1
|
Na JY, Jeon J, Huh KY, Yu K, Lee S, Eom J, Ahn J, You W, Oh J. Population pharmacokinetic model of ABL001/CTX-009 (anti-VEGF/DLL4) in adult cancer patients with solid tumor. Cancer Sci 2024; 115:3943-3951. [PMID: 39375952 PMCID: PMC11611764 DOI: 10.1111/cas.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
ABL001/CTX-009 is a bispecific antibody targeting delta-like ligand-4 and vascular endothelial growth factor A. In this study, we developed a population pharmacokinetic (PK) model of ABL001/CTX-009 in patients with solid tumors. A total of 712 plasma concentrations from 30 patients with relapsed or refractory solid tumors were collected from a phase 1 study (NCT03292783). A population PK model was developed using a nonlinear mixed-effect method and was evaluated by graphical and numerical methods. Using the model, the steady-state concentrations were simulated to compare weight-based and fixed-dose regimens and to find optimal dosing intervals. The PK of ABL001/CTX-009 was well described by a two-compartment model with a parallel first-order and Michaelis-Menten elimination kinetics. Body weight was selected as a significant covariate on V1. Model evaluation results suggested that the model was adequate and robust with good precision. Simulations after administrations of fixed or weight-based doses showed similar plasma concentrations. Additionally, 10 mg/kg for every other week and 15 mg/kg for every three-week administration showed comparable plasma concentrations. In conclusion, the model well described the plasma concentrations of ABL001/CTX-009 in patients with solid tumors. The simulation suggested that weight-based dose and fixed dose can provide equivalent systemic exposure.
Collapse
Affiliation(s)
- Joo Young Na
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulRepublic of Korea
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy, The Ohio State UniversityColumbusOhioUSA
| | | | - Ki Young Huh
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulRepublic of Korea
| | - Kyung‐Sang Yu
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulRepublic of Korea
| | | | | | | | | | - Jaeseong Oh
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulRepublic of Korea
- Department of PharmacologyJeju National University College of MedicineJejuRepublic of Korea
- Clinical Research Institute, Jeju National University HospitalJejuRepublic of Korea
| |
Collapse
|
2
|
Ali LS, Attia YAM, Mourad S, Halawa EM, Abd Elghaffar NH, Shokry S, Attia OM, Makram M, Wadan AHS, Negm WA, Elekhnawy E. The missing link between cancer stem cells and immunotherapy. Curr Med Res Opin 2024; 40:1963-1984. [PMID: 39316769 DOI: 10.1080/03007995.2024.2407963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer stem cells (CSCs) are cancer cells that can self-renew and give rise to tumors. The multipotency of CSCs enables the generation of diverse cancer cell types and their potential for differentiation and resilience against chemotherapy and radiation. Additionally, specific biomarkers have been identified for them, such as CD24, CD34, CD44, CD47, CD90, and CD133. The CSC model suggests that a subset of CSCs within tumors is responsible for tumor growth. The tumor microenvironment (TME), including fibroblasts, immune cells, adipocytes, endothelial cells, neuroendocrine (NE) cells, extracellular matrix (ECM), and extracellular vesicles, has a part in shielding CSCs from the host immune response as well as protecting them against anticancer drugs. The regulation of cancer stem cell plasticity by cancer-associated fibroblasts (CAFs) occurs through specific signaling pathways that differ among various types of cancer, utilizing the IGF-II/IGF1R, FAK, and c-Met/FRA1/HEY1 signaling pathways. Due to the intricate dynamics of CSC proliferation, controlling their growth necessitates innovative approaches and much more research. Our current review speculates an outline of how the TME safeguards stem cells, their interaction with CSCs, and the involvement of the immune and inflammatory systems in CSC differentiation and maintenance. Several technologies have the ability to identify CSCs; however, each approach has limitations. We discuss how these methods can aid in recognizing CSCs in several cancer types, comprising brain, breast, liver, stomach, and colon cancer. Furthermore, we explore different immunotherapeutic strategies targeting CSCs, including stimulating cancer-specific T cells, modifying immunosuppressive TMEs, and antibody-mediated therapy targeting CSC markers.
Collapse
Affiliation(s)
- Lobna Safwat Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Seham Shokry
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Omar M Attia
- Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha Makram
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Yin J, Forn-Cuní G, Surendran AM, Lopes-Bastos B, Pouliopoulou N, Jager MJ, Le Dévédec SE, Chen Q, Snaar-Jagalska BE. Lactate secreted by glycolytic conjunctival melanoma cells attracts and polarizes macrophages to drive angiogenesis in zebrafish xenografts. Angiogenesis 2024; 27:703-717. [PMID: 38842752 PMCID: PMC11564320 DOI: 10.1007/s10456-024-09930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Conjunctival melanoma (CoM) is a rare but potentially lethal cancer of the eye, with limited therapeutic option for metastases. A better understanding how primary CoM disseminate to form metastases is urgently needed in order to develop novel therapies. Previous studies indicated that primary CoM tumors express Vascular Endothelial Growth Factor (VEGF) and may recruit pro-tumorigenic M2-like macrophages. However, due to a lack of proper models, the expected role of angiogenesis in the metastatic dissemination of CoM is still unknown. We show that cells derived from two CoM cell lines induce a strong angiogenic response when xenografted in zebrafish larvae. CoM cells are highly glycolytic and secrete lactate, which recruits and polarizes human and zebrafish macrophages towards a M2-like phenotype. These macrophages elevate the levels of proangiogenic factors such as VEGF, TGF-β, and IL-10 in the tumor microenvironment to induce an angiogenic response towards the engrafted CoM cells in vivo. Chemical ablation of zebrafish macrophages or inhibition of glycolysis in CoM cells terminates this response, suggesting that attraction of lactate-dependent macrophages into engrafted CoM cells drives angiogenesis and serves as a possible dissemination mechanism for glycolytic CoM cells.
Collapse
Affiliation(s)
- Jie Yin
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | | | - Bruno Lopes-Bastos
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Niki Pouliopoulou
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Quanchi Chen
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands.
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| | | |
Collapse
|
4
|
Hu R, Chen F, Yu X, Li Z, Li Y, Feng S, Liu J, Li H, Shen C, Gu X, Lu Z. Construction and validation of a prognostic model of angiogenesis-related genes in multiple myeloma. BMC Cancer 2024; 24:1269. [PMID: 39394121 PMCID: PMC11470605 DOI: 10.1186/s12885-024-13024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Angiogenesis is associated with tumour growth, infiltration, and metastasis. This study aimed to detect the mechanisms of angiogenesis-related genes (ARGs) in multiple myeloma (MM) and to construct a new prognostic model. METHODS MM research foundation (MMRF)-CoMMpass cohort, GSE47552, GSE57317, and ARGs were sourced from public databases. Differentially expressed genes (DEGs) in the tumour and control cohorts in GSE47552 were determined through differential expression analysis and were enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted gene coexpression network analysis (WGCNA) was applied to derive modules linked to the ARG scores and obtain module genes in GSE47552. Differentially expressed ARGs (DE-ARGs) were selected for subsequent analyses by overlapping DEGs and module genes. Furthermore, prognostic genes were selected using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Depending on the prognostic genes, a risk model was constructed, and risk scores were determined. Moreover, MM samples from MMRF-CoMMpass were sorted into high- and low-risk teams on account of the median risk score. Additionally, correlations among clinical characteristics, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), immune analysis, immunotherapy predictions and the mRNA‒miRNA‒lncRNA network were carried out. RESULTS A total of 898 DEGs, 211 module genes, 24 DE-ARGs and three prognostic genes (AKAP12, C11orf80 and EMP1) were selected for this study. Enrichment analysis revealed that the DEGs were related to 86 GO terms, such as 'cytoplasmic translation', and 41 KEGG pathways, such as 'small cell lung cancer'. A prognostic gene-based risk model was created in MMRF-CoMMpass and confirmed with the GSE57317 dataset. Moreover, a nomogram was established on the basis of independent prognostic factors that have proven to be good predictors. In addition, the immune cell infiltration results suggested that memory B cells were enriched in the high-risk group and that immature B cells were enriched in the low-risk group. Finally, the mRNA‒miRNA‒lncRNA network demonstrated that hsa-miR-508-5p was tightly associated with EMP1 and AKAP12. RT‒qPCR was used to validate the expression of the genes associated with prognosis. CONCLUSION A new prognostic model of MM associated with ARGs was created and validated, providing a new perspective for exploring the connection between ARGs and MM.
