1
|
Shi A, Yun F, Shi L, Liu X, Jia Y. Research progress on the mechanism of common inflammatory pathways in the pathogenesis and development of lymphoma. Ann Med 2024; 56:2329130. [PMID: 38489405 PMCID: PMC10946270 DOI: 10.1080/07853890.2024.2329130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.
Collapse
Affiliation(s)
- Aorong Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
| | - Fen Yun
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Lin Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Xia Liu
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongfeng Jia
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
2
|
Newport-Ratiu PA, Hussein KA, Carter T, Panjarian S, Jonnalagadda SC, Pandey MK. Unveiling the intricate dance: Obesity and TNBC connection examined. Life Sci 2024; 357:123082. [PMID: 39332488 DOI: 10.1016/j.lfs.2024.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Amid the dynamic field of cancer research, various targeted therapies have proven crucial in combating breast cancer, the most prevalent cancer among women globally. Triple Negative Breast Cancer (TNBC) stands out from other types of breast cancer due to the absence of three key receptors on the cell surface (progesterone, estrogen, and HER2). Researchers are working on finding ways to address TNBC's elusive biomarkers and minimize the damage caused by the disease through treatments like chemotherapies and targeted pathway receptors. One connection that should receive more attention is the link between TNBC and obesity. Obesity is defined as consuming significantly more energy than is expended, resulting in a high BMI. Moreover, obesity fosters a cancer-friendly environment characterized by inflammation, elevated levels of hormones, proteins, and signaling that activate pathways promoting cancer. Non-Hispanic black women have experienced notable disparities in TNBC rates. Various factors have led to the higher incidence and poorer outcomes of TNBC in non-Hispanic black women. This detailed review explores the complex relationship between obesity and TNBC, examining how the two disorders are connected in terms of disparities and offering a glimpse into future research and interventions.
Collapse
Affiliation(s)
- Patrick A Newport-Ratiu
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Kamel Abou Hussein
- Departments of Hematology and Medical Oncology, Breast Cancer Center, Women's Cancer Program, Cooper University Health Care, Camden, NJ, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | - Teralyn Carter
- Department of Breast Surgery, Breast Cancer Center, Woman's Cancer Program, Cooper University Health Care, Camden, NJ, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | | | | | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
3
|
Shaharudin NS, Surindar Singh GK, Kek TL, Sultan S. Targeting signaling pathways with andrographolide in cancer therapy (Review). Mol Clin Oncol 2024; 21:81. [PMID: 39301125 PMCID: PMC11411607 DOI: 10.3892/mco.2024.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Terpenoids are a large group of naturally occurring organic compounds with a wide range of components. A phytoconstituent in this group, andrographolide, which is derived from a plant called Andrographis paniculate, offers a number of advantages, including anti-inflammatory, anticancer, anti-angiogenesis and antioxidant effects. The present review elucidates the capacity of andrographolide to inhibit signaling pathways, namely the nuclear factor-κB (NF-κB), hypoxia-inducible factor 1 (HIF-1), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways, which are involved in cellular processes and responses such as the inflammatory response, apoptosis and angiogenesis. Inhibiting pathways enables andrographolide to exhibit its anticancer effects against breast, colorectal and lung cancer. The present review focuses on the anticancer effects of andrographolide, specifically in breast, colorectal and lung cancer through the NF-κB, HIF-1 and JAK/STAT signaling pathways. Therefore, the Google Scholar, PubMed and ScienceDirect databases were used to search for references to these prevalent types of cancer and the anticancer mechanisms of andrographolide associated with them. The following key words were used: Andrographolide, anticancer, JAK/STAT, HIF-1, NF-κB, PI3K/AKT/mTOR, Wnt/β-catenin and MAPK pathways, and the literature was limited to studies published between 2010 to 2023. The present review article provides details about the different involvements of signaling pathways in the anticancer mechanisms of andrographolide.
Collapse
Affiliation(s)
- Nur Shahirah Shaharudin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Brain Degeneration and Therapeutics Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Teh Lay Kek
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Sadia Sultan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Biotransformation Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| |
Collapse
|
4
|
Johnson SJ, Johnson HL, Powell RT, Stephan C, Stossi F, Cooper TA. Small Molecule Screening Identifies HSP90 as a Modifier of RNA Foci in Myotonic Dystrophy Type 1. Mol Cell Biol 2024:1-13. [PMID: 39415708 DOI: 10.1080/10985549.2024.2408025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by a CTG triplet repeat expansion within the 3' untranslated region of the DMPK gene. Expression of the expanded allele generates RNA containing long tracts of CUG repeats (CUGexp RNA) that form hairpin structures and accumulate in nuclear RNA foci; however, the factors that control DMPK expression and the formation of CUGexp RNA foci remain largely unknown. We performed an unbiased small molecule screen in an immortalized human DM1 skeletal muscle myoblast cell line and identified HSP90 as a modifier of endogenous RNA foci. Small molecule inhibition of HSP90 leads to enhancement of RNA foci and upregulation of DMPK mRNA levels. Knockdown and overexpression of HSP90 in undifferentiated DM1 myoblasts validated the impact of HSP90 with upregulation and downregulation of DMPK mRNA, respectively. Furthermore, we identified p-STAT3 as a downstream mediator of HSP90 impacting levels of DMPK mRNA and RNA foci. Interestingly, differentiated cells exhibited an opposite effect of HSP90 inhibition displaying downregulation of DMPK mRNA through a mechanism independent of p-STAT3 involvement. This study has revealed a novel mediator for DMPK mRNA and foci regulation in DM1 cells with the potential to identify targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Sara J Johnson
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah L Johnson
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Reid T Powell
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Clifford Stephan
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Drofenik A, Blinc A, Mijovski MB, Pajic T, Vrtovec M, Sever M. Relation of JAK2 V617F allele burden and coronary calcium score in patients with essential thrombocythemia. Radiol Oncol 2024:raon-2024-0036. [PMID: 39361963 DOI: 10.2478/raon-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/01/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND JAK2 V617F (JAK2) mutation is associated with clonal hemopoiesis in myeloproliferative neoplasms as well as with faster progression of cardiovascular diseases. Little is known about the relationship between allele burden and the degree of atherosclerotic alteration of coronary vasculature. We previously reported that carotid artery stiffness progressed faster in patients with JAK2 positive essential thromocythemia (ET) patients. After a four-year follow-up we investigated whether mutation burden of a JAK2 allele correlates with a higher coronary calcium score. PATIENTS AND METHODS Thirty-six patients with JAK2 positive ET and 38 healthy matched control subjects were examined twice within four years. At each visit clinical baseline characteristics and laboratory testing were performed, JAK2 mutation burden was determined, and coronary calcium was measured. RESULTS JAK2 allele burden decreased in 19 patients, did not change in 5 patients, and increased in 4 patients. The coronary calcium Agatston score increased slightly in both groups. Overall, there was no correlation between JAK2 allele burden and calcium burden of coronary arteries. However, in patients with the JAK2 mutation burden increase, the coronary calcium score increased as well. CONCLUSIONS The average JAK2 allele burden decreased in our patients with high-risk ET during the four-year period. However, in the small subgroup whose JAK2 mutation burden increased the Agatston coronary calcium score increased as well. This finding, which should be interpreted with caution and validated in a larger group, is in line with emerging evidence that JAK2 mutation accelerates atherosclerosis and can be regarded as a non-classical risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Ajda Drofenik
- Department of Cardiology, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ales Blinc
- Department of Vascular Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Bozic Mijovski
- Department of Vascular Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajic
- Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Matjaz Vrtovec
- Department of Vascular Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Dermatovenerology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matjaz Sever
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Haematology, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Montazeri Aliabadi H. Molecular Targets for Breast Cancer Therapy. Biomolecules 2024; 14:1219. [PMID: 39456152 PMCID: PMC11506731 DOI: 10.3390/biom14101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Breast cancer is by far the most common cancer in women, and for a while, it surpassed lung cancer as the most diagnosed cancer, regardless of gender, in 2020 [...].
