1
|
Yuan D, Chen W, Jin S, Li W, Liu W, Liu L, Wu Y, Zhang Y, He X, Jiang J, Sun H, Liu X, Liu J. Co-expression of immune checkpoints in glioblastoma revealed by single-nucleus RNA sequencing and spatial transcriptomics. Comput Struct Biotechnol J 2024; 23:1534-1546. [PMID: 38633388 PMCID: PMC11021796 DOI: 10.1016/j.csbj.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system. The pattern of immune checkpoint expression in GBM remains largely unknown. We performed snRNA-Seq and spatial transcriptomic (ST) analyses on untreated GBM samples. 8 major cell types were found in both tumor and adjacent normal tissues, with variations in infiltration grade. Neoplastic cells_6 was identified in malignant cells with high expression of invasion and proliferator-related genes, and analyzed its interactions with microglia, MDM cells and T cells. Significant alterations in ligand-receptor interactions were observed, particularly between Neoplastic cells_6 and microglia, and found prominent expression of VISTA/VSIG3, suggesting a potential mechanism for evading immune system attacks. High expression of TIM-3, VISTA, PSGL-1 and VSIG-3 with similar expression patterns in GBM, may have potential as therapeutic targets. The prognostic value of VISTA expression was cross-validated in 180 glioma patients, and it was observed that patients with high VISTA expression had a poorer prognosis. In addition, multimodal cross analysis integrated SnRNA-seq and ST, revealing complex intracellular communication and mapping the GBM tumor microenvironment. This study reveals novel molecular characteristics of GBM, co-expression of immune checkpoints, and potential therapeutic targets, contributing to improving the understanding and treatment of GBM.
Collapse
Affiliation(s)
- Dingyi Yuan
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Wenting Chen
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Shasha Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wanmei Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Yinhao Wu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Yuxin Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xiaoyu He
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Xiangyu Liu
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jun Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Xing Z, Li X, He ZNT, Fang X, Liang H, Kuang C, Li A, Yang Q. IDO1 Inhibitor RY103 Suppresses Trp-GCN2-Mediated Angiogenesis and Counters Immunosuppression in Glioblastoma. Pharmaceutics 2024; 16:870. [PMID: 39065567 PMCID: PMC11279595 DOI: 10.3390/pharmaceutics16070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is characterized by strong immunosuppression and excessive angiogenesis. Based on existing reports, it can be speculated that the resistance to anti-angiogenic drug vascular endothelial growth factor A (VEGFA) antibody correlates to the induction of novel immune checkpoint indoleamine 2,3-dioxygenase 1 (IDO1), while IDO1 has also been suggested to be related to tumor angiogenesis. Herein, we aim to clarify the potential role of IDO1 in glioma angiogenesis and the mechanism behind it. Bioinformatic analyses showed that the expressions of IDO1 and angiogenesis markers VEGFA and CD34 were positively correlated and increased with pathological grade in glioma. IDO1-overexpression-derived-tryptophan depletion activated the general control nonderepressible 2 (GCN2) pathway and upregulated VEGFA in glioma cells. The tube formation ability of angiogenesis model cells could be inhibited by IDO1 inhibitors and influenced by the activity and expression of IDO1 in condition medium. A significant increase in serum VEGFA concentration and tumor CD34 expression was observed in IDO1-overexpressing GL261 subcutaneous glioma-bearing mice. IDO1 inhibitor RY103 showed positive anti-tumor efficacy, including the anti-angiogenesis effect and upregulation of natural killer cells in GL261 glioma-bearing mice. As expected, the combination of RY103 and anti-angiogenesis agent sunitinib was proved to be a better therapeutic strategy than either monotherapy.