Collapse
Affiliation(s)
- Rui Hu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Fengyu Chen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xueting Yu
- Department of Endocrinology, 920th Hospital of Joint Logistics Support Force,PLA, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Yujin Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Shuai Feng
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Jianqiong Liu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Huiyuan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Chengmin Shen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xuezhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China.
| | - Zhixiang Lu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Chen PH, Lee CH, Liaw CC, Liang RT, Khan MAR, Tsai JN, Huang SY, Liu W, Tsai WC. Metachromin C, a marine-derived natural compound, shows potential in antitumor activity. Int J Med Sci 2024; 21:2578-2594. [PMID: 39439453 PMCID: PMC11492879 DOI: 10.7150/ijms.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Metachromin C was first isolated from the marine sponge Hippospongia metachromia and has been reported to possess potent cytotoxicity against leukemia cells. However, its antitumor activity and possible mechanisms in pancreatic cancer remain unclear. The effects of Metachromin C on cell viability were estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The compound demonstrated a cytotoxic effect on four pancreatic cancer cell lines (PANC-1, BxPC-3, MiaPaCa-2, and AsPC-1). The significant S phase arrest observed with Metachromin C treatment suggests its impact on DNA replication machinery. Metachromin C might interfere with the binding of Topoisomerase I (TOPO I) to DNA, inhibit TOPO I activity, prevent DNA relaxation, cause DNA damage, and consequently activate the DNA repair pathway. Additionally, anti-migration and anti-invasion abilities of Metachromin C were confirmed using the transwell assay. It also inhibited angiogenesis in human endothelial cells by reducing cell proliferation, migration, and disrupting tube formation. Moreover, Metachromin C dose-dependently inhibited the growth of intersegmental vessels, subintestinal vessels, and the caudal vein plexus in a zebrafish embryo model, confirming its inhibitory effect on new vessel formation in vivo. Taken together, Metachromin C could not only inhibit the growth of pancreatic cancer cells but also act as an anti-angiogenic compound simultaneously.
Collapse
Affiliation(s)
- Pei-Hsuan Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- College of Semiconductor and Advanced Technology Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Rei-Ting Liang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mo Aqib Raza Khan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shin-Yi Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Zhou W, Xu C, Niu J, Xiong Y, He Z, Xu H, Zhang M, Wang H, Xu Q, Wang X, Wang Z. Inhibitory effects of Eplerenone on angiogenesis via modulating SGK1/TGF-β pathway in contralateral kidney of CKD pregnancy rats. Cell Signal 2024; 122:111346. [PMID: 39147296 DOI: 10.1016/j.cellsig.2024.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Eplerenone is a selective aldosterone receptor blocker that is effective in preventing the progression of chroinic kidney disease (CKD). However, its mechanism and role in CKD pregnancy still remain uncertain. The aim of this study was to evaluate whether eplerenone could attenuated the fibrosis of unilateral ureteral obstruction (UUO) pregnant rats' contralateral kidney, improved pregnancy outcome and explore its therapeutic mechanisms. METHODS A pregnancy rat model of UUO established, female Wistar rats were randomly assigned into sham-operated group (Sham group),sham-operated combined pregnancy group (SP group), unilateral ureteral obstruction combined pregnancy group (UUO + Pregnancy group), unilateral ureteral obstruction combined pregnancy, administered eplerenone (UUO + Pregnancy+Eplerenone group). On the 18th day of pregnancy, the rats were placed in a metabolic cage, 24 h urine was collected and stored at -80 °C. Next day, all animals were euthanized, and serum was collected by centrifugation and stored at -20 °C. Then the right kidney was extracted, a part of the kidney was placed in 4% paraformaldehyde for morphology, immunohistochemical staining, and immunofluorescence staining, and the other part was placed in a - 80 °C refrigerator for RNA and protein extraction. In vitro, HUVECs was treated with aldosterone, progesterone and estradiol, VEGFA and its receptor blocker bevacizumab. The ability of proliferation, migration and tubularization of HUVECs was detected by CCK-8, scratch wound assay and endothelial tube formation assay. And the co-expression of CD34 and α-SMA of HUVECs was detected by Flow cytometry. RESULTS Immunofluorescence results showed that the co-expression of CD34 and α-SMA increased in the UUO + Pregnancy group was significantly increased. The expression of SGK-1, TGFβ-1, Smad2, Smad3, VEGF-A, VEGFR2, CD34, α-SMA and Collagen I was significantly higher in the kidneys of the UUO + Pregnancy group compared to the Sham group and SP group. Eplerenone inhibited the expression of those results. In vitro, the ability of proliferation, migration and tubularization was increased after treated with aldosterone, aldosterone with progesterone and estradiol or VEGFA. Similarly, the expression of α-SMA on the surface of HUVECs treated with aldosterone, aldosterone with progesterone and estradiol were increased, while eplerenone supressed its expression. CONCLUSION Eplerenone inhibits renal angiogenesis by blocking the SGK-1/TGFβ signal transduction pathway, thereby inhibiting the phenotypic transformation of endothelial cells, slowing down renal fibrosis, and reducing kidney damage caused by pregnancy.
Collapse
Affiliation(s)
- Wenping Zhou
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chang Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jieqi Niu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhen He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hepeng Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Mengjuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongshuang Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingyou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
7
|
Rass A, Eksteen C, Engelbrecht AM. Paracrine signalling in breast cancer: Insights into the tumour endothelial phenotype. Acta Histochem 2024; 126:152191. [PMID: 39216306 DOI: 10.1016/j.acthis.2024.152191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.
Collapse
Affiliation(s)
- Atarah Rass
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa.
| | - Carla Eksteen
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Zhang Y, Zhong F, Liu L. Single-cell transcriptional atlas of tumor-associated macrophages in breast cancer. Breast Cancer Res 2024; 26:129. [PMID: 39232806 PMCID: PMC11373130 DOI: 10.1186/s13058-024-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The internal heterogeneity of breast cancer, notably the tumor microenvironment (TME) consisting of malignant and non-malignant cells, has been extensively explored in recent years. The cells in this complex cellular ecosystem activate or suppress tumor immunity through phenotypic changes, secretion of metabolites and cell-cell communication networks. Macrophages, as the most abundant immune cells within the TME, are recruited by malignant cells and undergo phenotypic remodeling. Tumor-associated macrophages (TAMs) exhibit a variety of subtypes and functions, playing significant roles in impacting tumor immunity. However, their precise subtype delineation and specific function remain inadequately defined. METHODS The publicly available single-cell transcriptomes of 49,141 cells from eight breast cancer patients with different molecular subtypes and stages were incorporated into our study. Unsupervised clustering and manual cell annotation were employed to accurately classify TAM subtypes. We then conducted functional analysis and constructed a developmental trajectory for TAM subtypes. Subsequently, the roles of TAM subtypes in cell-cell communication networks within the TME were explored using endothelial cells (ECs) and T cells as key nodes. Finally, analyses were repeated in another independent publish scRNA datasets to validate our findings for TAM characterization. RESULTS TAMs are accurately classified into 7 subtypes, displaying anti-tumor or pro-tumor roles. For the first time, we identified a new TAM subtype capable of proliferation and expansion in breast cancer-TUBA1B+ TAMs playing a crucial role in TAMs diversity and tumor progression. The developmental trajectory illustrates how TAMs are remodeled within the TME and undergo phenotypic and functional changes, with TUBA1B+ TAMs at the initial point. Notably, the predominant TAM subtypes varied across different molecular subtypes and stages of breast cancer. Additionally, our research on cell-cell communication networks shows that TAMs exert effects by directly modulating intrinsic immunity, indirectly regulating adaptive immunity through T cells, as well as influencing tumor angiogenesis and lymphangiogenesis through ECs. CONCLUSIONS Our study establishes a precise single-cell atlas of breast cancer TAMs, shedding light on their multifaceted roles in tumor biology and providing resources for targeting TAMs in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Yupeng Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Zhong
- Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Rahman L, Talha Khalil A, Ahsan Shahid S, Shinwari ZK, Almarhoon ZM, Alalmaie A, Sharifi‐Rad J, Calina D. Diosmin: A promising phytochemical for functional foods, nutraceuticals and cancer therapy. Food Sci Nutr 2024; 12:6070-6092. [PMID: 39554345 PMCID: PMC11561841 DOI: 10.1002/fsn3.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 11/19/2024] Open
Abstract
Diosmin, a potent bioflavonoid derived from citrus fruits, has gained significant attention for its anticancer potential, reflecting a critical need in the ongoing battle against cancer. Amidst increasing cancer incidence, the quest for safer and more effective treatments has brought diosmin to the forefront, given its unique pharmacological profile distinct from other flavonoids. Diosmin's anticancer mechanisms are multifaceted, involving apoptosis induction, angiogenesis inhibition, and metastasis prevention. Extensive research encompassing cellular studies, animal models, and limited clinical trials underscores its efficacy not only against cancer but also in managing chronic venous insufficiency and hemorrhoids, attributing to its anti-inflammatory properties. Furthermore, diosmin exhibits low toxicity and complements conventional chemotherapy, proposing its utility as an adjunct therapy in cancer treatment protocols. The review delves into the specific anticancer advantages of diosmin, distinguishing it from the broader flavonoid category. It provides a detailed analysis of its implications in preclinical and clinical settings, advocating for its consideration in the oncological therapeutic arsenal. By juxtaposing diosmin with other herbal medicines, the review offers a nuanced perspective on its role within the wider context of natural anticancer agents, emphasizing the need for further clinical research to substantiate its efficacy and safety in oncology.