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Shaldam MA, Mousa MHA, Tawfik HO, El-Dessouki AM, Sharaky M, Saleh MM, Alzahrani AYA, Moussa SB, Al-Karmalawy AA. Muti-target rationale design of novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates as telomerase/JAK1/STAT3/TLR4 inhibitors: In vitro and in vivo investigations. Bioorg Chem 2024; 153:107843. [PMID: 39332072 DOI: 10.1016/j.bioorg.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
In this work, additional effort was applied to design new BIBR1532-based analogues with potential inhibitory activity against telomerase and acting as multitarget antitumor candidates to overcome the resistance problem. Therefore, novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates (4a-n) were synthesized. Applying the lead optimization strategy of the previously designed compound 8e; compound 4l showed an improved telomerase inhibition of 64.95 % and a superior growth inhibition of 79 % suggesting its potential use as a successful "multitarget-directed drug" for cancer therapy. Accordingly, compound 4l was further selected to evaluate its additional JAK1/STAT3/TLR4 inhibitory potentials. Compound 4l represented a very promising JAK1 inhibitory potential with a 0.46-fold change, compared to that of pacritinib reference standard (0.33-fold change). Besides, it showed a superior STAT3-inhibitory potential with a 0.22-fold change compared to sorafenib (0.33-fold change). Additionally, compound 4l downregulated TLR4 protein expression by 0.81-fold change compared to that of resatorvid (0.29-fold change). Also, molecular docking was performed to investigate the binding mode and affinity of the superior candidate 4l towards the four target receptors (telomerase, JAK1, STAT3, and TLR4). Furthermore, the therapeutic potential of compound 4l as an antitumor agent was additionally explored through in vivo studies involving female mice implanted with Solid Ehrlich Carcinoma (SEC). Remarkably, compound 4l led to prominent reductions in tumor size and mass. Concurrent enhancements in biochemical, hematologic, histopathologic, and immunohistochemical parameters further confirmed the suppression of angiogenesis and inflammation, elucidating additional mechanisms by which compound 4l exerts its anticancer effects.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | | | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir 61421, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq, Baghdad 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
8
|
Lok S, Lau TNH, Trost B, Tong AHY, Paton T, Wintle RF, Engstrom MD, Gunn A, Scherer SW. Chromosomal-level reference genome assembly of muskox (Ovibos moschatus) from Banks Island in the Canadian Arctic, a resource for conservation genomics. Sci Rep 2024; 14:21023. [PMID: 39284808 PMCID: PMC11405533 DOI: 10.1038/s41598-024-67270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
The muskox (Ovibos moschatus), an integral component and iconic symbol of arctic biocultural diversity, is under threat by rapid environmental disruptions from climate change. We report a chromosomal-level haploid genome assembly of a muskox from Banks Island in the Canadian Arctic Archipelago. The assembly has a contig N50 of 44.7 Mbp, a scaffold N50 of 112.3 Mbp, a complete representation (100%) of the BUSCO v5.2.2 set of 9225 mammalian marker genes and is anchored to the 24 chromosomes of the muskox. Tabulation of heterozygous single nucleotide variants in our specimen revealed a very low level of genetic diversity, which is consistent with recent reports of the muskox having the lowest genome-wide heterozygosity among the ungulates. While muskox populations are currently showing no overt signs of inbreeding depression, environmental disruptions are expected to strain the genomic resilience of the species. One notable impact of rapid climate change in the Arctic is the spread of emerging infectious and parasitic diseases in the muskox, as exemplified by the range expansion of muskox lungworms, and the recent fatal outbreaks of Erysipelothrix rhusiopathiae, a pathogen normally associated with domestic swine and poultry. As a genomics resource for conservation management of the muskox against existing and emerging disease modalities, we annotated the genes of the major histocompatibility complex on chromosome 2 and performed an initial assessment of the genetic diversity of this complex. This resource is further supported by the annotation of the principal genes of the innate immunity system, genes that are rapidly evolving and under positive selection in the muskox, genes associated with environmental adaptations, and the genes associated with socioeconomic benefits for Arctic communities such as wool (qiviut) attributes. These annotations will benefit muskox management and conservation.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Tara Paton
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | | | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- McLaughlin Centre, University of Toronto, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Xue Y, Zhang L, Chu L, Song Z, Zhang B, Su X, Liu W, Li X. JAK2/STAT3 Pathway Inhibition by AG490 Ameliorates Experimental Autoimmune Encephalomyelitis via Regulation of Th17 Cells and Autophagy. Neuroscience 2024; 552:65-75. [PMID: 38885894 DOI: 10.1016/j.neuroscience.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.
Collapse
Affiliation(s)
- Yumei Xue
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lifang Chu
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhe Song
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bing Zhang
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Wanhu Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China.
| |
Collapse
|
10
|
Janahiraman S, Shahril NS, Jayaraj VJ, Ch'ng S, Eow LH, Mageswaren E, Lim AL, Chong HC, Ong PS, Ismail AM, Rahim SMA, Ng CR, Suahilai DM, Ramlan AH, Too CL, Leong CO. A hierarchical cluster analysis for clinical profiling of tofacitinib treatment response in patients with rheumatoid arthritis. Clin Rheumatol 2024; 43:2489-2501. [PMID: 38922551 DOI: 10.1007/s10067-024-07035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Tofacitinib is the first oral JAK inhibitor approved for treating rheumatoid arthritis (RA). To enhance our understanding of tofacitinib drug response, we used hierarchical clustering to analyse the profiles of patient who responded to the treatment in a real-world setting. Patients who commenced on tofacitinib treatment were selected from 12 major rheumatology centres in Malaysia. The aim was to assess their response to tofacitinib defined as achieving DAS28-CRP/ESR ≤ 3.2 and DAS28 improvement > 1.2 at 12 weeks. A hierarchical clustering analysis was performed using sociodemographic and clinical parameters at baseline. All 163 RA patients were divided into three clusters (Clusters 1, 2 and 3) based on specific clinical factors at baseline including bone erosion, antibody positivity, disease activity and anaemia status. Cluster 1 consisted of RA patients without bone erosion, antibody negative, low baseline disease activity measure and absence of anaemia. Cluster 2 comprised of patients without bone erosion, RF positivity, anti-CCP negativity, moderate to high baseline disease activity score and absence of anaemia. Cluster 3 patients had bone erosion, antibody positivity, high baseline disease activity and anaemia. The response rates to tofacitinib varied among the clusters: Cluster 1 had a 79% response rate, Cluster 2 had a 66% response rate, and Cluster 3 had a 36% response rate. The differences in response rates between the three clusters were found to be statistically significant. This cluster analysis study indicates that patients who are seronegative and have low disease activity, absence of bone erosion and no signs of anaemia may have a higher likelihood of benefiting from tofacitinib therapy. By identifying clinical profiles that respond to tofacitinib treatment, we can improve treatment stratification yielding significant benefits and better health outcomes for individuals with RA.
Collapse
Affiliation(s)
- Sivakami Janahiraman
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Malaysia.