Collapse
Affiliation(s)
- Zikang Xing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xuewen Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China;
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| |
Collapse
|
4
|
Wen Y, Chen X, Li R, Xie H, Zhi S, Wang K, Yi S, Liang W, Hu H, Rao S, Gao X. A novel prognostic risk-scoring system based on m 5C methylation regulator-mediated patterns for glioma patients. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200790. [PMID: 38595980 PMCID: PMC10965830 DOI: 10.1016/j.omton.2024.200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
N5-methylcytosine (m5C) methylation modification plays a crucial role in the epigenetic mechanisms underlying tumorigenesis, aggressiveness, and malignancy in diffuse glioma. Our study aimed to develop a novel prognostic risk-scoring system to assess the impact of m5C modification in glioma patients. Initially, we identified two distinct m5C clusters based on the expression level of m5C regulators in The Cancer Genome Atlas glioblastoma (TCGA-GBM) dataset. Differentially expressed genes (DEGs) between the two m5C cluster groups were determined. Utilizing these m5C regulation-related DEGs, we classified glioma patients into three gene cluster groups: A, B, and C. Subsequently, an m5C scoring system was developed through a univariate Cox regression model, quantifying the m5C modification patterns utilizing six DEGs associated with disease prognosis. The resulting scoring system allowed us to categorize patients into high- or low-risk groups based on their m5C scores. In test (TCGA-GBM) and validation (Chinese Glioma Genome Atlas [CGGA]-1018 and CGGA-301) datasets, glioma patients with a higher m5C score consistently exhibited shorter survival durations, fewer isocitrate dehydrogenase (IDH) mutations, less 1p/19q codeletion and higher World Health Organization (WHO) grades. Additionally, distinct immune cell infiltration characteristics were observed among different m5C cluster groups and risk groups. Our study developed a novel prognostic scoring system based on m5C modification patterns for glioma patients, complementing existing molecular classifications and providing valuable insights into prognosis for glioma patients.
Collapse
Affiliation(s)
- Yutong Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| | - Xiaotong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| | - Shuai Zhi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| | - Wen Liang
- Department of Radiology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P.R. China
| | - Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
- Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
5
|
Hampe L, Daumoine S, Limagne E, Roussot N, Borsotti F, Vincent J, Ilie S, Truntzer C, Ghiringhelli F, Thibaudin M. Effect of radiochemotherapy on peripheral immune response in glioblastoma. Cancer Immunol Immunother 2024; 73:133. [PMID: 38753169 PMCID: PMC11098987 DOI: 10.1007/s00262-024-03722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a primary brain tumor with a dismal prognosis, often resistant to immunotherapy and associated with immune suppression. This study aimed to assess the impact of steroids and Stupp-regimen treatment on peripheral blood immune parameters in GBM patients and their association with outcomes. METHODS Using cytometry panels and bioplex assays, we analyzed the immune phenotype and serum cytokines of 54 GBM patients and 21 healthy volunteers. RESULTS GBM patients exhibited decreased lymphoid cell numbers (CD4, CD8 T cells, NKT cells) with heightened immune checkpoint expression and increased myeloid cell numbers (especially neutrophils), along with elevated pro-inflammatory cytokine levels. Steroid use decreased T and NK cell numbers, while radio-chemotherapy led to decreased lymphoid cell numbers, increased myeloid cell numbers, and heightened immune checkpoint expression. Certain immune cell subsets were identified as potential outcome predictors. CONCLUSION Overall, these findings shed light on the peripheral immune landscape in GBM, emphasizing the immunosuppressive effects of treatment. Baseline immune parameters may serve as prognostic indicators for treatment response.