Collapse
Affiliation(s)
- Lubna Rahman
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Ali Talha Khalil
- Department of PathologyLady Reading Hospital Medical Teaching InstitutionPeshawarPakistan
| | | | | | - Zainab M. Almarhoon
- Department of ChemistryCollege of Science, King Saud UniversityRiyadhSaudi Arabia
| | - Amnah Alalmaie
- Department of PharmaceuticsCollege of Pharmacy, King Khalid UniversityAbhaSaudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
10
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
11
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
12
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2024:10.1007/s13346-024-01669-9. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
13
|
Li Y, Chen A, Hong A, Xiong S, Chen X, Xie Q. Shark Cartilage-Derived Anti-Angiogenic Peptide Inhibits Corneal Neovascularization. Bioengineering (Basel) 2024; 11:693. [PMID: 39061775 PMCID: PMC11273382 DOI: 10.3390/bioengineering11070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Corneal neovascularization is a significant cause of vision loss, often resulting in corneal clouding and chronic inflammation. Shark cartilage is widely recognized as a significant natural source of anti-angiogenic compounds. Our previous studies have shown that a polypeptide from white-spotted catshark (Chiloscyllium plagiosum Bonnet) has the potential to inhibit the angiogenesis of breast tumors. This study applied this peptide (SAIF) to a corneal alkali injury model to assess its effect on corneal neovascularization. Results revealed that SAIF inhibits endothelial cell proliferation, migration, and tube formation. SAIF inhibited VEGF-induced angiogenesis in the matrigel plug. Using the corneal alkali injury model, SAIF significantly inhibited corneal vascular neovascularization in mice. We found that SAIF not only significantly inhibited the upregulation of pro-angiogenic factors such as VEGF, bFGF, and PDGF expression induced by alkali injury, but also promoted the expression of anti-angiogenesis factor PEDF. Moreover, we also analyzed the MMPs and TIMPs involved in extracellular matrix (ECM) remodeling, angiogenesis, and lymphangiogenesis. We found that SAIF treatment inhibited the expression of pro-angiogenic factors like MMP1, MMP2, MMP3, MMP9, MMP13, and MMP14, and promoted the expression of anti-angiogenesis factors such as MMP7, TIMP1, TIMP2, and TIMP3. In conclusion, SAIF acts as an anti-angiogenic factor to inhibit the proliferation, migration, and tube formation of endothelial cells, inhibit pro-angiogenic factors, promote anti-angiogenic factors, and regulate the expression of MMPs, ultimately inhibiting corneal neovascularization.
Collapse
Affiliation(s)
- Yunxian Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
| | - Aoke Chen
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
- Guangdong Jida Engineering Research Center of Genetic Medicine Co., Ltd., Guangzhou 510535, China
| | - An Hong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Sheng Xiong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Xiaojia Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| |
Collapse
|
14
|
Michael C, Mendonça-Gomes JM, DePaolo CW, Di Cristofano A, de Oliveira S. A zebrafish xenotransplant model of anaplastic thyroid cancer to study tumor microenvironment and innate immune cell interactions in vivo. Endocr Relat Cancer 2024; 31:e230195. [PMID: 38657656 PMCID: PMC11160356 DOI: 10.1530/erc-23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Clinton Walton DePaolo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
15
|
Yadav P, Rana K, Chakraborty R, Khan A, Mehta D, Jain D, Aggarwal B, Jha SK, Dasgupta U, Bajaj A. Engineered nanomicelles targeting proliferation and angiogenesis inhibit tumour progression by impairing the synthesis of ceramide-1-phosphate. NANOSCALE 2024; 16:10350-10365. [PMID: 38739006 DOI: 10.1039/d3nr04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
16
|
Choroba K, Machura B, Erfurt K, Casimiro AR, Cordeiro S, Baptista PV, Fernandes AR. Copper(II) Complexes with 2,2':6',2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J Med Chem 2024; 67:5813-5836. [PMID: 38518246 PMCID: PMC11017252 DOI: 10.1021/acs.jmedchem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ana Rita Casimiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Nys N, Khatib AM, Siegfried G. Apela promotes blood vessel regeneration and remodeling in zebrafish. Sci Rep 2024; 14:3718. [PMID: 38355946 PMCID: PMC10867005 DOI: 10.1038/s41598-023-50677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
In contrast to adult mammals, zebrafish display a high capacity to heal injuries and repair damage to various organs. One of the earliest responses to injury in adult zebrafish is revascularization, followed by tissue morphogenesis. Tissue vascularization entails the formation of a blood vessel plexus that remodels into arteries and veins. The mechanisms that coordinate these processes during vessel regeneration are poorly understood. Hence, investigating and identifying the factors that promote revascularization and vessel remodeling have great therapeutic potential. Here, we revealed that fin vessel remodeling critically depends on Apela peptide. We found that Apela selectively accumulated in newly formed zebrafish fin tissue and vessels. The temporal expression of Apela, Apln, and their receptor Aplnr is different during the regenerative process. While morpholino-mediated knockdown of Apela (Mo-Apela) prevented vessel remodeling, exogenous Apela peptide mediated plexus repression and the development of arteries in regenerated fins. In contrast, Apela enhanced subintestinal venous plexus formation (SIVP). The use of sunitinib completely inhibited vascular plexus formation in zebrafish, which was not prevented by exogenous application. Furthermore, Apela regulates the expression of vessel remolding-related genes including VWF, IGFPB3, ESM1, VEGFR2, Apln, and Aplnr, thereby linking Apela to the vascular plexus factor network as generated by the STRING online database. Together, our findings reveal a new role for Apela in vessel regeneration and remodeling in fin zebrafish and provide a framework for further understanding the cellular and molecular mechanisms involved in vessel regeneration.