- Department of Pharmacy, Hospital Selayang, Ministry of Health Malaysia, Selangor Darul Ehsan, Malaysia.
| | - Nor Shuhaila Shahril
- Rheumatology Unit, Department of Medicine, Hospital Putrajaya, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Vivek Jason Jayaraj
- Sector for Biostatistics & Data Repository, National Institutes of Health Complex, Ministry of Health Malaysia, Selangor Darul Ehsan, Malaysia
| | - Suyin Ch'ng
- Rheumatology Unit, Department of Medicine, Hospital Selayang, Ministry of Health Malaysia, Selangor Darul Ehsan, Malaysia
| | - Liu Hong Eow
- Rheumatology Unit, Department of Medicine, Hospital Tuanku Ja'afar Seremban, Ministry of Health Malaysia, Negeri Sembilan, Malaysia
| | - Eashwary Mageswaren
- Rheumatology Unit, Department of Medicine, Hospital Tengku Ampuan Rahimah, Ministry of Health Malaysia, Selangor Darul Ehsan, Malaysia
| | - Ai Lee Lim
- Rheumatology Unit, Department of Medicine, Hospital Pulau Pinang, Ministry of Health Malaysia, Pulau Pinang, Malaysia
| | - Hwee Cheng Chong
- Rheumatology Unit, Department of Medicine, Hospital Melaka, Ministry of Health Malaysia, Melaka, Malaysia
| | - Ping Seung Ong
- Rheumatology Unit, Department of Medicine, Hospital Raja Permaisuri Bainun, Ministry of Health Malaysia, Perak Darul Ridzuan, Malaysia
| | - Asmahan Mohamed Ismail
- Rheumatology Unit, Department of Medicine, Hospital Raja Perempuan Zainab II, Ministry of Health Malaysia, Kelantan Darul Naim, Malaysia
| | - Siti Mariam Ab Rahim
- Rheumatology Unit, Department of Medicine, Hospital Sultanah Nur Zahirah, Ministry of Health Malaysia, Terengganu Darul Iman, Malaysia
| | - Chun Ruh Ng
- Rheumatology Unit, Department of Medicine, Hospital Sultan Ismail, Ministry of Health Malaysia, Johor Darul Ta'zim, Malaysia
| | - Dayang Masyrinartie Suahilai
- Rheumatology Unit, Department of Medicine, Hospital Tengku Ampuan Afzan, Ministry of Health Malaysia, Pahang Darul Makmur, Malaysia
| | - Azwarina Hanim Ramlan
- Rheumatology Unit, Department of Medicine, Hospital Sultanah Bahiyah, Ministry of Health Malaysia, Kedah Darul Aman, Malaysia
| | - Chun Lai Too
- Immunogenetic Unit, Institute for Medical Research, National Institutes of Health Complex, Ministry of Health Malaysia, Selangor Darul Ehsan, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research Development and Innovation (IRDI), Institute for Research, IMU University, Kuala Lumpur, Malaysia
- AGTC Genomics, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
12
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Chasse AY, Bandyadka S, Wertheimer MC, Serizier SB, McCall K. Professional phagocytes are recruited for the clearance of obsolete nonprofessional phagocytes in the Drosophila ovary. Front Immunol 2024; 15:1389674. [PMID: 38994369 PMCID: PMC11236694 DOI: 10.3389/fimmu.2024.1389674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cell death is an important process in the body, as it occurs throughout every tissue during development, disease, and tissue regeneration. Phagocytes are responsible for clearing away dying cells and are typically characterized as either professional or nonprofessional phagocytes. Professional phagocytes, such as macrophages, are found in nearly every part of the body while nonprofessional phagocytes, such as epithelial cells, are found in every tissue type. However, there are organs that are considered "immune-privileged" as they have little to no immune surveillance and rely on nonprofessional phagocytes to engulf dying cells. These organs are surrounded by barriers to protect the tissue from viruses, bacteria, and perhaps even immune cells. The Drosophila ovary is considered immune-privileged, however the presence of hemocytes, the macrophages of Drosophila, around the ovary suggests they may have a potential function. Here we analyze hemocyte localization and potential functions in response to starvation-induced cell death in the ovary. Hemocytes were found to accumulate in the oviduct in the vicinity of mature eggs and follicle cell debris. Genetic ablation of hemocytes revealed that the presence of hemocytes affects oogenesis and that they phagocytose ovarian cell debris and in their absence fecundity decreases. Unpaired3, an IL-6 like cytokine, was found to be required for the recruitment of hemocytes to the oviduct to clear away obsolete follicle cells. These findings demonstrate a role for hemocytes in the ovary, providing a more thorough understanding of phagocyte communication and cell clearance in a previously thought immune-privileged organ.
Collapse
Affiliation(s)
- Alexandra Y. Chasse
- Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, United States
| | - Shruthi Bandyadka
- Program in Bioinformatics, Boston University, Boston, MA, United States
| | | | - Sandy B. Serizier
- Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, United States
| | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
14
|
Cugudda A, La Manna S, Marasco D. Are peptidomimetics the compounds of choice for developing new modulators of the JAK-STAT pathway? Front Immunol 2024; 15:1406886. [PMID: 38983855 PMCID: PMC11232365 DOI: 10.3389/fimmu.2024.1406886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Protein-protein interactions (PPIs) play critical roles in a wide range of biological processes including the dysregulation of cellular pathways leading to the loss of cell function, which in turn leads to diseases. The dysfunction of several signaling pathways is linked to the insurgence of pathological processes such as inflammation, cancer development and neurodegeneration. Thus, there is an urgent need for novel chemical modulators of dysregulated PPIs to drive progress in targeted therapies. Several PPIs have been targeted by bioactive compounds, and, often, to properly cover interacting protein regions and improve the biological activities of modulators, a particular focus concerns the employment of macrocycles as proteomimetics. Indeed, for their physicochemical properties, they occupy an intermediate space between small organic molecules and macromolecular proteins and are prominent in the drug discovery process. Peptide macrocycles can modulate fundamental biological mechanisms and here we will focus on peptidomimetics active on the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
15
|
Sun Z, Hu Y, Qu J, Zhao Q, Gao H, Peng Z. Identification of apoptosis-immune-related gene signature and construction of diagnostic model for sepsis based on single-cell sequencing and bulk transcriptome analysis. Front Genet 2024; 15:1389630. [PMID: 38894720 PMCID: PMC11183325 DOI: 10.3389/fgene.2024.1389630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Sepsis leads to multi-organ dysfunction due to disorders of the host response to infections, which makes diagnosis and prognosis challenging. Apoptosis, a classic programmed cell death, contributes to the pathogenesis of various diseases. However, there is much uncertainty about its mechanism in sepsis. Methods Three sepsis gene expression profiles (GSE65682, GSE13904, and GSE26378) were downloaded from the Gene Expression Omnibus database. Apoptosis-related genes were obtained from the Kyoto Encyclopedia of Genes and Genomes Pathway database. We utilized LASSO regression and SVM-RFE algorithms to identify characteristic genes associated with sepsis. CIBERSORT and single cell sequencing analysis were employed to explore the potential relationship between hub genes and immune cell infiltration. The diagnostic capability of hub genes was validated across multiple external datasets. Subsequently, the animal sepsis model was established to assess the expression levels of hub genes in distinct target organs through RT-qPCR and Immunohistochemistry analysis. Results We identified 11 apoptosis-related genes as characteristic diagnostic markers for sepsis: CASP8, VDAC2, CHMP1A, CHMP5, FASLG, IFNAR1, JAK1, JAK3, STAT4, IRF9, and BCL2. Subsequently, a prognostic model was constructed using LASSO regression with BCL2, FASLG, IRF9 and JAK3 identified as hub genes. Apoptosis-related genes were closely associated with the immune response during the sepsis process. Furthermore, in the validation datasets, aside from IRF9, other hub genes demonstrated similar expression patterns and diagnostic abilities as observed in GSE65682 dataset. In the mouse model, the expression differences of hub genes between sepsis and control group revealed the potential impacts on sepsis-induced organ injury. Conclusion The current findings indicated the participant of apoptosis in sepsis, and apoptosis-related differentially expressed genes could be used for diagnosis biomarkers. BCL2, FASLG, IRF9 and JAK3 might be key regulatory genes affecting apoptosis in sepsis. Our findings provided a novel aspect for further exploration of the pathological mechanisms in sepsis.