Collapse
Affiliation(s)
- Léa Hampe
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Susy Daumoine
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Emeric Limagne
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Nicolas Roussot
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - François Borsotti
- Department of Neurosurgery, University Hospital François Mitterrand, Dijon, France
| | - Julie Vincent
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Sylvia Ilie
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Caroline Truntzer
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - François Ghiringhelli
- University Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| | - Marion Thibaudin
- University Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| |
Collapse
|
6
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
7
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
8
|
Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2023; 8:824-834. [PMID: 34918964 PMCID: PMC10589502 DOI: 10.1089/can.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Daniel Mehrabian
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Martin Rutkowski
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - W. Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John C. Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Ingraham CH, Stalinska J, Carson SC, Colley SB, Rak M, Lassak A, Peruzzi F, Reiss K, Jursic BS. Computational modeling and synthesis of pyridine variants of benzoyl-phenoxy-acetamide with high glioblastoma cytotoxicity and brain tumor penetration. Sci Rep 2023; 13:12236. [PMID: 37507404 PMCID: PMC10382599 DOI: 10.1038/s41598-023-39236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications to the benzoyl-phenoxy-acetamide (BPA) structure present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve the selection of the most effective glioblastoma drug candidates. Initially, over 100 structural BPA variations were analyzed and their physicochemical properties, such as water solubility (- logS), calculated partition coefficient (ClogP), probability for BBB crossing (BBB_SCORE), probability for CNS penetration (CNS-MPO) and calculated cardiotoxicity (hERG), were evaluated. This integrated approach allowed us to select pyridine variants of BPA that show improved BBB penetration, water solubility, and low cardiotoxicity. Herein the top 24 compounds were synthesized and analyzed in cell culture. Six of them demonstrated glioblastoma toxicity with IC50 ranging from 0.59 to 3.24 µM. Importantly, one of the compounds, HR68, accumulated in the brain tumor tissue at 3.7 ± 0.5 µM, which exceeds its glioblastoma IC50 (1.17 µM) by over threefold.
Collapse
Affiliation(s)
- Charles H Ingraham
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- WayPath Pharma, New Orleans BioInnovation Center (NOBIC), 1441 Canal Str., New Orleans, LA, 70112, USA
| | - Joanna Stalinska
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Sean C Carson
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
| | - Susan B Colley
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Grants and Development Office, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Monika Rak
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Adam Lassak
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Francesca Peruzzi
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Krzysztof Reiss
- Neurological Cancer Research, Department of Medicine, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
- Neurological Cancer Research, Department of Interdisciplinary Oncology, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
- WayPath Pharma, New Orleans BioInnovation Center (NOBIC), 1441 Canal Str., New Orleans, LA, 70112, USA.
| | - Branko S Jursic
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
- Stepharm LLC., PO Box 24220, New Orleans, LA, 70184, USA.
| |
Collapse
|
10
|
Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, Badou A. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol 2023; 13:1135430. [PMID: 37274252 PMCID: PMC10235598 DOI: 10.3389/fonc.2023.1135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are considered one of the most malignant cancers in the body. Despite current therapies, including surgery, chemotherapy, and radiotherapy, these tumors usually recur with more aggressive and resistant phenotypes. Indeed, the survival following these conventional therapies is very poor, which makes immunotherapy the subject of active research at present. The anti-tumor immune response could also be considered a prognostic factor since each stage of cancer development is regulated by immune cells. However, glioma microenvironment contains malignant cells that secrete numerous chemokines, cytokines and growth factors, promoting the infiltration of immunosuppressive cells into the tumor, which limit the functioning of the immune system against glioma cells. Recently, researchers have been able to reverse the immune resistance of cancer cells and thus activate the anti-tumor immune response through different immunotherapy strategies. Here, we review the general concept of glioma's immune microenvironment and report the impact of its distinct components on the anti-tumor immune response. We also discuss the mechanisms of glioma cell evasion from the immune response and pinpoint some potential therapeutic pathways, which could alleviate such resistance.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | | | - Rizwan Ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
11
|
He J, Zhou W, Zhang M. Prognostic characterization of the pyroptosis-related subtypes and tumor microenvironment infiltration in glioma. Cancer Biomark 2023:CBM220362. [PMID: 37248887 DOI: 10.3233/cbm-220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pyroptosis could regulate tumor cell trafficking, invasion, and metastasis, as well as the tumor microenvironment (TME). However, prognostic characteristics of pyroptosis-related genes (PRGs) and their effect on the progression of glioma remain insufficient. METHODS The genetic, transcriptional, and survival data of patients with glioma used for bioinformatic analysis were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. RESULTS Screening of two different molecular subtypes revealed that PRG variations were associated with characteristics of TME cell infiltration, clinicopathological characteristics, and prognosis of patients with glioma. After Cox regression of differentially expressed genes, a risk score for predicting overall survival (OS) and progression-free survival (PFS) were calculated. Its predictive accuracy in patients with glioma was validated. The high-risk group of PRG signature had a poorer OS than the low-risk group (training cohort, P< 0.001; validation cohort, P< 0.001). A high risk score implies more immune cell infiltration and better immunotherapy response to immune checkpoint blockers. In addition, the differential expression of three pyroptosis-pairs in tumor and normal tissues was identified. Furthermore, the risk score was significantly associated with chemotherapeutic drug sensitivity and cancer stem cell (CSC) index. Subsequently, a highly accurate nomogram was established to facilitate applicability in the preliminary clinical application of risk score. CONCLUSION Our findings may provide the basis for future research targeting pyroptosis in glioma and evaluation of prognosis and development of more effective immunotherapy strategies.