Collapse
Affiliation(s)
- Nicolas Nys
- RYTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, University of Bordeaux, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
| | - Abdel-Majid Khatib
- RYTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, University of Bordeaux, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
- ZebraFish, Research and Technology, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
- Bergonié Institute, Bordeaux, France.
| | - Geraldine Siegfried
- RYTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, University of Bordeaux, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
- ZebraFish, Research and Technology, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
| |
Collapse
|
18
|
Andryszak N, Świniuch D, Wójcik E, Ramlau R, Ruchała M, Czepczyński R. Head-to-Head Comparison of [ 18F]PSMA-1007 and [ 18F]FDG PET/CT in Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:667. [PMID: 38339419 PMCID: PMC10854516 DOI: 10.3390/cancers16030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) exhibits high aggressiveness and a notably poorer prognosis at advanced stages. Nuclear medicine offers new possibilities, not only for diagnosis but also potentially promising therapeutic strategies. This prospective study explores the potential of prostate-specific membrane antigen (PSMA) as a diagnostic and therapeutic target in TNBC. METHODS the research investigates PSMA expression in vivo among TNBC patients using [18F]PSMA-1007 PET/CT and compares it head-to-head with the standard-of-care [18F]FDG PET/CT. RESULTS The study involves 10 TNBC patients, revealing comparable uptake of [18F]PSMA-1007 and [18F]FDG in primary and metastatic lesions. Nodal metastases were found in eight patients, showing similar SUVmax values in both modalities. Two patients had uncountable lung metastases positive in both [18F]FDG and [18F]PSMA-1007 scans. PET-positive bone metastases were identified by 18F-PSMA in four patients, while elevated [18F]FDG uptake was found only in three of them. Distant metastases displayed higher SUVmax values in the [18F]PSMA-1007 PET/CT, as compared to [18F]FDG. Additionally, brain metastases were exclusively detected using [18F]PSMA-1007. CONCLUSIONS the findings provide valuable insights into the expression of PSMA in TNBC and underscore the potential clinical significance of [18F]PSMA-1007 PET/CT in enhancing both diagnostic and therapeutic approaches for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Natalia Andryszak
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.R.); (R.C.)
- Department of Nuclear Medicine, Affidea, 61-485 Poznan, Poland
| | - Daria Świniuch
- Department of Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Elżbieta Wójcik
- Department of Oncology Medical Center HCP Poznan, 61-485 Poznan, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.R.); (R.C.)
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.R.); (R.C.)
- Department of Nuclear Medicine, Affidea, 61-485 Poznan, Poland
| |
Collapse
|
19
|
Porte C, Lisson T, Kohlen M, von Maltzahn F, Dencks S, von Stillfried S, Piepenbrock M, Rix A, Dasgupta A, Koczera P, Boor P, Stickeler E, Schmitz G, Kiessling F. Ultrasound Localization Microscopy for Breast Cancer Imaging in Patients: Protocol Optimization and Comparison with Shear Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:57-66. [PMID: 37805359 DOI: 10.1016/j.ultrasmedbio.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Ultrasound localization microscopy (ULM) has gained increasing attention in recent years because of its ability to visualize blood vessels at super-resolution. The field of oncology, in particular, could benefit from detailed vascular characterization, for example, for diagnosis and therapy monitoring. This study was aimed at refining ULM for breast cancer patients by optimizing the measurement protocol, identifying translational challenges and combining ULM and shear wave elastography. METHODS We computed ULM images of 11 patients with breast cancer by recording contrast-enhanced ultrasound (CEUS) sequences and post-processing them in an offline pipeline. For CEUS, two different doses and injection speeds of SonoVue were applied. The best injection protocol was determined based on quantitative parameters derived from so-called occurrence maps. In addition, a suitable measurement time window was determined, also considering the occurrence of motion. ULM results were compared with shear wave elastography and histological vessel density. RESULTS At the higher dose and injection speed, the highest number of microbubbles, number of tracks and vessel coverage were achieved, leading to the most detailed representation of tumor vasculature. Even at the highest concentration, no significant overlay of microbubble signals occurred. Motion significantly reduced the number of usable frames, thus limiting the measurement window to 3.5 min. ULM vessel coverage was comparable to the histological vessel fraction and correlated significantly with mean tumor elasticity. CONCLUSION The settings for microbubble injection strongly influence ULM images, thus requiring optimized protocols for different indications. Patient and examiner motion was identified as the main translational challenge for ULM.
Collapse
Affiliation(s)
- Céline Porte
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Thomas Lisson
- Department of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany
| | - Matthias Kohlen
- Department of Gynecology and Obstetrics, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Finn von Maltzahn
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefanie Dencks
- Department of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany
| | - Saskia von Stillfried
- Institute of Pathology, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Marion Piepenbrock
- Department of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Georg Schmitz
- Department of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany.
| |
Collapse
|
20
|
Nan W, He Y, Shen S, Wu M, Wang S, Zhang Y. BMP4 inhibits corneal neovascularization by interfering with tip cells in angiogenesis. Exp Eye Res 2023; 237:109680. [PMID: 37858608 DOI: 10.1016/j.exer.2023.109680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Corneal neovascularization (CNV) can lead to impaired corneal transparency, resulting in vision loss or blindness. The primary pathological mechanism underlying CNV is an imbalance between pro-angiogenic and anti-angiogenic factors, with inflammation playing a crucial role. Notably, a vascular endothelial growth factor(VEGF)-A gradient triggers the selection of single endothelial cells(ECs) into primary tip cells that guide sprouting, while a dynamic balance between tip and stalk cells maintains a specific ratio to promote CNV. Despite the central importance of tip-stalk cell selection and shuffling, the underlying mechanisms remain poorly understood. In this study, we examined the effects of bone morphogenetic protein 4 (BMP4) on VEGF-A-induced lumen formation in human umbilical vein endothelial cells (HUVECs) and CD34-stained tip cell formation. In vivo, BMP4 inhibited CNV caused by corneal sutures. This process was achieved by BMP4 decreasing the protein expression of VEGF-A and VEGFR2 in corneal tissue after corneal suture injury. By observing the ultrastructure of the cornea, BMP4 inhibited the sprouting of tip cells and brought forward the appearance of intussusception. Meanwhile, BMP4 attenuated the inflammatory response by inhibiting neutrophil extracellular traps (NETs)formation through the NADPH oxidase-2(NOX-2)pathway. Our results indicate that BMP4 inhibits the formation of tip cells by reducing the generation of NETs, disrupting the dynamic balance of tip and stalk cells and thereby inhibiting CNV, suggesting that BMP4 may be a potential therapeutic target for CNV.
Collapse
Affiliation(s)
- Weijin Nan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yuxi He
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Sitong Shen
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Meiliang Wu
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Shurong Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
21
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
24
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Laajala TD, Sreekanth V, Soupir AC, Creed JH, Halkola AS, Calboli FCF, Singaravelu K, Orman MV, Colin-Leitzinger C, Gerke T, Fridley BL, Tyekucheva S, Costello JC. A harmonized resource of integrated prostate cancer clinical, -omic, and signature features. Sci Data 2023; 10:430. [PMID: 37407670 PMCID: PMC10322899 DOI: 10.1038/s41597-023-02335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or not standardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.
Collapse
Affiliation(s)
- Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jordan H Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Federico C F Calboli
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Natural Resources Institute Finland (Luke), F-31600, Jokioinen, Finland
| | | | - Michael V Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Data Science, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
26
|
Kučan D, Oršolić N, Odeh D, Ramić S, Jakopović B, Knežević J, Jazvinšćak Jembrek M. The Role of Hyperthermia in Potentiation of Anti-Angiogenic Effect of Cisplatin and Resveratrol in Mice Bearing Solid Form of Ehrlich Ascites Tumour. Int J Mol Sci 2023; 24:11073. [PMID: 37446252 DOI: 10.3390/ijms241311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further.