Collapse
Affiliation(s)
- Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Yanan Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jiachen Qu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Han Gao
- Department of Pulmonary Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| |
Collapse
|
16
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
17
|
Baccelli F, Gottardi F, Muratore E, Leardini D, Grasso AG, Gori D, Belotti T, Prete A, Masetti R. Ruxolitinib for the treatment of acute and chronic graft-versus-host disease in children: a systematic review and individual patient data meta-analysis. Bone Marrow Transplant 2024; 59:765-776. [PMID: 38402346 PMCID: PMC11161405 DOI: 10.1038/s41409-024-02252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Steroid-refractory graft-versus-host disease (SR-GvHD) represents a major complication of pediatric allogenic hematopoietic stem cell transplantation. Ruxolitinib, a selective JAK 1-2 inhibitor, showed promising results in the treatment of SR-GvHD in adult trial, including patients >12 years old. This systematic review aims to evaluate ruxolitinib use for SR-GvHD in the pediatric population. Among the 12 studies included, ruxolitinib administration presented slight differences. Overall response rate (ORR) ranged from 45% to 100% in both acute and chronic GvHD. Complete response rates (CR) varied from 9% to 67% and from 0% to 28% in aGvHD and cGvHD, respectively. Individual-patient meta-analysis from 108 children under 12 years showed an ORR and CR for aGvHD of 74% and 56%, respectively, while in cGvHD ORR was 78% but with only 11% achieving CR. Treatment-related toxicities were observed in 20% of patients, including cytopenia, liver toxicity, and infections. Age, weight, graft source, previous lines of therapy, and dose did not significantly predict response, while a higher rate of toxicities was observed in aGvHD patients. In conclusion, ruxolitinib shows promising results in the treatment of SR-GvHD in children, including those under 12 years. Specific pediatric perspective trials are currently ongoing to definitely assess its efficacy and safety.
Collapse
Affiliation(s)
- Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Gottardi
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Giacomo Grasso
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
19
|
Zacarias O, Clement CC, Cheng SY, Rosas M, Gonzalez C, Peter M, Coopman P, Champeil E. Mitomycin C and its analog trigger cytotoxicity in MCF-7 and K562 cancer cells through the regulation of RAS and MAPK/ERK pathways. Chem Biol Interact 2024; 395:111007. [PMID: 38642817 PMCID: PMC11102841 DOI: 10.1016/j.cbi.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Mitomycin C (MC) is an anti-cancer drug which functions by forming interstrand crosslinks (ICLs) between opposing DNA strands. MC analog, 10-decarbamoyl mitomycin C (DMC), unlike MC, has stronger cytotoxic effects on cancer cells with TP53 mutation. We previously demonstrated that MC/DMC could activate p21WAF1/CIP1 in MCF-7 (TP53-proficient) and K562 (TP53 deficient) cells in a TP53-independent mode. We also found that MC/DMC regulate AKT activation in a TP53-dependent manner and that AKT deactivation is not associated with the activation of p21WAF1/CIP1 in response to MC/DMC treatment. RAS proteins are known players in the upstream mediated signaling of p21WAF1/CIP1 activation that leads to control of cell proliferation and cell death. Thus, this prompted us to investigate the effect of both drugs on the expression of RAS proteins and regulation of the MAPK/ERK signaling pathways in MCF-7 and K562 cancer cells. To accomplish this goal, we performed comparative label free proteomics profiling coupled to bioinformatics/complementary phosphoprotein arrays and Western blot validations of key signaling molecules. The MAPK/ERK pathway exhibited an overall downregulation upon MC/DMC treatment in MCF-7 cells but only DMC exhibited a mild downregulation of that same pathway in TP53 mutant K562 cells. Furthermore, treatment of MCF-7 and K562 cell lines with oligonucleotides containing the interstrand crosslinks (ICLs) formed by MC or DMC shows that both ICLs had a stronger effect on the downregulation of RAS protein expression in mutant TP53 K562 cells. We discuss the implication of this regulation of the MAPK/ERK pathway in relation to cellular TP53 status.
Collapse
Affiliation(s)
- Owen Zacarias
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA
| | - Cristina C Clement
- Radiation Oncology Department, Weill Cornell Medicine, New York, New York, 10065, USA.
| | - Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Melissa Rosas
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA
| | - Christina Gonzalez
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA
| | - Marion Peter
- IRCM, University Montpellier, ICM, INSERM, CNRS, Campus Val d'Aurelle, 208 avenue des apothicaires, 34298, Montpellier, Cédex 5, France
| | - Peter Coopman
- IRCM, University Montpellier, ICM, INSERM, CNRS, Campus Val d'Aurelle, 208 avenue des apothicaires, 34298, Montpellier, Cédex 5, France
| | - Elise Champeil
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
20
|
Rinella SP, Bell HC, Hess NJ, Hoang NM, Nguyen TT, Turicek DP, Shi L, Rui L, LaBelle JL, Capitini CM. Combination fedratinib and venetoclax has activity against human B-ALL with high FLT3 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544058. [PMID: 37333339 PMCID: PMC10274796 DOI: 10.1101/2023.06.07.544058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Treatment of relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) remains a challenge, particularly in patients who do not respond to traditional chemotherapy or immunotherapy. The objective of this study was to assess the efficacy of fedratinib, a semi selective JAK2 inhibitor and venetoclax, a selective BCL-2 inhibitor, on human B-ALL using both single-agent and combinatorial treatments. The combination treatment of fedratinib and venetoclax improved killing of the human B-ALL cell lines RS4;11 and SUPB-15 in vitro over single-agent treatments. This combinatorial effect was not detected in the human B-ALL cell line NALM-6, which was less responsive to fedratinib due to the absence of Flt3 expression. The combination treatment induces a unique gene expression profile relative to single-agent treatment and with an enrichment in apoptotic pathways. Finally, the combination treatment was superior to single agent treatment in an in vivo xenograft model of human B-ALL, with a two-week treatment regimen significantly improving overall survival while inducing CD19 expression. Overall, our data demonstrates the efficacy of a combinatorial treatment strategy of fedratinib and venetoclax against human B-ALL expressing high levels of Flt3.
Collapse
Affiliation(s)
- Sean P Rinella
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Haley C Bell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nicholas J Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Thao Trang Nguyen
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David P Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| |
Collapse
|
21
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
22
|
Hossain MM, Khalid A, Akhter Z, Parveen S, Ayaz MO, Bhat AQ, Badesra N, Showket F, Dar MS, Ahmed F, Dhiman S, Kumar M, Singh U, Hussain R, Keshari P, Mustafa G, Nargorta A, Taneja N, Gupta S, Mir RA, Kshatri AS, Nandi U, Khan N, Ramajayan P, Yadav G, Ahmed Z, Singh PP, Dar MJ. Discovery of a novel and highly selective JAK3 inhibitor as a potent hair growth promoter. J Transl Med 2024; 22:370. [PMID: 38637842 PMCID: PMC11025159 DOI: 10.1186/s12967-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024] Open
Abstract
JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.
Collapse
Affiliation(s)
- Md Mehedi Hossain
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Arfan Khalid
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zaheen Akhter
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Sabra Parveen
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Neetu Badesra
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farheen Showket
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohmmad Saleem Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farhan Ahmed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Sumit Dhiman
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Mukesh Kumar
- Medicinal Product Chemistry, Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Umed Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Razak Hussain
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pankaj Keshari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ghulam Mustafa
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Amit Nargorta
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Neha Taneja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aravind Singh Kshatri
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - P Ramajayan
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Govind Yadav
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zabeer Ahmed
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Parvinder Pal Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
23
|
Wu H, Jiang F, Yuan W, Zhao Y, Liu N, Miao X. Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. PLoS One 2024; 19:e0301660. [PMID: 38626146 PMCID: PMC11020939 DOI: 10.1371/journal.pone.0301660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real‑time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.