Collapse
|
12
|
Iv CI, Stalinska J, Carson S, Colley S, Rak M, Lassak A, Reiss K, Jursic B. Computational modeling and synthesis of Pyridine variants of Benzoyl-Phenoxy-Acetamide with high glioblastoma cytotoxicity and brain tumor penetration. RESEARCH SQUARE 2023:rs.3.rs-2773503. [PMID: 37131829 PMCID: PMC10153368 DOI: 10.21203/rs.3.rs-2773503/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications of benzoyl-phenoxy-acetamide (BPA) present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve selection of the most effective glioblastoma drug candidates. Initially over 100 structural BPA variations were analyzed and their physicochemical properties such as water solubility (-logS), calculated partition coefficient (ClogP), probability for BBB crossing (BBB_SCORE), probability for CNS penetration (CNS-MPO) and calculated cardiotoxicity (hERG), were evaluated. This integrated approach allowed us to select pyridine variants of BPA that show improved BBB penetration, water solubility, and low cardiotoxicity. Herein the top 24 compounds were synthesized and analyzed in cell culture. Six of them demonstrated glioblastoma toxicity with IC50 ranging from 0.59 to 3.24mM. Importantly, one of the compounds, HR68, accumulated in the brain tumor tissue at 3.7+/-0.5mM, which exceeds its glioblastoma IC50 (1.17mM) by over 3-fold.
Collapse
|
13
|
Chen X, Wu W, Wang Y, Zhang B, Zhou H, Xiang J, Li X, Yu H, Bai X, Xie W, Lian M, Wang M, Wang J. Development of prognostic indicator based on NAD+ metabolism related genes in glioma. Front Surg 2023; 10:1071259. [PMID: 36778644 PMCID: PMC9909700 DOI: 10.3389/fsurg.2023.1071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Background Studies have shown that Nicotinamide adenine dinucleotide (NAD+) metabolism can promote the occurrence and development of glioma. However, the specific effects and mechanisms of NAD+ metabolism in glioma are unclear and there were no systematic researches about NAD+ metabolism related genes to predict the survival of patients with glioma. Methods The research was performed based on expression data of glioma cases in the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Firstly, TCGA-glioma cases were classified into different subtypes based on 49 NAD+ metabolism-related genes (NMRGs) by consensus clustering. NAD+ metabolism-related differentially expressed genes (NMR-DEGs) were gotten by intersecting the 49 NMRGs and differentially expressed genes (DEGs) between normal and glioma samples. Then a risk model was built by Cox analysis and the least shrinkage and selection operator (LASSO) regression analysis. The validity of the model was verified by survival curves and receiver operating characteristic (ROC) curves. In addition, independent prognostic analysis of the risk model was performed by Cox analysis. Then, we also identified different immune cells, HLA family genes and immune checkpoints between high and low risk groups. Finally, the functions of model genes at single-cell level were also explored. Results Consensus clustering classified glioma patients into two subtypes, and the overall survival (OS) of the two subtypes differed. A total of 11 NAD+ metabolism-related differentially expressed genes (NMR-DEGs) were screened by overlapping 5,995 differentially expressed genes (DEGs) and 49 NAD+ metabolism-related genes (NMRGs). Next, four model genes, PARP9, BST1, NMNAT2, and CD38, were obtained by Cox regression and least absolute shrinkage and selection operator (Lasso) regression analyses and to construct a risk model. The OS of high-risk group was lower. And the area under curves (AUCs) of Receiver operating characteristic (ROC) curves were >0.7 at 1, 3, and 5 years. Cox analysis showed that age, grade G3, grade G4, IDH status, ATRX status, BCR status, and risk Scores were reliable independent prognostic factors. In addition, three different immune cells, Mast cells activated, NK cells activated and B cells naive, 24 different HLA family genes, such as HLA-DPA1 and HLA-H, and 8 different immune checkpoints, such as ICOS, LAG3, and CD274, were found between the high and low risk groups. The model genes were significantly relevant with proliferation, cell differentiation, and apoptosis. Conclusion The four genes, PARP9, BST1, NMNAT2, and CD38, might be important molecular biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Beichen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haoyu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Correspondence: Maode Wang Jia Wang