Collapse
Affiliation(s)
- Darko Kučan
- Division of Abdominal Surgery and Organ Transplantation, Department of Surgery, University Hospital Merkur, Zajčeva 19, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, 10000 Zagreb, Croatia
| | - Boris Jakopović
- Dr Myko San-Health from Mushrooms Co., Miramarska Cesta 109, 10000 Zagreb, Croatia
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Ekeuku SO, Etim EP, Pang KL, Chin KY, Mai CW. Vitamin E in the management of pancreatic cancer: A scoping review. World J Gastrointest Oncol 2023; 15:943-958. [PMID: 37389119 PMCID: PMC10302993 DOI: 10.4251/wjgo.v15.i6.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic cancer is the leading cause of cancer mortality worldwide. Research investigating effective management strategies for pancreatic cancer is ongoing. Vitamin E, consisting of both tocopherol and tocotrienol, has demonstrated debatable effects on pancreatic cancer cells. Therefore, this scoping review aims to summarize the effects of vitamin E on pancreatic cancer. In October 2022, a literature search was conducted using PubMed and Scopus since their inception. Original studies on the effects of vitamin E on pancreatic cancer, including cell cultures, animal models and human clinical trials, were considered for this review. The literature search found 75 articles on this topic, but only 24 articles met the inclusion criteria. The available evidence showed that vitamin E modulated proliferation, cell death, angiogenesis, metastasis and inflammation in pancreatic cancer cells. However, the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies. More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Effiong Paul Etim
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Michael C, Di Cristofano A, de Oliveira S. A zebrafish xenotransplant model of anaplastic thyroid cancer to study the tumor microenvironment and innate immune cell interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541816. [PMID: 37398266 PMCID: PMC10312444 DOI: 10.1101/2023.05.29.541816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignant subtype of thyroid cancer. While ATC is rare it accounts for a disproportionately high number of thyroid cancer-related deaths. Here we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643) derived fluorescently labeled ATC cell lines we show these cell lines display different engraftment rates, mass volume, proliferation, and angiogenic potential. Next, using a PIP-FUCCI reporter to track proliferation in-vivo we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 hours to understand cellular dynamics in the tumor microenvironment at the single cell level. Lastly, we tested a well-known mTOR inhibitor to show our model could be used as an effective screening platform for new therapeutic compounds. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
29
|
Ayed K, Nabi L, Akrout R, Mrizak H, Gorrab A, Bacha D, Boussen H, Gati A. Obesity and cancer: focus on leptin. Mol Biol Rep 2023:10.1007/s11033-023-08525-y. [PMID: 37227675 DOI: 10.1007/s11033-023-08525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Over the past decades, obesity has grown to epidemic proportions worldwide. It has been associated with an increased risk for different types of cancer. In addition, obesity has been associated with a poor prognosis, an increased risk of metastasis and mortality, and resistance to anti-cancer therapies. The pathophysiological mechanisms underlying the obesity-cancer connection have not yet been fully elucidated. However, this connection could result, at least in part, from the action of adipokines, whose levels are increased in obesity. Among these adipokines, evidence suggests leptin's critical role in linking obesity to cancer. In this review, we first summarize the current state of the literature regarding the implication of leptin in tumorigenic processes. Next, we focus on the effects of leptin on the anti-tumor immune response. Then, we discuss the influence of leptin on the efficiency of antineoplastic treatments and the development of tumor resistance. Finally, we highlight the use of leptin as a potential target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Khouloud Ayed
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lamis Nabi
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rym Akrout
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hela Mrizak
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amal Gorrab
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dhouha Bacha
- Anatomopathology Department, Mongi Slim Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Ariana, Tunisia
| | - Asma Gati
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
30
|
Zhou S, Ou H, Wu Y, Qi D, Pei X, Yu X, Hu X, Wu E. Targeting tumor endothelial cells with methyltransferase inhibitors: Mechanisms of action and the potential of combination therapy. Pharmacol Ther 2023:108434. [PMID: 37172786 DOI: 10.1016/j.pharmthera.2023.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Tumor endothelial cells (TECs) reside in the inner lining of blood vessels and represent a promising target for targeted cancer therapy. DNA methylation is a chemical process that involves the transfer of a methyl group to a specific base in the DNA strand, catalyzed by DNA methyltransferase (DNMT). DNMT inhibitors (DNMTis) can inhibit the activity of DNMTs, thereby preventing the transfer of methyl groups from s-adenosyl methionine (SAM) to cytosine. Currently, the most viable therapy for TECs is the development of DNMTis to release cancer suppressor genes from their repressed state. In this review, we first outline the characteristics of TECs and describe the development of tumor blood vessels and TECs. Abnormal DNA methylation is closely linked to tumor initiation, progression, and cell carcinogenesis, as evidenced by numerous studies. Therefore, we summarize the role of DNA methylation and DNA methyltransferase and the therapeutic potential of four types of DNMTi in targeting TECs. Finally, we discuss the accomplishments, challenges, and opportunities associated with combination therapy with DNMTis for TECs.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hailong Ou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yatao Wu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dan Qi
- Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA
| | - Xiaming Pei
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaohui Yu
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China; Research Institute of Hunan University in Chongqing, Chongqing 401120, China.
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott & White Health, Temple, TX 78508, USA; Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA; LIVESTRONG Cancer Institutes, Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
31
|
Li X, Wang J, Wang Q, Luo T, Song X, Wan G, Feng Z, He X, Lei Q, Xu Y, You X, Yu L, Zhang L, Zhao L. A novel VEGFR inhibitor ZLF-095 with potent antitumor activity and low toxicity. Heliyon 2023; 9:e15152. [PMID: 37251840 PMCID: PMC10209341 DOI: 10.1016/j.heliyon.2023.e15152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/31/2023] Open
Abstract
Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Tianwen Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610000, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaojie He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Lei
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, No.229 North Taibai Road, Xi’an, Shaanxi, 710069, China
| | - Xinyu You
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
32
|
Tramontano C, De Stefano L, Rea I. Diatom-Based Nanomedicine for Colorectal Cancer Treatment: New Approaches for Old Challenges. Mar Drugs 2023; 21:md21050266. [PMID: 37233460 DOI: 10.3390/md21050266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer is among the most prevalent and lethal cancers globally. To address this emergency, countries have developed diffuse screening programs and innovative surgical techniques with a consequent decrease in mortality rates in non-metastatic patients. However, five years after diagnosis, metastatic CRC is still characterized by less than 20% survival. Most patients with metastatic CRC cannot be surgically treated. For them, the only option is treatment with conventional chemotherapies, which cause harmful side effects in normal tissues. In this context, nanomedicine can help traditional medicine overcome its limits. Diatomite nanoparticles (DNPs) are innovative nano-based drug delivery systems derived from the powder of diatom shells. Diatomite is a porous biosilica largely found in many areas of the world and approved by the Food and Drug Administration (FDA) for pharmaceutical and animal feed formulations. Diatomite nanoparticles with a size between 300 and 400 nm were shown to be biocompatible nanocarriers capable of delivering chemotherapeutic agents against specific targets while reducing off-target effects. This review discusses the treatment of colorectal cancer with conventional methods, highlighting the drawbacks of standard medicine and exploring innovative options based on the use of diatomite-based drug delivery systems. Three targeted treatments are considered: anti-angiogenetic drugs, antimetastatic drugs, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Chiara Tramontano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
33
|
Yan X, Li S, Yan H, Yu C, Liu F. IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment. Int J Nanomedicine 2023; 18:1741-1763. [PMID: 37034271 PMCID: PMC10075272 DOI: 10.2147/ijn.s399047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer-related burden of morbidity and mortality is rapidly rising worldwide. Medical imaging plays an important role in every phase of cancer management, including diagnosis, staging, treatment planning and evaluation. Iron oxide nanoparticles (IONPs) could serve as contrast agents or labeling agents to enhance the identification and visualization of pathological tissues as well as target cells. Multimodal or multifunctional imaging can be easily acquired by modifying IONPs with other imaging agents or functional groups, allowing the accessibility of combined imaging techniques and providing more comprehensive information for cancer care. To date, IONPs-enhanced medical imaging has gained intensive application in early diagnosis, monitoring treatment as well as guiding radio-frequency ablation, sentinel lymph node dissection, radiotherapy and hyperthermia therapy. Besides, IONPs mediated imaging is also capable of promoting the development of anti-cancer nanomedicines through identifying patients potentially sensitive to nanotherapeutics. Based on versatile imaging modes and application fields, this review highlights and summarizes recent research advances of IONPs-based medical imaging in cancer management. Besides, currently existing challenges are also discussed to provide perspectives and advices for the future development of IONPs-based imaging in cancer management.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Shanshan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Haiyin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Chungang Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Fengxi Liu, Tel +86 0531-89269594, Email
| |
Collapse
|
34
|
Danella EB, Costa de Medeiros M, D'Silva NJ. Cytokines secreted by inflamed oral mucosa: implications for oral cancer progression. Oncogene 2023; 42:1159-1165. [PMID: 36879116 DOI: 10.1038/s41388-023-02649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
The oral mucosa has an essential role in protecting against physical, microbial, and chemical harm. Compromise of this barrier triggers a wound healing response. Key events in this response such as immune infiltration, re-epithelialization, and stroma remodeling are coordinated by cytokines that promote cellular migration, invasion, and proliferation. Cytokine-mediated cellular invasion and migration are also essential features in cancer dissemination. Therefore, exploration of cytokines that regulate each stage of oral wound healing will provide insights about cytokines that are exploited by oral squamous cell carcinoma (SCC) to promote tumor development and progression. This will aid in identifying potential therapeutic targets to constrain SCC recurrence and increase patient survival. In this review, we discuss cytokines that overlap in oral wounds and SCC, emphasizing how these cytokines promote cancer progression.
