA-338-3p (miR-338-3p) and cullin 4B (CUL4B) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot. The positive expression rate of nuclear proliferation marker (ki-67) was analyzed by immunohistochemistry assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to identify the interaction between miR-338-3p and circKDM4A or CUL4B. Mouse model assay was performed to determine the effect of exosomal circKDM4A on tumorigenesis in vivo. CircKDM4A expression was significantly upregulated in the serum exosomes from PC patients compared with the exosomes from healthy volunteers. Exosomes treatment promoted the proliferation, migration and invasion of PC cells but inhibited apoptosis; however, these effects were attenuated after circKDM4A knockdown. Meanwhile, circKDM4A depletion restored exosome-increased circKDM4A expression. Additionally, circKDM4A acted as a miR-338-3p sponge, and miR-338-3p bound to CUL4B in PC cells. CircKDM4A regulated the effect of exosome-induced PC cell malignancy by interacting with miR-338-3p and CUL4B. Moreover, circKDM4A silencing relieved exosome-induced tumor growth in vivo. Exosomal circKDM4A promoted PC malignant progression by the miR-338-3p/CUL4B axis, providing a therapeutic target for PC.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China.
| | - Zeping Jiang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Wuan Zhu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Zhiyue Wu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| |
Collapse
|
24
|
Robinson H, Roberts MJ, Gardiner RA, Hill MM. Extracellular vesicles for precision medicine in prostate cancer - Is it ready for clinical translation? Semin Cancer Biol 2023; 89:18-29. [PMID: 36681206 DOI: 10.1016/j.semcancer.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Biofluid-based biomarker tests hold great promise for precision medicine in prostate cancer (PCa) clinical practice. Extracellular vesicles (EV) are established as intercellular messengers in cancer development with EV cargos, including protein and nucleic acids, having the potential to serve as biofluid-based biomarkers. Recent clinical studies have begun to evaluate EV-based biomarkers for PCa diagnosis, prognosis, and disease/therapy resistance monitoring. Promising results have led to PCa EV biomarker validation studies which are currently underway with the next challenge being translation to robust clinical assays. However, EV research studies generally use low throughput EV isolation methods and costly molecular profiling technologies that are not suitable for clinical assays. Here, we consider the technical hurdles in translating EV biomarker research findings into precise and cost-effective clinical biomarker assays. Novel microfluidic devices coupling EV extraction with sensitive antibody-based biomarker detection are already being explored for point-of-care applications for rapid provision in personalised medicine approaches.
Collapse
Affiliation(s)
- Harley Robinson
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia.
| | - Matthew J Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Robert A Gardiner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia.
| |
Collapse
|
25
|
Zhang H, Chen B, Waliullah ASM, Aramaki S, Ping Y, Takanashi Y, Zhang C, Zhai Q, Yan J, Oyama S, Kahyo T, Setou M. A New Potential Therapeutic Target for Cancer in Ubiquitin-Like Proteins-UBL3. Int J Mol Sci 2023; 24:ijms24021231. [PMID: 36674743 PMCID: PMC9863382 DOI: 10.3390/ijms24021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ubiquitin-like proteins (Ubls) are involved in a variety of biological processes through the modification of proteins. Dysregulation of Ubl modifications is associated with various diseases, especially cancer. Ubiquitin-like protein 3 (UBL3), a type of Ubl, was revealed to be a key factor in the process of small extracellular vesicle (sEV) protein sorting and major histocompatibility complex class II ubiquitination. A variety of sEV proteins that affects cancer properties has been found to interact with UBL3. An increasing number of studies has implied that UBL3 expression affects cancer cell growth and cancer prognosis. In this review, we provide an overview of the relationship between various Ubls and cancers. We mainly introduce UBL3 and its functions and summarize the current findings of UBL3 and examine its potential as a therapeutic target in cancers.