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Correspondence: Maode Wang Jia Wang
| |
Collapse
|
14
|
Zhang W, Shi Z, Chen S, Shen S, Tu S, Yang J, Qiu Y, Lin Y, Dai X. Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy. Cell Div 2023; 18:1. [PMID: 36650519 PMCID: PMC9843830 DOI: 10.1186/s13008-023-00084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Protein p62 (sequestosome 1) encoded by gene SQSTM1 plays a vital role in mediating protectively selective autophagy in tumor cells under stressed conditions. CircSQSTM1 (hsa_circ_0075323) is a circular transcript generated from gene SQSTM1 (chr5:179260586-179260782) by back-splicing. However, the potential role of hsa_hsa_circ_0075323 in glioblastoma (GBM) remains unclear. Here, we aimed to explore the biological function of hsa_circ_0075323 in GBM and its relationship with autophagy regulation. RESULTS Hsa_circ_0075323 is highly expressed in GBM cells and mainly locates in the cytoplasm. Inhibition of hsa_circ_0075323 in U87-MG and T98G cells attenuated proliferation and invasion ability significantly, while upregulation of has_ circ_0075323 enhanced proliferation and migration of U251-MG and A172 cells. Mechanistically, depletion of hsa_circ_0075323 in GBM cells resulted in impaired autophagy, as indicated by increased expression of p62 and decreased expression of LC3B. CONCLUSIONS Hsa_circ_0075323 regulates p62-mediated autophagy pathway to promote GBM progression and may serve as a prognostic biomarker potentially.
Collapse
Affiliation(s)
- Wenrui Zhang
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Zhonggang Shi
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Shouren Chen
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| | - Shaoshan Shen
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| | - Songjie Tu
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| | - Jian Yang
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Yongming Qiu
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Yingying Lin
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Xuejun Dai
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| |
Collapse
|
15
|
Zhou F, Zeng L, Chen X, Zhou F, Zhang Z, Yuan Y, Wang H, Yao H, Tian J, Liu X, Zhao J, Huang X, Pu J, Cho WC, Cao J, Jiang X. DUSP10 upregulation is a poor prognosticator and promotes cell proliferation and migration in glioma. Front Oncol 2023; 12:1050756. [PMID: 36713584 PMCID: PMC9874937 DOI: 10.3389/fonc.2022.1050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Dual-specificity phosphatase 10 (DUSP10) correlates with inflammation, cytokine secretion, cell proliferation, survival, and apoptosis. However, its role in glioma is unclear. Herein, we sought to examine the expression and the underlying carcinogenic mechanisms of DUSP10 action in glioma. DUSP10 expression in glioma was significantly higher than that in normal brain tissues. High DUSP10 expression indicated adverse clinical outcomes in glioma patients. Increased DUSP10 expression correlated significantly with clinical features in glioma. Univariate Cox analysis showed that high DUSP10 expression was a potential independent marker of poor prognosis in glioma. Furthermore, DUSP10 expression in glioma correlated negatively with its DNA methylation levels. DNA methylation level of DUSP10 also correlated negatively with poor prognosis in glioma. More importantly, DUSP10 expression correlated positively with the infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells in glioma. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis confirmed that DUSP10 participated in signaling pathways involved in focal adhesion, TNF cascade, Th17 cell differentiation, and NF-kappa B cascade. Finally, we uncovered that DUSP10 was dramatically upregulated in glioblastoma (GBM) cells and that the knockdown of DUSP10 inhibited glioma cell proliferation and migration. Our findings suggested that DUSP10 may serve as a potential prognostic biomarker in glioma.