Collapse
Affiliation(s)
- Erika B Danella
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Marcell Costa de Medeiros
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA. .,Pathology, University of Michigan Medical School, 1500 E Medical Center Dr, Ann Arbor, MI, USA. .,Rogel Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Deshmukh D, Hsu YF, Chiu CC, Jadhao M, Hsu SCN, Hu SY, Yang SH, Liu W. Antiangiogenic potential of Lepista nuda extract suppressing MAPK/p38 signaling-mediated developmental angiogenesis in zebrafish and HUVECs. Biomed Pharmacother 2023; 159:114219. [PMID: 36621144 DOI: 10.1016/j.biopha.2023.114219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The medicinal properties of natural/edible plant products and their use are popular in traditional practice owing to their nutritional contents with little to no side effects. Lepista nuda (L. nuda), an edible mushroom (Clitocybe nuda, commonly known as blewit), has attracted researchers to evaluate its contents and the mechanism of its activities. In the current study, we focused on evaluating the antiangiogenic effects of L. nuda water extract on zebrafish development and in vitro human umbilical vein endothelial cell (HUVEC) tube formation. Bioactive components such as ergothioneine, eritadenine, and adenosine were identified and quantified by HPLC analysis. The L. nuda extract showed antiangiogenic properties and inhibited intersegmental vessel (ISV), caudal vein plexus (CVP), hyaloid vessel (HV), and subintestinal vessel (SIV) development in Tg (fli1: EGFP) zebrafish embryos. The expression of angiogenesis-related genes (vegfaa, kdrl, vegfba, flt1, kdr) was affected following L. nuda extract treatment. L. nuda extract attenuated in vitro HUVEC tube formation, migration, and invasion. Furthermore, inhibition of MAPK/p38 signaling and depletion of proangiogenic genes, including growth factors (fgf, ang2, and vegfa); primary and accessory receptors (tie2, vegfr2, and eng); MMPs (mmp1 and mmp2); and cytokines (il-1α, il-1β, il-6, and tnf-α) was observed in HUVECs following L. nuda treatment. An in vivo zebrafish xenograft assay showed that L. nuda extract inhibited HuCCT1 cell-induced SIV sprouting in HuCCT1-injected embryos. Collectively, the results suggest that L. nuda could be a potential inhibitor of angiogenesis limiting cancer progression.
Collapse
Affiliation(s)
- Dhanashri Deshmukh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya Fen Hsu
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| | - Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Shu-Hui Yang
- Department of Management and Utilization, Fengshan Tropical Horticultural Experimental Branch, Taiwan Agricultural Research Institute, Kaohsiung 807, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
36
|
Michaelides I, Künzel J, Ettl T, Beckhove P, Bohr C, Brochhausen C, Mamilos A. Adenoid cystic carcinoma of the salivary glands: a pilot study of potential therapeutic targets and characterization of the immunological tumor environment and angiogenesis. Eur Arch Otorhinolaryngol 2023; 280:2937-2944. [PMID: 36856809 PMCID: PMC10175421 DOI: 10.1007/s00405-023-07884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a rare type of cancer commonly occurring in salivary glands. It is characterized by slow but infiltrative growth, nerve infiltration and overall poor prognosis, with late recurrence and distant metastasis. The treatment of ACC is still limited to surgery and/or (adjuvant) radiotherapy. Till now no promising systemic therapy option exists. However, various studies deliver promising results after treatment with anti-angiogenetic agents, such as anti-EGFR-antibody Cetuximab or Tyrosinkinase inhibitor Lenvatinib. METHODS By using of immunohistological methods we analyzed and compared the macrophage and lymphocyte populations, vascularization, and PD-L1-status in 12 ACC of the salivary glands. RESULTS All cases showed a significant elevation of macrophages with M2 polarization and a higher vascularization in ACC compared to normal salivary gland tissue. The CD4/CD8 quotient was heterogenous. ACC does not show relevant PD-L1 expression. CONCLUSIONS The predominant M2 polarization of macrophages in ACC could be responsible for elevated vascularization, as already been proved in other cancer types, that M2 macrophages promote angiogenesis.
Collapse
Affiliation(s)
- Ioannis Michaelides
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Julian Künzel
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christopher Bohr
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | - Andreas Mamilos
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
37
|
Berger A, Lee MD, Lotan E, Block KT, Fatterpekar G, Kondziolka D. Distinguishing Brain Metastasis Progression From Radiation Effects After Stereotactic Radiosurgery Using Longitudinal GRASP Dynamic Contrast-Enhanced MRI. Neurosurgery 2023; 92:497-506. [PMID: 36700674 DOI: 10.1227/neu.0000000000002228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Differentiating brain metastasis progression from radiation effects or radiation necrosis (RN) remains challenging. Golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced MRI provides high spatial and temporal resolution to analyze tissue enhancement, which may differ between tumor progression (TP) and RN. OBJECTIVE To investigate the utility of longitudinal GRASP MRI in distinguishing TP from RN after gamma knife stereotactic radiosurgery (SRS). METHODS We retrospectively evaluated 48 patients with brain metastasis managed with SRS at our institution from 2013 to 2020 who had GRASP MRI before and at least once after SRS. TP (n = 16) was pathologically confirmed. RN (n = 16) was diagnosed on either resected tissue without evidence of tumor or on lesion resolution on follow-up. As a reference, we included a separate group of patients with non-small-cell lung cancer that showed favorable response with tumor control and without RN on subsequent imaging (n = 16). Mean contrast washin and washout slopes normalized to the superior sagittal sinus were compared between groups. Receiver operating characteristic analysis was performed to determine diagnostic performance. RESULTS After SRS, progression showed a significantly steeper washin slope than RN on all 3 follow-up scans (scan 1: 0.29 ± 0.16 vs 0.18 ± 0.08, P = .021; scan 2: 0.35 ± 0.19 vs 0.18 ± 0.09, P = .004; scan 3: 0.32 ± 0.12 vs 0.17 ± 0.07, P = .002). No significant differences were found in the post-SRS washout slope. Post-SRS washin slope differentiated progression and RN with an area under the curve (AUC) of 0.74, a sensitivity of 75%, and a specificity of 69% on scan 1; an AUC of 0.85, a sensitivity of 92%, and a specificity of 69% on scan 2; and an AUC of 0.87, a sensitivity of 63%, and a specificity of 100% on scan 3. CONCLUSION Longitudinal GRASP MRI may help to differentiate metastasis progression from RN.