Collapse
Affiliation(s)
- Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - A. S. M. Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Radiation Oncology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics, Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Qing Zhai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics, Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-053-435-2086; Fax: +81-053-435-2468
| |
Collapse
|
26
|
Salehpour A, Balmagambetova S, Mussin N, Kaliyev A, Rahmanifar F. Mesenchymal stromal/stem cell-derived exosomes and genitourinary cancers: A mini review. Front Cell Dev Biol 2023; 10:1115786. [PMID: 36684446 PMCID: PMC9845763 DOI: 10.3389/fcell.2022.1115786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stromal/stem cell- (MSC-) derived exosomes are gaining popularity for their involvement in tissue repair and repressing various tumors through extensive patterns. Nevertheless, the impact of extracellular vesicles produced by stem cells on tumor formation and progression is controversial and seems to depend on several factors. The utilization of MSCs' various capabilities in urogenital neoplasms is widely regarded as a potential future therapeutic as well. These genitourinary neoplasms include prostatic neoplasms, ovarian neoplasms, cervical neoplasms, endometrial neoplasms, bladder neoplasms, and renal cell neoplasms. The present study has concentrated on the most recent information on genitourinary neoplasms employing MSCs derived exosomes' many capabilities, such as delivering effective RNAs, extensive tissue compatibility, and specificity with tumor identification without inherent limitations of cell therapy.
Collapse
Affiliation(s)
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nadiar Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
27
|
Visan KS, Wu LY, Voss S, Wuethrich A, Möller A. Status quo of Extracellular Vesicle isolation and detection methods for clinical utility. Semin Cancer Biol 2023; 88:157-171. [PMID: 36581020 DOI: 10.1016/j.semcancer.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.
Collapse
Affiliation(s)
- Kekoolani S Visan
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li-Ying Wu
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Sarah Voss
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
28
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
29
|
Elkommos-Zakhary M, Rajesh N, Beljanski V. Exosome RNA Sequencing as a Tool in the Search for Cancer Biomarkers. Noncoding RNA 2022; 8:ncrna8060075. [PMID: 36412910 PMCID: PMC9680254 DOI: 10.3390/ncrna8060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Numerous noninvasive methods are currently being used to determine biomarkers for diseases such as cancer. However, these methods are not always precise and reliable. Thus, there is an unmet need for better diagnostic and prognostic biomarkers that will be used to diagnose cancer in early, more treatable stages of the disease. Exosomes are extracellular vesicles of endocytic origin released by the majority of cells. Exosomes contain and transport nucleic acids, proteins, growth factors, and cytokines from their parent cells to surrounding or even distant cells via circulation in biofluids. Exosomes have attracted the interest of researchers, as recent data indicate that exosome content may be indicative of disease stages and may contribute to disease progression via exosome-mediated extracellular communication. Therefore, the contents of these vesicles are being investigated as possible biomarkers for disease diagnosis and prognosis. The functions of exosomes and their contents in disease development are becoming clearer as isolation and analytical methods, such as RNA sequencing, advance. In this review, we discuss current advances and challenges in exosomal content analyses with emphasis on information that can be generated using RNA sequencing. We also discuss how the RNA sequencing of exosomes may be used to discover novel biomarkers for the detection of different stages for various cancers using specific microRNAs that were found to be differentially expressed between healthy controls and cancer-diagnosed subjects.
Collapse
Affiliation(s)
- Marina Elkommos-Zakhary
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33314, USA
| | - Neeraja Rajesh
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33314, USA
| | - Vladimir Beljanski
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33314, USA
- Cell Therapy Institute, Nova Southeastern University, Davie, FL 33314, USA
- Correspondence:
| |
Collapse
|
30
|
Pszczółkowska B, Olejarz W, Filipek M, Tartas A, Kubiak-Tomaszewska G, Żołnierzak A, Życieńska K, Ginter J, Lorenc T, Brzozowska B. Exosome secretion and cellular response of DU145 and PC3 after exposure to alpha radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:639-650. [PMID: 36098819 PMCID: PMC9630248 DOI: 10.1007/s00411-022-00991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Exosomes are spherical membrane nanovesicles secreted from cells, and they play an important role in tumor immune response, metastasis, angiogenesis, and survival. Studies investigating exosomes isolated from cells exposed to photon radiation commonly used in conventional radiotherapy demonstrate the influence of this type of radiation on exosome characteristics and secretion. There is currently no research investigating the effects of densely ionizing particles such as protons and alpha radiation on exosomes. Thus we have evaluated the cellular response of human prostate cancer cells exposed to 0, 2, and 6 Gy of alpha radiation emitted from the Am-241 source. Irradiated PC3 and DU145 cell lines, characterized by differences in radiosensitivity, were studied using apoptosis, LDH, and IL-6 assays. Additionally, the corresponding concentration and size of isolated exosomes were measured using NTA. We found that exposure to ionizing radiation resulted in gross changes in viability and cell damage. There were increased amounts of apoptotic or necrotic cells as a function of radiation dose. We demonstrated that irradiated PC3 cells secrete higher quantities of exosomes compared to DU145 cells. Additionally, we also found no statistical difference in exosome size for control and irradiated cells.