Collapse
Affiliation(s)
- Haidong Wu
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fan Jiang
- Medical Centre for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei Yuan
- Department of Emergency Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
24
|
Mustafa M, Abbas K, Alam M, Ahmad W, Moinuddin, Usmani N, Siddiqui SA, Habib S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol Cell Biochem 2024; 479:895-913. [PMID: 37247161 DOI: 10.1007/s11010-023-04772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Kashif Abbas
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Nazura Usmani
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
25
|
Fasler-Kan E, Milošević M, Ruggiero S, Aliu N, Cholewa D, Häcker FM, Dekany G, Bartenstein A, Berger SM. Cytokine Signaling in Pediatric Kidney Tumor Cell Lines WT-CLS1, WT-3ab and G-401. Int J Mol Sci 2024; 25:2281. [PMID: 38396958 PMCID: PMC10889092 DOI: 10.3390/ijms25042281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Renal tumors comprise ~7% of all malignant pediatric tumors. Approximately 90% of pediatric kidney tumors comprise Wilms tumors, and the remaining 10% include clear cell sarcoma of the kidney, malignant rhabdoid tumor of the kidney, renal cell carcinoma and other rare renal tumors. Over the last 30 years, the role of cytokines and their receptors has been considerably investigated in both cancer progression and anti-cancer therapy. However, more effective immunotherapies require the cytokine profiling of each tumor type and comprehensive understanding of tumor biology. In this study, we aimed to investigate the activation of signaling pathways in response to cytokines in three pediatric kidney tumor cell lines, in WT-CLS1 and WT-3ab cells (both are Wilms tumors), and in G-401 cells (a rhabdoid kidney tumor, formerly classified as Wilms tumor). We observed that interferon-alpha (IFN-α) and interferon-gamma (IFN-γ) very strongly induced the activation of the STAT1 protein, whereas IL-6 and IFN-α activated STAT3 and IL-4 activated STAT6 in all examined tumor cell lines. STAT protein activation was examined by flow cytometry and Western blot using phospho-specific anti-STAT antibodies which recognize only activated (phosphorylated) STAT proteins. Nuclear translocation of phospho-STAT proteins upon activation with specific cytokines was furthermore confirmed by immunofluorescence. Our results also showed that both IFN-α and IFN-γ caused upregulation of major histocompatibility complex (MHC) class I proteins, however, these cytokines did not have any effect on the expression of MHC class II proteins. We also observed that pediatric kidney tumor cell lines exhibit the functional expression of an additional cytokine signaling pathway, the tumor necrosis factor (TNF)-α-mediated activation of nuclear factor kappa B (NF-κB). In summary, our data show that human pediatric renal tumor cell lines are responsive to stimulation with various human cytokines and could be used as in vitro models for profiling cytokine signaling pathways.
Collapse
Affiliation(s)
- Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Milan Milošević
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland;
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Frank-Martin Häcker
- Department of Pediatric Surgery, Children’s Hospital of Eastern Switzerland, CH-9000 St. Gallen, Switzerland;
- Faculty of Medicine, University of Basel, CH-4031 Basel, Switzerland
| | - Gabriela Dekany
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Steffen M. Berger
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| |
Collapse
|
26
|
McAloney CA, Makkawi R, Budhathoki Y, Cannon MV, Franz EM, Gross AC, Cam M, Vetter TA, Duhen R, Davies AE, Roberts RD. Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization. Cell Oncol (Dordr) 2024; 47:259-282. [PMID: 37676378 PMCID: PMC10899530 DOI: 10.1007/s13402-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.
Collapse
Affiliation(s)
- Camille A McAloney
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Rawan Makkawi
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yogesh Budhathoki
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Matthew V Cannon
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily M Franz
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Amy C Gross
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maren Cam
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Rebekka Duhen
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alexander E Davies
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Ryan D Roberts
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
27
|
Meyerowitz EA, Scott J, Richterman A, Male V, Cevik M. Clinical course and management of COVID-19 in the era of widespread population immunity. Nat Rev Microbiol 2024; 22:75-88. [PMID: 38114838 DOI: 10.1038/s41579-023-01001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The clinical implications of COVID-19 have changed since SARS-CoV-2 first emerged in humans. The current high levels of population immunity, due to prior infection and/or vaccination, have been associated with a vastly decreased overall risk of severe disease. Some people, particularly those with immunocompromising conditions, remain at risk for severe outcomes. Through the course of the pandemic, variants with somewhat different symptom profiles from the original SARS-CoV-2 virus have emerged. The management of COVID-19 has also changed since 2020, with the increasing availability of evidence-based treatments in two main classes: antivirals and immunomodulators. Selecting the appropriate treatment(s) for patients with COVID-19 requires a deep understanding of the evidence and an awareness of the limitations of applying data that have been largely based on immune-naive populations to patients today who most likely have vaccine-derived and/or infection-derived immunity. In this Review, we provide a summary of the clinical manifestations and approaches to caring for adult patients with COVID-19 in the era of vaccine availability and the dominance of the Omicron subvariants, with a focus on the management of COVID-19 in different patient groups, including immunocompromised, pregnant, vaccinated and unvaccinated patients.
Collapse
Affiliation(s)
- Eric A Meyerowitz
- Division of Infectious Diseases, Montefiore Medical Center, Bronx, NY, USA
| | - Jake Scott
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Aaron Richterman
- Division of Infectious Diseases, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Muge Cevik
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews, UK.
| |
Collapse
|
28
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
29
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
30
|
Jiang W, Zhu X, Bo J, Ma J. Screening of Immune-related lncRNAs in Lung Adenocarcinoma and Establishing a Survival Prognostic Risk Prediction Model. Comb Chem High Throughput Screen 2024; 27:1175-1190. [PMID: 37711103 DOI: 10.2174/1386207326666230913120523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE This study aimed to improve lung adenocarcinoma (LUAD) prognosis prediction based on a signature of immune-related long non-coding RNAs (lncRNAs). METHODS LUAD samples from the TCGA database were divided into the immunity_H group and the immunity_L group. Differentially expressed RNAs (DERs) between the two groups were identified. Optimized immune-related lncRNAs combination was obtained using LASSO Cox regression. A prognostic risk prediction (RS) model was built and further validated in the training and validation datasets. A network among lncRNAs in the RS model, their co-expressed DERs, and the related KEGG pathways were established. Critical lncRNAs were validated in LUAD tissue samples. RESULTS In total, 255 DERs were obtained, and 11 immune-related lncRNAs were significantly related to prognosis. Six lncRNAs were demonstrated as an optimal combination for building the RS model, including LINC00944, LINC00930, LINC00607, LINC00582, LINC00543, and LINC00319. The KM curve and ROC curve revealed the RS model to be a reliable indicator for LUAD prognosis. LINC00944 and LINC00582 showed a co-expression relationship with the MS4A1. LINC00944, LINC00582, and MS4A1 were successfully validated in LUAD samples. CONCLUSION We have established a promising LUAD patient survival prediction model based on six immune-related lncRNAs. For LUAD patients, this prognostic model could guide personalized treatment.
Collapse
Affiliation(s)
- Wenxia Jiang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital of Tongji University, Shanghai, 20065, China
| | - Jiaqi Bo
- Department of Pathology, Tongji Hospital of Tongji University, Shanghai, 20065, China
| | - Jun Ma
- Department of Nephrology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| |
Collapse
|
31
|
Wang S, Li L, Wang W. Knockdown of Slfn5 alleviates lipopolysaccharide-induced pneumonia by regulating Janus kinase/signal transduction and activator of transcription pathway. J Thorac Dis 2023; 15:6708-6720. [PMID: 38249884 PMCID: PMC10797344 DOI: 10.21037/jtd-23-889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Background In recent years, the incidence of pneumonia has been increasing, which is the main cause of death and morbidity of children and the elderly in the world. Slfn5 is implicated in multiple cancers, and Slfn5 promotes epithelial-mesenchymal transition and metastasis in lung cancer. However, the influences of Slfn5 in pneumonia have not yet been completely cleared. Herein, we aimed to explore the underlying effects and regulatory mechanisms of Slfn5 in lipopolysaccharide (LPS)-induced pneumonia in mice and A549 cells. Methods Mice were intratracheally administered 5 mg/kg LPS to construct pneumonia model. In vitro, A549 cells were treated with 10 µg/mL LPS to construct cellular pneumonia model. Slfn5 expression was detected using immunohistochemistry and western blotting. Haematoxylin and eosin staining, TUNEL (terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate‑biotin nick end‑labelling), and western blotting were performed to assess pathological injury and inflammation. MTT [3(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide], flow cytometry, and enzyme-linked immunosorbent assay analysis were performed to analyze cell viability, apoptosis, and inflammation. Gene set enrichment analysis was performed to explore the mechanism of Slfn5 in pneumonia. Results Slfn5 expression was upregulated in LPS-induced pneumonia in mice and A549 cells. In mice, knockdown of Slfn5 weakened LPS-induced lung injury and inflammation and decreased the expression of p-JAK2, p-JAK3, and p-STAT3. In LPS-stimulated A549 cells, downregulation of Slfn5 expression increased and Slfn5 overexpression decreased cell viability. Downregulation of Slfn5 expression decreased and Slfn5 overexpression increased cell apoptosis, inflammation and the expression of p-JAK2, p-JAK3, and p-STAT3. AG490, an inhibitor of the JAK/STAT pathway, reversed the damaging effects of Slfn5 overexpression. Conclusions In the LPS-induced pneumonia model, Slfn5 knockdown alleviated LPS-induced lung injury by regulating the JAK/STAT pathway.