Collapse
Affiliation(s)
- Fang Zhou
- Hunan University of Chinese Medicine, Changsha, China,Department of Oncology, the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Lingfeng Zeng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong SAR, China
| | - Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zhou
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen Zhang
- Department of Oncology, the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heping Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayi Yao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jintao Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xujie Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinxi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China,*Correspondence: Xiulin Jiang, ; Jianxiong Cao, ; William C. Cho,
| | - Jianxiong Cao
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China,*Correspondence: Xiulin Jiang, ; Jianxiong Cao, ; William C. Cho,
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiulin Jiang, ; Jianxiong Cao, ; William C. Cho,
| |
Collapse
|
16
|
Cascão R, Faria CC. Optimizing the role of immunotherapy for the treatment of glioblastoma. NEW INSIGHTS INTO GLIOBLASTOMA 2023:553-591. [DOI: 10.1016/b978-0-323-99873-4.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
18
|
Petterson SA, Sørensen MD, Burton M, Thomassen M, Kruse TA, Michaelsen SR, Kristensen BW. Differential expression of checkpoint markers in the normoxic and hypoxic microenvironment of glioblastomas. Brain Pathol 2022; 33:e13111. [PMID: 36093941 PMCID: PMC9836374 DOI: 10.1111/bpa.13111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/29/2022] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults with an overall survival of only 14.6 months. Hypoxia is known to play a role in tumor aggressiveness but the influence of hypoxia on the immune microenvironment is not fully understood. The aim of this study was to investigate the expression of immune-related proteins in normoxic and hypoxic tumor areas by digital spatial profiling. Tissue samples from 10 glioblastomas were stained with a panel of 40 antibodies conjugated to photo-cleavable oligonucleotides. The free oligo-tags from normoxic and hypoxic areas were hybridized to barcodes for digital counting. Differential expression patterns were validated by Ivy Glioblastoma Atlas Project (GAP) data and an independent patient cohort. We found that CD44, Beta-catenin and B7-H3 were upregulated in hypoxia, whereas VISTA, CD56, KI-67, CD68 and CD11c were downregulated. PD-L1 and PD-1 were not affected by hypoxia. Focusing on the checkpoint-related markers CD44, B7-H3 and VISTA, our findings for CD44 and VISTA could be confirmed with Ivy GAP RNA sequencing data. Immunohistochemical staining and digital quantification of CD44, B7-H3 and VISTA in an independent cohort confirmed our findings for all three markers. Additional stainings revealed fewer T cells and high but equal amounts of tumor-associated microglia and macrophages in both hypoxic and normoxic regions. In conclusion, we found that CD44 and B7-H3 were upregulated in areas with hypoxia whereas VISTA was downregulated together with the presence of fewer T cells. This heterogeneous expression should be taken into consideration when developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Stine Asferg Petterson
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mia Dahl Sørensen
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mark Burton
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Mads Thomassen
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Torben A. Kruse
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Signe Regner Michaelsen
- Department of Pathology, The Bartholin Institute, RigshospitaletCopenhagen University HospitalCopenhagenDenmark,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Bjarne Winther Kristensen
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Pathology, The Bartholin Institute, RigshospitaletCopenhagen University HospitalCopenhagenDenmark,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
19
|