Collapse
Affiliation(s)
- Beata Pszczółkowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Mateusz Filipek
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Aleksandra Żołnierzak
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Katarzyna Życieńska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Józef Ginter
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, 5 Chałubińskiego Street, Warsaw, 02-004 Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| |
Collapse
|
31
|
Evaluation of circulating small extracellular vesicle-derived miRNAs as diagnostic biomarkers for differentiating between different pathological types of early lung cancer. Sci Rep 2022; 12:17201. [PMID: 36229645 PMCID: PMC9561663 DOI: 10.1038/s41598-022-22194-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/11/2022] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. MicroRNAs (miRNAs) in circulating small extracellular vesicles (sEVs) have been suggested to be potential biomarkers for cancer diagnosis. The present study was designed to explore whether plasma-derived sEV miRNAs could be utilized as diagnostic biomarkers for differentiating between early-stage small cell lung cancer (SCLC) and early-stage non-small cell lung cancer (NSCLC). We compared the miRNA profiles of plasma-derived sEVs from healthy individuals, patients with early-stage SCLC and patients with early-stage NSCLC. Next-generation sequencing was used to screen for differentially expressed miRNAs (DEMs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to predict the potential functions of these DEMs. Weighted gene coexpression network analysis (WGCNA) was used to identify the different pathology-related miRNA modules. We found that 22 DEMs were significantly different among healthy individuals, patients with early-stage SCLC, and patients with early-stage NSCLC. We selected six representative DEMs for validation by qRT‒PCR, which confirmed that miRNA-483-3p derived from plasma sEVs could be used as a potential biomarker for the diagnosis of early-stage SCLC, miRNA-152-3p and miRNA-1277-5p could be used for the diagnosis of early-stage NSCLC respectively.
Collapse
|
32
|
Alsaleh L, Li C, Couetil JL, Ye Z, Huang K, Zhang J, Chen C, Johnson TS. Spatial Transcriptomic Analysis Reveals Associations between Genes and Cellular Topology in Breast and Prostate Cancers. Cancers (Basel) 2022; 14:4856. [PMID: 36230778 PMCID: PMC9562681 DOI: 10.3390/cancers14194856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of death worldwide with breast and prostate cancer the most common among women and men, respectively. Gene expression and image features are independently prognostic of patient survival; but until the advent of spatial transcriptomics (ST), it was not possible to determine how gene expression of cells was tied to their spatial relationships (i.e., topology). METHODS We identify topology-associated genes (TAGs) that correlate with 700 image topological features (ITFs) in breast and prostate cancer ST samples. Genes and image topological features are independently clustered and correlated with each other. Themes among genes correlated with ITFs are investigated by functional enrichment analysis. RESULTS Overall, topology-associated genes (TAG) corresponding to extracellular matrix (ECM) and Collagen Type I Trimer gene ontology terms are common to both prostate and breast cancer. In breast cancer specifically, we identify the ZAG-PIP Complex as a TAG. In prostate cancer, we identify distinct TAGs that are enriched for GI dysmotility and the IgA immunoglobulin complex. We identified TAGs in every ST slide regardless of cancer type. CONCLUSIONS These TAGs are enriched for ontology terms, illustrating the biological relevance to our image topology features and their potential utility in diagnostic and prognostic models.
Collapse
Affiliation(s)
- Lujain Alsaleh
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
| | - Chen Li
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Justin L. Couetil
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Ze Ye
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Chao Chen
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Travis S. Johnson
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
34
|
Jang A, Rauterkus GP, Vaishampayan UN, Barata PC. Overcoming Obstacles in Liquid Biopsy Developments for Prostate Cancer. Onco Targets Ther 2022; 15:897-912. [PMID: 36051571 PMCID: PMC9427206 DOI: 10.2147/ott.s285758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is one of the most common malignancies in men. Over time, it can metastasize and become lethal once it exhausts hormonal therapies and transitions into castration-resistant prostate cancer (CRPC). Several therapies have been recently approved for advanced prostate cancer, but identifying biomarkers for current treatments and searching for more effective treatments are urgently needed. Liquid biopsy is a powerful tool for isolating genetic material, proteins, and whole tumor cells from the blood. In recent decades, this technology has rapidly advanced, allowing for better insights into the pathogenesis and treatment response in different stages of prostate cancer. In this review, we summarize important clinical studies involving liquid biopsies in prostate cancer with a focus on advanced disease, notably regarding circulating tumor DNA, circulating tumor cells, and exosomes. We highlight the progress and the challenges that still exist for these technologies. Finally, we discuss promising avenues that will further expand the importance of liquid biopsy in the care for prostate cancer patients.