Collapse
Affiliation(s)
- Assaf Berger
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Matthew D Lee
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Eyal Lotan
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| |
Collapse
|
38
|
Mulchandani V, Banerjee A, Vadlamannati AV, Kumar S, Das Sarma J. Connexin 43 trafficking and regulation of gap junctional intercellular communication alters ovarian cancer cell migration and tumorigenesis. Biomed Pharmacother 2023; 159:114296. [PMID: 36701988 DOI: 10.1016/j.biopha.2023.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer persists to be the most lethal gynecological malignancy, demanding rigorous treatments involving radio-chemotherapy that trigger toxicity and consequently mortality among patients. An improved understanding of the disease progression may pioneer curative therapies. Mouse epithelial ovarian cancer cell lines, ID8 and ID8-VEGF (overexpressing VEGF) were intraperitoneally injected in C57BL/6 female mice to develop a Syngeneic Ovarian cancer mouse model. It was observed that ID8-VEGF cells were able to induce aggressive tumor growth in mice compared to ID8 cells. Furthermore, results of the current in vitro study comparing ID8 and ID8-VEGF demonstrated that highly tumorigenic ID8-VEGF had reduced gap junctional intercellular communication (GJIC) due to intracellular Connexin 43 (Cx43) expression. Additionally, ID8 cells with reduced tumorigenic capability expressed significant GJIC. Furthermore, loss of GJIC in ID8-VEGF cells induced shorter tunneling nanotube formations, while ID8 cells develops longer tunneling nanotube to maintain cellular crosstalk. The administration of a pharmacological drug 4-phenylbutyrate (4PBA) ensured the restoration of GJIC in both the ovarian cancer cell lines. Additionally, 4PBA treatment significantly inhibited the migration of ovarian cancer cell lines and tumor formation in ovarian cancer mice models. In summary, the 4PBA-mediated restoration of GJIC suppressed migration (in vitro) and tumorigenesis (in vivo) of ovarian cancer cells. The present study suggests that Cx43 assembled GJIC and its supportive signaling pathways are a prospective target for restricting ovarian cancer progression.
Collapse
Affiliation(s)
- Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anurag Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arunima Vijaya Vadlamannati
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saurav Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Department of Ophthalmology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
39
|
Szczerba K, Stokowa-Soltys K. What Is the Correlation between Preeclampsia and Cancer? The Important Role of Tachykinins and Transition Metal Ions. Pharmaceuticals (Basel) 2023; 16:366. [PMID: 36986466 PMCID: PMC10058266 DOI: 10.3390/ph16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Metal ions are irreplaceable in many biological processes. They are components of numerous metalloproteins and serve as cofactors or structural elements for enzymes. Interestingly, iron, copper and zinc play important roles in accelerating or preventing neoplastic cell transformation. Noteworthily, a lot of proliferative and invasive mechanisms are exploited by both malignant tumors and pregnancy. Cancer cells, as well as developing placenta cells, create a microenvironment supportive of immunologic privilege and angiogenesis. Therefore, pregnancy and cancer progression share many similarities. Moreover, during preeclampsia and cancer, significant changes in relevant trace element concentrations, tachykinin levels, expressions of neurokinin receptors, oxidative stress and angiogenic imbalance are observed. This sheds a new light on the role of metal ions and tachykinins in cancer progression and pregnancy, especially in preeclamptic women.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Soltys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
40
|
The Potential of PSMA as a Vascular Target in TNBC. Cells 2023; 12:cells12040551. [PMID: 36831218 PMCID: PMC9954547 DOI: 10.3390/cells12040551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies proving prostate-specific membrane antigen (PSMA) expression on triple-negative breast cancer (TNBC) cells and adjacent endothelial cells suggest PSMA as a promising target for therapy of until now not-targetable cancer entities. In this study, PSMA and its isoform expression were analyzed in different TNBC cells, breast cancer stem cells (BCSCs), and tumor-associated endothelial cells. PSMA expression was detected in 91% of the investigated TNBC cell lines. The PSMA splice isoforms were predominantly found in the BCSCs. Tumor-conditioned media from two TNBC cell lines, BT-20 (high full-length PSMA expression, PSMAΔ18 expression) and Hs578T (low full-length PSMA expression, no isoform expression), showed significant pro-angiogenic effect with induction of tube formation in endothelial cells. All TNBC cell lines induced PSMA expression in human umbilical vein endothelial cells (HUVEC). Significant uptake of radiolabeled ligand [68Ga]Ga-PSMA was detected in BCSC1 (4.2%), corresponding to the high PSMA expression. Moreover, hypoxic conditions increased the uptake of radiolabeled ligand [177Lu]Lu-PSMA in MDA-MB-231 (0.4% vs. 3.4%, under hypoxia and normoxia, respectively) and MCF-10A (0.3% vs. 3.0%, under normoxia and hypoxia, respectively) significantly (p < 0.001). [177Lu]Lu-PSMA-induced apoptosis rates were highest in BT-20 and MDA-MB-231 associated endothelial cells. Together, these findings demonstrate the potential of PSMA-targeted therapy in TNBC.
Collapse
|
41
|
Tumor Radiosensitization by Gene Electrotransfer-Mediated Double Targeting of Tumor Vasculature. Int J Mol Sci 2023; 24:ijms24032755. [PMID: 36769077 PMCID: PMC9917180 DOI: 10.3390/ijms24032755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor β co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.
Collapse
|
42
|
Laajala TD, Sreekanth V, Soupir A, Creed J, Calboli FCF, Singaravelu K, Orman M, Colin-Leitzinger C, Gerke T, Fidley BL, Tyekucheva S, Costello JC. curatedPCaData: Integration of clinical, genomic, and signature features in a curated and harmonized prostate cancer data resource. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524403. [PMID: 36711769 PMCID: PMC9882125 DOI: 10.1101/2023.01.17.524403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or unstandardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.
Collapse
Affiliation(s)
- Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jordan Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Federico CF Calboli
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Natural Resources Institute Finland (Luke), F-31600, Jokioinen, Finland
| | | | - Michael Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L. Fidley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Data Science, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
43
|
Srour AM, Dawood DH, Nossier ES, El-Shiekh RA, Mahmoud AE, Hussien AG, Omran MM, Ali MM. Design, synthesis and molecular docking simulation of oxindole-based derivatives with dual VEGFR-2 and cholinesterase inhibitory activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Baccalini EA, Renne SL, Colombo P, Pasqualini F, Quagliuolo VL, Cananzi FCM, Grizzi F, Borroni EM. Exploring the CXCR4/CXCR7/CXCL12 Axis in Primary Desmoid Tumors. Anticancer Agents Med Chem 2023; 23:2248-2253. [PMID: 36748819 DOI: 10.2174/1871520623666230207091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Desmoid tumors have an extremely variable natural history. The uncertainty behind desmoid behavior reflects the complexity, which subtends its development and non-linear advancement. Apart from Wnt- βcatenin mutation, estrogen receptors, and COX-2 overexpression, little is known about the ability of desmoids to grow and recur while being unable to metastasize. Several tumors have been shown to express the CXCR4/CXCR7/CXCL12 axis, whose functions are essential for tumoral development. AIMS This study aimed to investigate the expression of the CXCR4/CXCR7/CXCL12 axis in primary desmoid tumors and discuss the potential role of this key-signaling as an antiangiogenic therapeutic strategy. METHODS In this study, 3 μm-thick consecutive sections from each formalin-fixed and paraffin-embedded tissue block were treated with mouse monoclonal antibodies developed against CD34, CXCR4, CXCR7, and CXCL12. RESULTS Two distinct vessel populations: CXCR4+ and CXCR4- vessels, have been found. Similarly, chemokine receptor CXCR7 expression in the entire desmoid tumor series positively stained a portion of tumor-associated vessels, identifying two distinct subpopulations of vessels: CXCR7+ and CXCR7- vessels. All 8 neoplastic tissue samples expressed CXCL12. Immunohistochemical positivity was identified in both stromal and endothelial vascular cells. Compared to CXCR4 and CXCR7, the vast majority of tumor-associated vessels were found to express this chemokine. CONCLUSION It is the first time, as per our knowledge, that CXCR4/CXCR7/CXCL12 axis expression has been identified in a desmoid type-fibromatosis series. CXCL12 expression by neoplastic cells, together with CXCR4 and CXCR7 expression by a subgroup of tumor-associated vessels, was detected in all desmoid tumor tissue samples examined. Since chemokines are known contributors to neovascularization, CXCR4/CXCR7/CXCL12 axis may play a role in angiogenesis in this soft-tissue tumor histotype, thereby supporting its growth.