Collapse
Affiliation(s)
- Shunying Wang
- Pulmonary and Critical Care Medicine, Jinan City People’s Hospital, Jinan, China
| | - Li Li
- Department of Nephrology, Jinan City People’s Hospital, Jinan, China
| | - Wenming Wang
- Department of Cadre Health Section, Jinan City People’s Hospital, Jinan, China
| |
Collapse
|
32
|
Ryguła I, Pikiewicz W, Kaminiów K. Novel Janus Kinase Inhibitors in the Treatment of Dermatologic Conditions. Molecules 2023; 28:8064. [PMID: 38138551 PMCID: PMC10745734 DOI: 10.3390/molecules28248064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Janus kinase inhibitors, also known as JAK inhibitors, JAKinibs or JAKi, are a new group of disease-modifying drugs. They work by inhibiting enzymes involved in the transmission of information from receptors located in the cell membrane to the cell interior, specifically to the cell nucleus, thus disrupting the JAK-STAT pathway. This pathway plays a role in key cellular processes such as the immune response and cell growth. This feature is used in the treatment of patients with rheumatological, gastroenterological and hematological diseases. Recently, it has been discovered that JAK-STAT pathway inhibitors also show therapeutic potential against dermatological diseases such as atopic dermatitis, psoriasis, alopecia areata and acquired vitiligo. Studies are underway to use them in the treatment of several other dermatoses. Janus kinase inhibitors represent a promising class of drugs for the treatment of skin diseases refractory to conventional therapy. The purpose of this review is to summarize the latest knowledge on the use of JAKi in dermatological treatment.
Collapse
Affiliation(s)
- Izabella Ryguła
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Wojciech Pikiewicz
- Department of Medical and Health Sciences, Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dąbrowa Górnicza, Poland;
| | - Konrad Kaminiów
- Department of Medical and Health Sciences, Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dąbrowa Górnicza, Poland;
| |
Collapse
|
33
|
Mane RR, Kale PP. The roles of HDAC with IMPDH and mTOR with JAK as future targets in the treatment of rheumatoid arthritis with combination therapy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:689-706. [PMID: 36409592 DOI: 10.1515/jcim-2022-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Various studies have shown that cytokines are important regulators in rheumatoid arthritis (RA). In synovial inflammation alteration of the enzyme HDAC, IMPDH enzyme, mTOR pathway, and JAK pathway increase cytokine level. These increased cytokine levels are responsible for the inflammation in RA. Inflammation is a physiological and normal reaction of the immune system against dangerous stimuli such as injury and infection. The cytokine-based approach improves the treatment of RA. To reach this goal, various researchers and scientists are working more aggressively by using a combination approach. The present review of combination therapy provides essential evidence about the possible synergistic effect of combinatorial agents. We have focused on the effects of HDAC inhibitor with IMPDH inhibitor and mTOR inhibitor with JAK inhibitor in combination for the treatment of RA. Combining various targeted strategies can be helpful for the treatment of RA.
Collapse
Affiliation(s)
- Reshma Rajendra Mane
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
34
|
Torres DG, Barbosa Alves EV, Araújo de Sousa M, Laranjeira WH, Paes J, Alves E, Canté D, Costa AG, Malheiro A, Abreu R, Nascimento L, Fraiji NA, Silva GA, Mourão LPDS, Tarragô AM. Molecular landscape of the JAK2 gene in chronic myeloproliferative neoplasm patients from the state of Amazonas, Brazil. Biomed Rep 2023; 19:98. [PMID: 37954635 PMCID: PMC10633817 DOI: 10.3892/br.2023.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
JAK2V617F (dbSNP: rs77375493) is the most frequent and most-studied variant in BCR::ABL1 negative myeloproliferative neoplasms and in the JAK2 gene. The present study aimed to molecularly characterize variants in the complete coding region of the JAK2 gene in patients with BCR::ABL1 negative chronic myeloproliferative neoplasms. The study included 97 patients with BCR::ABL1 negative myeloproliferative neoplasms, including polycythemia vera (n=38), essential thrombocythemia (n=55), and myelofibrosis (n=04). Molecular evaluation was performed using conventional PCR and Sanger sequencing to detect variants in the complete coding region of the JAK2 gene. The presence of missense variants in the JAK2 gene including rs907414891, rs2230723, rs77375493 (JAK2V617F), and rs41316003 were identified. The coexistence of variants was detected in polycythemia vera and essential thrombocythemia. Thus, individuals with high JAK2V617F variant allele frequency (≥50% VAF) presented more thrombo-hemorrhagic events and manifestations of splenomegaly compared with those with low JAK2V617F variant allele frequency (<50% VAF). In conclusion, individuals with BCR::ABL1 negative neoplasms can display >1 variant in the JAK2 gene, especially rs2230722, rs2230724, and rs77375493 variants, and those with high JAK2V617F VAF show alterations in the clinical-laboratory profile compared with those with low JAK2V617F VAF.
Collapse
Affiliation(s)
- Dania G. Torres
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Molecular Biology Center, University of Central America, Managua 14003, Nicaragua
| | - Emanuela V. Barbosa Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Miliane Araújo de Sousa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Wanessa H. Laranjeira
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Jhemerson Paes
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Erycka Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Deborah Canté
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Allyson G. Costa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Manaus School of Nursing, Federal University of Amazonas, Manaus, Amazonas State 69057-070, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Adriana Malheiro
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Rosângela Abreu
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Leny Nascimento
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Nelson A. Fraiji
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - George A.V. Silva
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas State 69027-070, Brazil
| | - Lucivana P. de Souza Mourão
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Superior School of Health Sciences, Amazonas State University, Manaus, Amazonas State 69065-001, Brazil
| | - Andréa M. Tarragô
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| |
Collapse
|
35
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
36
|
Cao W, Meng X, Cao F, Wang J, Yang M. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience 2023; 26:108236. [PMID: 37953957 PMCID: PMC10637946 DOI: 10.1016/j.isci.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetic non-healing wounds are bringing a heavy burden on patients and society. Platelet-rich plasma (PRP) has been widely applied in tissue regenerating for containing various growth factors. Recently, PRP-derived exosomes (PRP-Exos) have been proved to be more effective than PRP in tissue regeneration. However, few studies have investigated the therapeutic potential of PRP-Exos in diabetic wound healing to date. Therefore, we extracted and identified exosomes derived from PRP and tested its promoting effect on diabetic wound healing in vivo and in vitro. We found that high glucose (HG) inhibited cell proliferation and migration and induced apoptosis through ROS-dependent activation of the JNK and p38 MAPK signaling pathways. PRP-Exos can stimulate fibroblast functions and accelerate diabetic wound healing. The benefits of PRP-Exos may be attributed to its capability to prevent HG-induced ROS-dependent apoptosis via the PDGF-BB/JAK2/STAT3/Bcl-2 signaling pathway. This illustrates the therapeutic potential of PRP-Exos in diabetic wounds.