Collapse
Affiliation(s)
- Albert Jang
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Pedro C Barata
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Cancer Center, New Orleans, LA, USA.,Department of Medicine, Case Comprehensive Cancer Center, Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Gustafson KT, Sayar Z, Le H, Gustafson SL, Gower A, Modestino A, Ibsen S, Heller MJ, Esener S, Eksi SE. cyc‐DEP: Cyclic immunofluorescence profiling of particles collected using dielectrophoresis. Electrophoresis 2022; 43:1784-1798. [DOI: 10.1002/elps.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kyle T. Gustafson
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| | - Hillary Le
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
| | - Steven L. Gustafson
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
| | - Austin Gower
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
| | - Augusta Modestino
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| | - Stuart Ibsen
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| | - Michael J. Heller
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| | - Sadik Esener
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| | - Sebnem E. Eksi
- Cancer Early Detection Advanced Research Center Knight Cancer Institute Oregon Health & Science University Portland Oregon USA
- Department of Biomedical Engineering School of Medicine Oregon Health & Science University Portland Oregon USA
| |
Collapse
|
36
|
Ye B, Shen Y, Chen H, Lin S, Mao W, Dong Y, Li X. Differential proteomic analysis of plasma-derived exosomes as diagnostic biomarkers for chronic HBV-related liver disease. Sci Rep 2022; 12:14428. [PMID: 36002595 PMCID: PMC9402575 DOI: 10.1038/s41598-022-13272-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) infection is still a major public health problem worldwide. We aimed to identify new, non-invasive biomarkers for the early diagnosis of chronic HBV-related diseases, reveal alterations in the progression of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Here, exosomes were isolated and characterized through size exclusion chromatography and nanoparticle tracking analysis. Profiles of differentially expressed proteins (DEPs) were analyzed through liquid chromatography-tandem mass spectrometry (LC–MS/MS), Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. Results showed that the DEPs, including CO9, LBP, SVEP1, and VWF levels in extracellular vesicles (EVs) were significantly higher in CHB than in healthy controls (HCs). VWF expression levels in EVs were significantly lower in CHB than in those with LC. KV311 expression levels in EVs were significantly higher, whereas LBP levels were significantly lower in patients with CHB than in those with HCC. All biomarkers seemed to exhibit a high diagnostic capacity for HBV-related liver disease. Patients with HBV-induced chronic liver disease exhibit characteristic protein profiles in their EVs. Thus, serum exosomes may be used as novel, liquid biopsy biomarkers to provide useful clinical information for the diagnosis of HBV-related liver diseases at different stages.
Collapse
Affiliation(s)
- Bo Ye
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yifei Shen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Hui Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Sha Lin
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Weilin Mao
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuejiao Dong
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
37
|
Lazniewska J, Bader C, Hickey SM, Selemidis S, O'Leary J, Simpson PV, Stagni S, Plush SE, Massi M, Brooks D. Rhenium(I) conjugates as tools for tracking cholesterol in cells. Metallomics 2022; 14:mfac040. [PMID: 35657681 PMCID: PMC9344854 DOI: 10.1093/mtomcs/mfac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
Abstract
Cholesterol is vital to control membrane integrity and fluidity, but is also a precursor to produce steroid hormones, bile acids, and vitamin D. Consequently, altered cholesterol biology has been linked to many diseases, including metabolic syndromes and cancer. Defining the intracellular pools of cholesterol and its trafficking within cells is essential to understand both normal cell physiology and mechanisms of pathogenesis. We have synthesized a new cholesterol mimic (ReTEGCholestanol), comprising a luminescent rhenium metal complex and a cholestanol targeting unit, linked using a tetraethylene glycol (TEG) spacer. ReTEGCholestanol demonstrated favourable imaging properties and improved water solubility when compared to a cholesterol derivative, and structurally related probes lacking the TEG linker. A non-malignant and three malignant prostate cell lines were used to characterize the uptake and intracellular distribution of ReTEGCholestanol. The ReTEGCholestanol complex was effectively internalized and mainly localized to late endosomes/lysosomes in non-malignant PNT1a cells, while in prostate cancer cells it also accumulated in early endosomes and multivesicular bodies, suggesting disturbed cholesterol biology in the malignant cells. The ReTEGCholestanol is a novel imaging agent for visualizing endosomal uptake and trafficking, which may be used to define cholesterol related biology including membrane integration and altered lipid trafficking/processing.