Collapse
Affiliation(s)
- Edoardo Andrea Baccalini
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Salvatore Lorenzo Renne
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Vittorio Lorenzo Quagliuolo
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Ferdinando Carlo Maria Cananzi
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
| | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Elena Monica Borroni
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Segrate, 20054, Italy
| |
Collapse
|
45
|
Sannappa Gowda NG, Shiragannavar VD, Puttahanumantharayappa LD, Shivakumar AT, Dallavalasa S, Basavaraju CG, Bhat SS, Prasad SK, Vamadevaiah RM, Madhunapantula SV, Santhekadur PK. Quercetin activates vitamin D receptor and ameliorates breast cancer induced hepatic inflammation and fibrosis. Front Nutr 2023; 10:1158633. [PMID: 37153919 PMCID: PMC10157213 DOI: 10.3389/fnut.2023.1158633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Aims To explore the hepatoprotective role of quercetin and its novel molecular mechanism of action on breast cancer associated hepatic inflammation and fibrosis via Vitamin D receptor (VDR). Main methods We used Ehrlich Ascites Carcinoma (mouse mammary carcinoma) model for our in-vivo experiments and human breast cancer cell lines for in-vitro assays. We inoculated 1.5 × 106 Ehrlich ascites carcinoma cells into female Swiss albino mice. Quercetin (50 mg/kg) was administered intraperitoneally for 15 days. Liver enzymes activity was determined using a spectrophotometric assay. The hallmarks of inflammation and fibrosis were determined using Immunohistochemistry. The effect of quercetin on tumor formation was elucidated using human breast cancer cell lines and chick chorioallantoic membrane assay. Docking study was performed to explore the binding mode of quercetin with VDR. Key findings In EAC tumor-bearing mice, cell numbers, tumor volume, body weight and liver weight were dramatically increased, while they significantly decreased in mice treated with quercetin. Additionally, the peritoneal neo-angiogenesis was also significantly suppressed in the quercetin-treated mice, compared to the control. In addition, quercetin treated EAC tumor bearing mice had lower levels of liver enzymes, decreased hepatic inflammation and fibrosis compared with EAC tumor bearing mice. Docking study confirmed VDR-quercetin interaction. Furthermore, in-vitro assays and chick chorioallantoic membrane assay revealed the Vitamin D mimicking effect of quercetin. Significance Dietary flavonoid, quercetin could act as a promising therapeutic drug to suppress the breast cancer induced tumor angiogenesis, hepatic inflammation, and fibrosis possibly via activation of VDR.
Collapse
Affiliation(s)
- Nirmala G. Sannappa Gowda
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Varsha D. Shiragannavar
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Lakshana D. Puttahanumantharayappa
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Ashwini Tumkur Shivakumar
- Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, Mysore, Karnataka, India
| | - Siva Dallavalasa
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Chaithanya G. Basavaraju
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Smitha S. Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
- Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | | | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prasanna K. Santhekadur
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Prasanna K. Santhekadur,
| |
Collapse
|
46
|
Pathak S, Gupta R, Parkar H, Joshi N, Nagotu S, Kale A. The role of Colchicine on actin polymerization dynamics: as a potent anti-angiogenic factor. J Biomol Struct Dyn 2022; 40:11729-11743. [PMID: 34424806 DOI: 10.1080/07391102.2021.1965911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the years, cancer research has focused on different strategies to discover drugs and therapies to treat the metastatic stage of cancer. This stage depends upon the type, and the cause of cancer. One of the central facts about any cancer invasion is the formation of new blood vessels that provide nutrients to these uncontrollably dividing cells. This phenomenon is called angiogenesis and is responsible for tumor progression and metastasis. Tumor angiogenesis is a sequential process wherein various angiogenic factors produced by tumor cells bind to receptors of endothelial cells. This stimulates the cytoskeletal protein, especially actin to reorganize themselves and undergo the process of canalization. The driving force for such membrane transformation is spatially and temporally-regulated by polymerization of submembrane actin filaments. So far, Colchicine has been studied for its effectiveness in controlling microtubule reorganization during cell division, but its role is far from understood on actin polymerization. In our current study, we report the effect of Colchicine on actin polymerization dynamics using biophysical analysis like Right light scattering (RLS), Dynamic light scattering (DLS), Circular dichroism (CD) analysis, Scanning electron microscopy (SEM) study. Isothermal titration calorimetry (ITC) and kinetic measurements. Isothermal titration calorimetry (ITC) indicates multiple site binding for colchicine with actin aggregates. We have checked the in vivo effect of colchicine using end3 cells of Saccharomyces cerevisiae. We also report the anti-angiogenesis activity of colchicine via ex-ovo chicken chorioallantoic membrane (CAM) assay. We predict the target site of binding for the drug by docking studies. Based on our findings, we suggest the 'drug-repurposed' function for colchicine as a potential anti-angiogenic candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Rahul Gupta
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Haifa Parkar
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Neha Joshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
47
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
48
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
49
|
Wang ZM, Zhuang RY, Guo X, Zhang CL, You Y, Chen LS, Liu WS, Zhang Y, Luo RK, Hou YY, Lu WQ, Zhou YH. Anlotinib plus Epirubicin Followed by Anlotinib Maintenance as First-line Treatment for Advanced Soft-tissue Sarcoma: An Open-label, Single-arm, Phase II Trial. Clin Cancer Res 2022; 28:5290-5296. [PMID: 36228149 DOI: 10.1158/1078-0432.ccr-22-1903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The treatment outcome for locally advanced or metastatic soft-tissue sarcoma (STS) remains unsatisfactory. Anlotinib had demonstrated impressive activity in the subsequent-line treatment of STS. This study investigated the combination of anlotinib and epirubicin followed by anlotinib maintenance as first-line treatment for patients with advanced STS. PATIENTS AND METHODS This prospective, open-label, single-arm, phase II trial was conducted in Zhongshan Hospital, Fudan University. Eligible patients were ages 18 years or older and had previously untreated, pathologically confirmed, unresectable locally advanced or metastatic STS. All patients received up to six cycles of anlotinib plus epirubicin followed by anlotinib maintenance until disease progression, unacceptable toxicity, or death. The primary endpoint was the progression-free survival (PFS) rate at 6 months. The study was registered on chictr.org (identifier ChiCTR1900024928). RESULTS From June 2019 to August 2020, 30 patients were enrolled. By December 2021, the median PFS was 11.5 months [95% confidence interval (CI): 8.6-14.4 months], while the median overall survival was not reached (95% CI: NE-NE). The objective response rate was 13.33% and the disease control rate was 80.0%. The most common adverse events (AE) included anemia (43.3%), nausea/vomiting (40.0%), fatigue (36.7%), leukopenia (30.0%), and proteinuria (10.0%), which were mainly of grade 1 or 2. The most frequent grade 3 or 4 AEs were anemia (10.0%), febrile neutropenia (33.3%), hypothyroidism (3.3%), and leukopenia (3.3%). No treatment-related death occurred. CONCLUSIONS The combination of anlotinib and epirubicin followed by anlotinib maintenance demonstrated promising efficacy with a favorable safety profile.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Medical Oncology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, P.R. China
| | - Rong-Yuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Chen-Lu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang You
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Li-Sha Chen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, P.R. China
| | - Wen-Shuai Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Zhongshan Hospital (South Branch), Fudan University, Shanghai P.R. China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai P.R. China
| | - Rong-Kui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai P.R. China
| | - Ying-Yong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai P.R. China
| | - Wei-Qi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai P.R. China
| | - Yu-Hong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai P.R. China
| |
Collapse
|
50
|
Johnson A, Townsend M, O’Neill K. Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells 2022; 11:cells11223626. [PMID: 36429054 PMCID: PMC9688327 DOI: 10.3390/cells11223626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are an exciting advancement in cancer immunotherapy, with striking success in hematological cancers. However, in solid tumors, the unique immunosuppressive elements of the tumor microenvironment (TME) contribute to the failure of CAR T cells. This review discusses the cell populations, cytokine/chemokine profile, and metabolic immunosuppressive elements of the TME. This immunosuppressive TME causes CAR T-cell exhaustion and influences failure of CAR T cells to successfully infiltrate solid tumors. Recent advances in CAR T-cell development, which seek to overcome aspects of the TME immunosuppression, are also reviewed. Novel discoveries overcoming immunosuppressive limitations of the TME may lead to the success of CAR T cells in solid tumors.
Collapse
|