Collapse
Affiliation(s)
- Wenhai Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xiaotong Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Sharma D, Hager CG, Shang L, Tran L, Zhu Y, Ma A, Magnuson B, Lesko MW, Wicha MS, Burness ML. The BET degrader ZBC260 suppresses stemness and tumorigenesis and promotes differentiation in triple-negative breast cancer by disrupting inflammatory signaling. Breast Cancer Res 2023; 25:144. [PMID: 37968653 PMCID: PMC10648675 DOI: 10.1186/s13058-023-01715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/20/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are resistant to standard therapies, facilitate tumor dissemination, and contribute to relapse and progression. Super-enhancers are regulators of stemness, and BET proteins, which are critical for super-enhancer function, are a potential therapeutic target. Here, we investigated the effects of BET proteins on the regulation of breast cancer stemness using the pan-BET degrader ZBC260. METHODS We evaluated the effect of ZBC260 on CSCs in TNBC cell lines. We assessed the effect of ZBC260 on cellular viability and tumor growth and measured its effects on cancer stemness. We used RNA sequencing and stemness index to determine the global transcriptomic changes in CSCs and bulk cells and further validated our findings by qPCR, western blot, and ELISA. RESULTS ZBC260 potently inhibited TNBC growth both in vitro and in vivo. ZBC260 reduced stemness as measured by cell surface marker expression, ALDH activity, tumorsphere number, and stemness index while increasing differentiated cells. GSEA analysis indicated preferential downregulation of stemness-associated and inflammatory genes by ZBC260 in ALDH+ CSCs. CONCLUSIONS The BET degrader ZBC260 is an efficient degrader of BET proteins that suppresses tumor progression and decreases CSCs through the downregulation of inflammatory genes and pathways. Our findings support the further development of BET degraders alone and in combination with other therapeutics as CSC targeting agents.
Collapse
Affiliation(s)
- Deeksha Sharma
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Cody G Hager
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Li Shang
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, NCRC 26-319S, SPC 2800, 2800 Plymouth Rd, Ann Arbor, MI, USA
| | - Yongyou Zhu
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Elevate Bio, Cambridge, MA, USA
| | - Aihui Ma
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- University of Delaware, Newark, DE, USA
| | - Brian Magnuson
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Matthew W Lesko
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Upstate Medical University, Syracuse, NY, USA
| | - Max S Wicha
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Monika L Burness
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
39
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
40
|
Tefferi A, Pardanani A, Gangat N. Momelotinib (JAK1/JAK2/ACVR1 inhibitor): mechanism of action, clinical trial reports, and therapeutic prospects beyond myelofibrosis. Haematologica 2023; 108:2919-2932. [PMID: 36861402 PMCID: PMC10620561 DOI: 10.3324/haematol.2022.282612] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Janus kinase (JAK) 2 inhibitors are now part of the therapeutic armamentarium for primary and secondary myelofibrosis (MF). Patients with MF endure shortened survival and poor quality of life. Allogeneic stem cell transplantation (ASCT) is currently the only treatment modality in MF with the potential to cure the disease or prolong survival. By contrast, current drug therapy in MF targets quality of life and does not modify the natural history of the disease. The discovery of JAK2 and other JAK-STAT activating mutations (i.e., CALR and MPL) in myeloproliferative neoplasms, including MF, has facilitated the development of several JAK inhibitors that are not necessarily specific to the oncogenic mutations themselves but have proven effective in countering JAK-STAT signaling, resulting in suppression of inflammatory cytokines and myeloproliferation. This non-specific activity resulted in clinically favorable effects on constitutional symptoms and splenomegaly and, consequently, approval by the Food and Drug Administration (FDA) of three small molecule JAK inhibitors: ruxolitinib, fedratinib, and pacritinib. A fourth JAK inhibitor, momelotinib, is poised for FDA approval soon and has been shown to provide additional benefit in alleviating transfusion-dependent anemia in MF. The salutary effect of momelotinib on anemia has been attributed to inhibition of activin A receptor, type 1 (ACVR1) and recent information suggests a similar effect from pacritinib. ACRV1 mediates SMAD2/3 signaling which contributes to upregulation of hepcidin production and iron-restricted erythropoiesis. Targeting ACRV1 raises therapeutic prospects in other myeloid neoplasms associated with ineffective erythropoiesis, such as myelodysplastic syndromes with ring sideroblasts or SF3B1 mutation, especially those with co-expression of a JAK2 mutation and thrombocytosis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Elbaz EM, Darwish A, Gad AM, Abdel Rahman AAS, Safwat MH. Canagliflozin alleviates experimentally induced benign prostate hyperplasia in a rat model: exploring potential mechanisms involving mir-128b/EGFR/EGF and JAK2/STAT3 signaling pathways through in silico and in vivo investigations. Eur J Pharmacol 2023; 957:175993. [PMID: 37598927 DOI: 10.1016/j.ejphar.2023.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Benign prostatic hyperplasia (BPH) poses a significant health concern amongst elderly males. Canagliflozin (Cana), a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has a powerful anti-inflammatory influence. Nevertheless, its role in treating BPH has not been clarified. Therefore, the study aimed to investigate the potential ameliorative effect of Cana on experimentally induced BPH in rats and explore the underlying mechanisms compared to the standard finasteride (Fin). The study employed histological analysis, biochemical assays using ELISA, and western blotting. Animals were categorized into four groups: Control (2.5 ml/kg CMC, orally + 3 ml/kg olive oil, subcutaneous), BPH (3 mg/kg testosterone, subcutaneous + CMC orally), Fin-treated BPH (5 mg/kg, orally), and Cana-treated BPH (5 mg/kg, orally), for 28 days. The BPH group showed obvious BPH manifestations including an increase in prostate weight (PW), prostate index (PI), dihydrotestosterone (DHT) level, and histological aberrations compared to control. Fin and Cana therapy had a comparable impact. Cana treatment significantly reduced PW and PI, besides it improved prostatic biochemical, and histopathological features compared to BPH, consistent with in silico study findings. Cana was associated with downregulation of the androgen axis, increased miR-128b expression, with a lowered expression of epidermal growth factor (EGF) and its receptor. Phosphorylation of STAT3 and its downstream proliferative markers were significantly reduced suggesting apoptotic activity. Cana markedly rescued the BPH-induced upregulation of IL-1β, and iNOS levels. Altogether, the current study demonstrates that Cana could impede BPH progression, possibly by modulating miR-128b/EGFR/EGF and JAK2/STAT3 pathways and downregulating AR, cyclin D1, and PCNA immunoreactivity.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) -Formerly NODCAR, Giza 12654, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
| | - Amina A S Abdel Rahman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, Gowifel AMH, Darwish A, Ibrahim OM, Abd Elmageed ZY. Punicalagin's Protective Effects on Parkinson's Progression in Socially Isolated and Socialized Rats: Insights into Multifaceted Pathway. Pharmaceutics 2023; 15:2420. [PMID: 37896179 PMCID: PMC10610313 DOI: 10.3390/pharmaceutics15102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a gradual deterioration of dopaminergic neurons, leading to motor impairments. Social isolation (SI), a recognized stressor, has recently gained attention as a potential influencing factor in the progress of neurodegenerative illnesses. We aimed to investigate the intricate relationship between SI and PD progression, both independently and in the presence of manganese chloride (MnCl2), while evaluating the punicalagin (PUN) therapeutic effects, a natural compound established for its cytoprotective, anti-inflammatory, and anti-apoptotic activities. In this five-week experiment, seven groups of male albino rats were organized: G1 (normal control), G2 (SI), G3 (MnCl2), G4 (SI + MnCl2), G5 (SI + PUN), G6 (MnCl2 + PUN), and G7 (SI + PUN + MnCl2). The results revealed significant changes in behavior, biochemistry, and histopathology in rats exposed to SI and/or MnCl2, with the most pronounced effects detected in the SI rats concurrently exposed to MnCl2. These effects were associated with augmented oxidative stress biomarkers and reduced antioxidant activity of the Nrf2/HO-1 pathway. Additionally, inflammatory pathways (HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1 and JAK-2/STAT-3) were upregulated, while dysregulation of signaling pathways (PI3K/AKT/GSK-3β/CREB), sustained endoplasmic reticulum stress by activation PERK/CHOP/Bcl-2, and impaired autophagy (AMPK/SIRT-1/Beclin-1 axis) were observed. Apoptosis induction and a decrease in monoamine levels were also noted. Remarkably, treatment with PUN effectively alleviated behaviour, histopathological changes, and biochemical alterations induced by SI and/or MnCl2. These findings emphasize the role of SI in PD progress and propose PUN as a potential therapeutic intervention to mitigate PD. PUN's mechanisms of action involve modulation of pathways such as HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1, JAK-2/STAT-3, PI3K/AKT/GSK-3β/CREB, AMPK/SIRT-1, Nrf2/HO-1, and PERK/CHOP/Bcl-2.