Collapse
Affiliation(s)
- Joanna Lazniewska
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christie Bader
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shane M Hickey
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Stavros Selemidis
- Department of Human Biosciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - John O'Leary
- Discipline of Histopathology, University of Dublin Trinity College, Dublin 2, Ireland
| | - Peter V Simpson
- School of Molecular and Life Sciences - Curtin University, Bentley, Western Australia 6102, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Via Zamboni, 33, Bologna I-40136, Italy
| | - Sally E Plush
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences - Curtin University, Bentley, Western Australia 6102, Australia
| | - Doug Brooks
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
- Discipline of Histopathology, University of Dublin Trinity College, Dublin 2, Ireland
- School of Molecular and Life Sciences - Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
38
|
Crocetto F, Russo G, Di Zazzo E, Pisapia P, Mirto BF, Palmieri A, Pepe F, Bellevicine C, Russo A, La Civita E, Terracciano D, Malapelle U, Troncone G, Barone B. Liquid Biopsy in Prostate Cancer Management—Current Challenges and Future Perspectives. Cancers (Basel) 2022; 14:cancers14133272. [PMID: 35805043 PMCID: PMC9265840 DOI: 10.3390/cancers14133272] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is a widespread malignancy, representing the second leading cause of cancer-related death in men. In the last years, liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis, follow-up and treatment response. Liquid biopsy is employed to assess several body fluids biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). This review dissects recent advancements and future perspectives of liquid biopsy, highlighting its strength and weaknesses in PCa management. Abstract Although appreciable attempts in screening and diagnostic approaches have been achieved, prostate cancer (PCa) remains a widespread malignancy, representing the second leading cause of cancer-related death in men. Drugs currently used in PCa therapy initially show a potent anti-tumor effect, but frequently induce resistance and PCa progresses toward metastatic castration-resistant forms (mCRPC), virtually incurable. Liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis and treatment. Liquid biopsy shows the ability to represent the tumor microenvironment, allow comprehensive information and follow-up the progression of the tumor, enabling the development of different treatment strategies as well as permitting the monitoring of therapy response. Liquid biopsy, indeed, is endowed with a significant potential to modify PCa management. Several blood biomarkers could be analyzed for diagnostic, prognostic and predictive purposes, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). In addition, several other body fluids may be adopted (i.e., urine, sperm, etc.) beyond blood. This review dissects recent advancements and future perspectives of liquid biopsies, highlighting their strength and weaknesses in PCa management.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence:
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Alessandro Palmieri
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | | | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| |
Collapse
|
39
|
Barone A, d’Avanzo N, Cristiano MC, Paolino D, Fresta M. Macrophage-Derived Extracellular Vesicles: A Promising Tool for Personalized Cancer Therapy. Biomedicines 2022; 10:1252. [PMID: 35740274 PMCID: PMC9220135 DOI: 10.3390/biomedicines10061252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of cancer is increasing dramatically, affecting all ages of the population and reaching an ever higher worldwide mortality rate. The lack of therapies' efficacy is due to several factors such as a delay in diagnosis, tumor regrowth after surgical resection and the occurrence of multidrug resistance (MDR). Tumor-associated immune cells and the tumor microenvironment (TME) deeply affect the tumor's progression, leading to several physicochemical changes compared to physiological conditions. In this scenario, macrophages play a crucial role, participating both in tumor suppression or progression based on the polarization of onco-suppressive M1 or pro-oncogenic M2 phenotypes. Moreover, much evidence supports the pivotal role of macrophage-derived extracellular vesicles (EVs) as mediators in TME, because of their ability to shuttle the cell-cell and organ-cell communications, by delivering nucleic acids and proteins. EVs are lipid-based nanosystems with a broad size range distribution, which reflect a similar composition of native parent cells, thus providing a natural selectivity towards target sites. In this review, we discuss the impact of macrophage-derived EVs in the cancer's fate as well as their potential implications for the development of personalized anticancer nanomedicine.
Collapse
Affiliation(s)
- Antonella Barone
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini n.31, 66100 Chieti, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
40
|
Cheng J, Wang X, Yuan X, Liu G, Chu Q. Emerging roles of exosome-derived biomarkers in cancer theranostics: messages from novel protein targets. Am J Cancer Res 2022; 12:2226-2248. [PMID: 35693088 PMCID: PMC9185602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Effective biomarkers that guide therapeutics with limited adverse effects, have emerged as attractive research topics in cancer diagnosis and treatment. Cancer-derived exosomes, a type of extracellular vesicles representing molecular signatures of cells of origin, could serve as stable reservoirs for potential biomarkers (i.e., proteins, nucleic acids) in non-invasive cancer diagnosis and prognosis. In this review, the physiological and pathological roles of exosomes and their protein components in facilitating tumorigenesis are highlighted. Exosomes carrying proteins can participate in tumor development and progression through multiple signaling pathways, including EMT, invasion and metastasis. Meanwhile, the practical applications of exosomal proteins in detecting and monitoring several solid-tumor cancers (including lung, breast, pancreatic, colorectal and prostate cancers) were also summarized. More clinically relevant, exosomal proteins play pivotal roles in transmitting oncogenic potential or resistance to therapies in recipient cells, which might further support therapeutic strategy determinations.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xuechun Yuan
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Qian Chu
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| |
Collapse
|
41
|
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN, Karkampouna S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett 2022; 530:156-169. [PMID: 35051532 DOI: 10.1016/j.canlet.2022.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
During disease progression from primary towards metastatic prostate cancer (PCa), and in particular bone metastases, the tumor microenvironment (TME) evolves in parallel with the cancer clones, altering extracellular matrix composition (ECM), vasculature architecture, and recruiting specialized tumor-supporting cells that favor tumor spread and colonization at distant sites. We introduce the clinical profile of advanced metastatic PCa in terms of common genetic alterations. Findings from recently developed models of PCa metastatic spread are discussed, focusing mainly on the role of the TME (mainly matrix and fibroblast cell types), at distinct stages: premetastatic niche orchestrated by the primary tumor towards the metastatic site and bone metastasis. We report evidence of premetastatic niche formation, such as the mechanisms of distant site conditioning by extracellular vesicles, chemokines and other tumor-derived mechanisms, including altered cancer cell-ECM interactions. Furthermore, evidence supporting the similarities of stroma alterations among the primary PCa and bone metastasis, and contribution of TME to androgen deprivation therapy resistance are also discussed. We summarize the available bone metastasis transgenic mouse models of PCa from a perspective of pro-metastatic TME alterations during disease progression and give an update on the current diagnostic and therapeutic radiological strategies for bone metastasis clinical management.
Collapse
Affiliation(s)
- Juening Kang
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ian L Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.