Collapse
Affiliation(s)
- Hoda A. Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
| | - Nermin I. Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menouf 32952, Egypt;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alhanouf Aljohani
- Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | | | - Nada S. Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 11556, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Osama Mohamed Ibrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Tanta, Tanta 31527, Egypt;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| |
Collapse
|
43
|
Hashemian SMR, Farhadi T. A narrative review on tofacitinib: The properties, function, and usefulness to treat coronavirus disease 2019. Int J Crit Illn Inj Sci 2023; 13:192-198. [PMID: 38292399 PMCID: PMC10824201 DOI: 10.4103/ijciis.ijciis_27_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 02/01/2024] Open
Abstract
In coronavirus disease 2019 (COVID-19), the formation of cytokine storm may have a role in worsening of the disease. By attaching the cytokines like interleukin-6 to the cytokine receptors on a cell surface, Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway will be activated in the cytoplasm lead to hyperinflammatory conditions and acute respiratory distress syndrome. Inhibition of JAK/STAT pathway may be useful to prevent the formation of cytokine storm. Tofacitinib is a pan inhibitor of JAKs. In this review, the main characteristics of tofacitinib and its usefulness against COVID-19 pneumonia were reviewed. Tofacitinib may be a hopeful therapeutic candidate against COVID-19 respiratory injury since it inhibits a range of inflammatory pathways. Hence, the agent may be considered a potential therapeutic against the post-COVID-19 respiratory damage. Compared to other JAK inhibitors (JAKi), the administration of tofacitinib in COVID-19 patients may be safer and more effective. Other JAKi such as baricitinib are related to severe adverse events such as thrombotic events compared to more common side effects of tofacitinib.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hashemian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Rao SS, Nelson PA, Lunde HS, Haugland GT. Evolutionary, comparative, and functional analyses of STATs and regulation of the JAK-STAT pathway in lumpfish upon bacterial and poly(I:C) exposure. Front Cell Infect Microbiol 2023; 13:1252744. [PMID: 37808912 PMCID: PMC10556531 DOI: 10.3389/fcimb.2023.1252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Janus kinase/signal transducers and activators of transcription (JAK-STAT) system regulates several biological processes by affecting transcription of genes as a response to cytokines and growth factors. In the present study, we have characterized the STAT genes in lumpfish (Cyclopterus lumpus L.), belonging to the order Perciformes, and investigated regulation of the JAK-STAT signaling pathway upon exposure to bacteria (Vibrio anguillarum) and poly(I:C), the latter mimicking antiviral responses. Methods Characterization and evolutionary analyses of the STATs were performed by phylogeny, protein domain, homology similarity and synteny analyses. Antibacterial and antiviral responses were investigated by performing KEGG pathway analysis. Results We observed that lumpfish have stat1a, 2, 3, 4, 5a, 5b, and 6. Transcriptome-wide analyses showed that most components of the JAK-STAT pathway were present in lumpfish. il-6, il-10, il-21, iκBα and stat3 were upregulated 6 hours post exposure (hpe) against bacteria while type I interferons (IFNs), irf1, irf3, irf10, stat1 and 2 were upregulated 24 hpe against poly(I:C). Conclusions Our findings shed light on the diversity and evolution of the STATs and the data show that the STAT genes are highly conserved among fish, including lumpfish. The transcriptome-wide analyses lay the groundwork for future research into the functional significance of these genes in regulating critical biological processes and make an important basis for development of prophylactic measure such as vaccination, which is highly needed for lumpfish since it is vulnerable for both bacterial and viral diseases.
Collapse
Affiliation(s)
- Shreesha S Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Patrick A Nelson
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Gyri T Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
45
|
Wang Y, Drum DL, Sun R, Zhang Y, Chen F, Sun F, Dal E, Yu L, Jia J, Arya S, Jia L, Fan S, Isakoff SJ, Kehlmann AM, Dotti G, Liu F, Zheng H, Ferrone CR, Taghian AG, DeLeo AB, Ventin M, Cattaneo G, Li Y, Jounaidi Y, Huang P, Maccalli C, Zhang H, Wang C, Yang J, Boland GM, Sadreyev RI, Wong L, Ferrone S, Wang X. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat Commun 2023; 14:5727. [PMID: 37714830 PMCID: PMC10504259 DOI: 10.1038/s41467-023-41282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.
Collapse
Affiliation(s)
- Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - David L Drum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruochuan Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yida Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fengfei Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Dal
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ling Yu
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jingyu Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahrzad Arya
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Fan
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Allison M Kehlmann
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Fubao Liu
- Department of Hepatobiliary & Pancreatic Surgery and Liver Transplantation, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alphonse G Taghian
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert B DeLeo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Ventin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongxiang Li
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Hanyu Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - LaiPing Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedics, Massachusetts General Hospital, Boston, MA, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Gottardi F, Leardini D, Muratore E, Baccelli F, Cerasi S, Venturelli F, Zanaroli A, Belotti T, Prete A, Masetti R. Treatment of steroid-refractory graft versus host disease in children. FRONTIERS IN TRANSPLANTATION 2023; 2:1251112. [PMID: 38993897 PMCID: PMC11235274 DOI: 10.3389/frtra.2023.1251112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 07/13/2024]
Abstract
Systemic steroids are still the first-line approach in acute graft-versus-host disease (aGvHD), and the backbone of chronic GvHD management. Refractoriness to steroid represent a major cause of morbidity and non-relapse mortality after hematopoietic stem cell transplantation (HSCT). In both backgrounds, several second-line immunosuppressive agents have been tested with variable results in terms of efficacy and toxicity. Solid evidence regarding these approaches is still lacking in the pediatric setting where results are mainly derived from adult experiences. Furthermore, the number of treated patients is limited and the incidence of acute and chronic GvHD is lower, resulting in a very heterogeneous approach to this complication by pediatric hematologists. Some conventional therapies and anti-cytokine monoclonal antibodies used in the adult setting have been evaluated in children. In recent years, the increasing understanding of the biological mechanisms underpinning the pathogenesis of GvHD justified the efforts toward the adoption of targeted therapies and non-pharmacologic approaches, with higher response rates and lower immunosuppressive effects. Moreover, many questions regarding the precise timing and setting in which to integrate these new approaches remain unanswered. This Review aims to critically explore the current evidence regarding novel approaches to treat SR-GvHD in pediatric HSCT recipients.
Collapse
Affiliation(s)
- Francesca Gottardi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Cerasi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Venturelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Zanaroli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
48
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
49
|
Deng L, Wan L, Liao T, Wang L, Wang J, Wu X, Shi J. Recent progress on tyrosine kinase 2 JH2 inhibitors. Int Immunopharmacol 2023; 121:110434. [PMID: 37315371 DOI: 10.1016/j.intimp.2023.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which can regulate the signaling of multiple pro-inflammatory cytokines, including IL12, IL23 and type I interferon (IFNα/β), and its inhibitors can treat autoimmune diseases caused by the abnormal expression of IL12 and IL23. Interest in TYK2 JH2 inhibitors has increased as a result of safety concerns with JAK inhibitors. This overview introduces TYK2 JH2 inhibitors that are already on the market, including Deucravactinib (BMS-986165), as well as those currently in clinical trials, such as BMS-986202, NDI-034858, and ESK-001.
Collapse
Affiliation(s)
- Lidan Deng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Li Wan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Tingting Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
50
|
Zeghal M, Laroche G, Freitas JD, Wang R, Giguère PM. Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform. Nat Commun 2023; 14:3684. [PMID: 37407564 DOI: 10.1038/s41467-023-39132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and β-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Julia Douglas Freitas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Rebecca Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|