| |
Collapse
|
42
|
Pavani KC, Meese T, Pascottini OB, Guan X, Lin X, Peelman L, Hamacher J, Van Nieuwerburgh F, Deforce D, Boel A, Heindryckx B, Tilleman K, Van Soom A, Gadella BM, Hendrix A, Smits K. Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proc Natl Acad Sci U S A 2022; 119:e2122708119. [PMID: 35298333 PMCID: PMC8944274 DOI: 10.1073/pnas.2122708119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - XueFeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, D-53115 Bonn, Germany
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium
- Cancer Research Institute Ghent, B-9000 Ghent, Belgium
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| |
Collapse
|
43
|
Cappello F, Fais S. Extracellular vesicles in cancer pros and cons: the importance of the evidence-based medicine. Semin Cancer Biol 2022; 86:4-12. [DOI: 10.1016/j.semcancer.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
44
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
45
|
Puhka M, Thierens L, Nicorici D, Forsman T, Mirtti T, af Hällström T, Serkkola E, Rannikko A. Exploration of Extracellular Vesicle miRNAs, Targeted mRNAs and Pathways in Prostate Cancer: Relation to Disease Status and Progression. Cancers (Basel) 2022; 14:cancers14030532. [PMID: 35158801 PMCID: PMC8833493 DOI: 10.3390/cancers14030532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Prostate cancer lacks non-invasive specific biomarkers for aggressive disease. Urinary extracellular vesicles (uEV) could provide such markers; however, due to technical challenges, little is known regarding the pathogenesis pathways reflected in uEV. We performed a miRNA, target mRNA and pathway study focused on uEV, exploring the differences between cancer (1) status groups (Gleason score) and (2) progression groups. The uEV provided a surprisingly comprehensive presentation of differentially expressed miRNAs, target mRNAs and pathogenesis pathways. The miRNAs associated with prostate cancer status or progression were mostly unique, but still targeted overlapping sets of signalling, resistance, hormonal and immune pathways. Interestingly, mRNA targets of the key miRNAs (miR-892a, miR-223-3p, miR-146a-5p) were widely expressed in both uEV and plasma EV from PCa patients. The study thus suggests that uEV carry a vast presentation of PCa status and progression-linked RNAs that are worth further exploration in large personalized medicine trials. Abstract Background: Prostate cancer (PCa) lacks non-invasive specific biomarkers for aggressive disease. We studied the potential of urinary extracellular vesicles (uEV) as a liquid PCa biopsy by focusing on the micro RNA (miRNA) cargo, target messenger RNA (mRNA) and pathway analysis. Methods: We subjected uEV samples from 31 PCa patients (pre-prostatectomy) to miRNA sequencing and matched uEV and plasma EV (pEV) from three PCa patients to mRNA sequencing. EV quality control was performed by electron microscopy, Western blotting and particle and RNA analysis. We compared miRNA expression based on PCa status (Gleason Score) and progression (post-prostatectomy follow-up) and confirmed selected miRNAs by quantitative PCR. Expression of target mRNAs was mapped in matched EV. Results: Quality control showed typical small uEV, pEV, RNA and EV-protein marker enriched samples. Comparisons between PCa groups revealed mostly unique differentially expressed miRNAs. However, they targeted comprehensive and largely overlapping sets of cancer and progression-associated signalling, resistance, hormonal and immune pathways. Quantitative PCR confirmed changes in miR-892a (Gleason Score 7 vs. ≥8), miR-223-3p (progression vs. no progression) and miR-146a-5p (both comparisons). Their target mRNAs were expressed widely in PCa EV. Conclusions: PCa status and progression-linked RNAs in uEV are worth exploration in large personalized medicine trials.
Collapse
Affiliation(s)
- Maija Puhka
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
- Correspondence: (M.P.); (A.R.)
| | - Lisse Thierens
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
| | - Daniel Nicorici
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tarja Forsman
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tuomas Mirtti
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, 00290 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Elina Serkkola
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Correspondence: (M.P.); (A.R.)
| |
Collapse
|
46
|
Rezaie J, Ahmadi M, Ravanbakhsh R, Mojarad B, Mahbubfam S, Shaban SA, Shadi K, Berenjabad NJ, Etemadi T. Tumor-derived extracellular vesicles: The metastatic organotropism drivers. Life Sci 2022; 289:120216. [PMID: 34890589 DOI: 10.1016/j.lfs.2021.120216] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
The continuous growing, spreading, and metastasis of tumor cells depend on intercellular communication within cells resident in a tissue environment. Such communication is mediated through the secretion of particles from tumor cells and resident cells known as extracellular vesicles (EVs) within a microenvironment. EVs are a heterogeneous population of membranous vesicles released from tumor cells that transfer many types of active biomolecules to recipient cells and induce physiologic and phenotypic alterations in the tissue environment. Spreading the 'seeds' of metastasis needs the EVs that qualify the 'soil' at distant sites to promote the progress of arriving tumor cells. Growing evidence indicates that EVs have vital roles in tumorigenesis, including pre-metastatic niche formation and organotropic metastasis. These EVs mediate organotropic metastasis by modifying the pre-metastatic microenvironment through different pathways including induction of phenotypic alternation and differentiation of cells, enrolment of distinct supportive stromal cells, up-regulation of the expression of pro-inflammatory genes, and induction of immunosuppressive status. However, instead of pre-metastatic niche formation, evidence suggests that EVs may mediate reawakening of dormant niches. Findings regarding EVs function in tumor metastasis have led to growing interests in the interdisciplinary significance of EVs, including targeted therapy, cell-free therapy, drug-delivery system, and diagnostic biomarker. In this review, we discuss EVs-mediated pre-metastatic niche formation and organotropic metastasis in visceral such as lung, liver, brain, lymph node, and bone with a focus on associated signaling, causing visceral environment hospitable for metastatic cells. Furthermore, we present an overview of the possible therapeutic application of EVs in cancer management.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Behnam Mojarad
- Biology Department, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Shadi Mahbubfam
- Biology Department, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Kosar Shadi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Tahereh Etemadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
47
|
Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 2022; 20:30. [PMID: 35033106 PMCID: PMC8760667 DOI: 10.1186/s12967-022-03231-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C, Li W. The role of Exosomal miRNAs in cancer. J Transl Med 2022; 20:6. [PMID: 34980158 PMCID: PMC8722109 DOI: 10.1186/s12967-021-03215-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.
Collapse
Affiliation(s)
- Chuanyun Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Rong Li
- Chengde Medical University, Chengde, China
| | - Huan Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Shumin Luo
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Dexi Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Cao Cai
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.
| | - Weihua Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China. .,Beijing Institute of Hepatology, Beijing, China.
| |
Collapse
|
49
|
Basu B, Karmakar S. The Role of Extracellular Vesicles in the Progression of Tumors towards Metastasis. Physiology (Bethesda) 2021. [DOI: 10.5772/intechopen.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived lipid membrane bound vesicles that serve as mediators of intercellular communication. EVs have been found to regulate a wide range of cellular processes through the transference of genetic, protein and lipid messages from the host cell to the recipient cell. Unsurprisingly, this major mode of intracellular communication would be abrogated in cancer. Ever increasing evidence points towards a key role of EVs in promoting tumor development and in contributing to the various stages of metastasis. Tumor released EVs have been shown to facilitate the transference of oncogenic proteins and nucleic acids to other tumor cells and to the surrounding stromal cells, thereby setting up a tumor permissive microenvironment. EVs released from tumor cells have been shown to promote extracellular matrix (ECM) remodeling through the modulation of neighboring tumor cells and stromal cells. EVs released from disseminated tumor cells have been reported to attract circulating tumor cells (CTCs) via chemotaxis and induce the production of specific extracellular matrix components from neighboring stromal cells so as to support the growth of metastatic cells at the secondary tumor site. Circulating levels of tumor derived EVs of patients have been correlated with incidence of metastasis and disease relapse.
Collapse
|
50
|
Giovannelli P, Di Donato M, Galasso G, Monaco A, Licitra F, Perillo B, Migliaccio A, Castoria G. Communication between cells: exosomes as a delivery system in prostate cancer. Cell Commun Signal 2021; 19:110. [PMID: 34772427 PMCID: PMC8586841 DOI: 10.1186/s12964-021-00792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite the considerable efforts in screening and diagnostic protocols, prostate cancer still represents the second leading cause of cancer-related death in men. Many patients with localized disease and low risk of recurrence have a favourable outcome. In a substantial proportion of patients, however, the disease progresses and becomes aggressive. The mechanisms that promote prostate cancer progression remain still debated. Many findings point to the role of cross-communication between prostate tumor cells and their surrounding microenvironment during the disease progression. Such a connection fosters survival, proliferation, angiogenesis, metastatic spreading and drug-resistance of prostate cancer. Recent years have seen a profound interest in understanding the way by which prostate cancer cells communicate with the surrounding cells in the microenvironment. In this regard, direct cell-to-cell contacts and soluble factors have been identified. Increasing evidence indicates that PC cells communicate with the surrounding cells through the release of extracellular vesicles, mainly the exosomes. By directly acting in stromal or prostate cancer epithelial cells, exosomes represent a critical intercellular communication system. By querying the public database ( https://pubmed.ncbi.nlm.nih.gov ) for the past 10 years, we have found more than four hundred papers. Among them, we have extrapolated the most relevant about the role of exosomes in prostate cancer malignancy and progression. Emerging data concerning the use of these vesicles in diagnostic management and therapeutic guidance of PC patients are also presented. Video Abstract.
Collapse
Affiliation(s)
- Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Alessandra Monaco
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Fabrizio Licitra
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Bruno Perillo
- Istituto di Scienze dell’Alimentazione, C.N.R., 83100 Avellino, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|