Marei HE. Multimodal targeting of glioma with functionalized nanoparticles. Cancer Cell Int 2022; 22:265. [PMID: 35999629 PMCID: PMC9396820 DOI: 10.1186/s12935-022-02687-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The most common and aggressive primitive intracranial tumor of the central nervous system is the glioma. The blood–brain barrier (BBB) has proven to be a significant obstacle to the effective treatment of glioma. To effectively treat glioma, different ways have been used to cross the BBB to deliver drugs to the brain. Drug delivery through nanocarriers proves to be an effective and non-invasive technique for the treatment of glioma and has great potential in the treatment of glioma. In this review, we will provide an overview of nanocarrier-mediated drug delivery and related glioma therapy. Nanocarrier-mediated drug delivery techniques to cross the BBB (liposomes, micelles, inorganic systems, polymeric nanoparticles, nanogel system, and biomimetic nanoparticles) are explored. Finally, the use of nanotherapeutic approaches in the treatment of glioblastoma including chemotherapy, radiotherapy, photothermal therapy, gene therapy, glioma genome editing, immunotherapy, chimeric antigen receptor (CAR) T-cells, immune checkpoint modulators, immune photothermal therapy, vaccine-based immunotherapy, and combination therapy is summarized. Furthermore, this article offers various views on the clinical applicability of nanomedicine.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| |
Collapse
|
20
|
Liu YQ, Luo M, Shi Y, Guo Y, Zhang H, Yang KD, Li TR, Yang LQ, Liu TT, Huang B, Liu Q, He ZC, Zhang XN, Wang WY, Wang S, Zeng H, Niu Q, Zhang X, Cui YH, Zhang ZR, Bian XW, Ping YF. Dicer deficiency impairs proliferation but potentiates anti-tumoral effect of macrophages in glioblastoma. Oncogene 2022; 41:3791-3803. [PMID: 35764885 DOI: 10.1038/s41388-022-02393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma is a lethal primary brain tumor with abundant immune-suppressive glioblastoma-associated macrophage (GAM) infiltration. Skewing immune suppressive GAMs towards an immune-activating phenotype represents a promising immunotherapeutic strategy against glioblastoma. Herein, we reported that genetic deletion of miRNA-processing enzyme Dicer in macrophages inhibited the growth of GL261 murine glioblastoma xenografts and prolonged survival of tumor-bearing mice. Single cell RNA sequencing (scRNA-seq) of the tumor-infiltrating immune cells revealed that Dicer deletion in macrophages reduced the proportion of cell-cycling GAM cluster and reprogramed the remaining GAMs towards a proinflammatory activation state (enhanced phagocytotic and IFN-producing signature). Dicer-deficient GAMs showed reduced level of cyclin-dependent kinases (CDK1 and CDK2) and increased expression of CDK inhibitor p27 Kip1, thus manifesting impaired proliferation. Dicer knockout enhanced phagocytotic activity of GAMs to eliminate GL261 tumor cells. Increased proinflammatory GAM clusters in macrophage Dicer-deficient mice actively interacted with tumor-infiltrating T cells and NK cells through TNF paracrine signaling to create a pro-inflammatory immune microenvironment for tumor cell elimination. Our work identifies the role of Dicer deletion in macrophages in generating an immune-activating microenvironment, which could be further developed as a potential immunotherapeutic strategy against glioblastoma.
Collapse
Affiliation(s)
- Yu-Qi Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.,Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Min Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Ying Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Hua Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Kai-Di Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Tian-Ran Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Liu-Qing Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Ting-Ting Liu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bo Huang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Wen-Ying Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Hui Zeng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Zhi-Ren Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
21
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
22
|
Goodman AL, Velázquez Vega JE, Glenn C, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of neuropathology in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:179-224. [PMID: 35648306 DOI: 10.1007/s11060-022-04005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with progressive or recurrent glioblastoma (GBM). QUESTION For adult patients with progressive glioblastoma does testing for Isocitrate Dehydrogenase (IDH) 1 or 2 mutations provide new additional management or prognostic information beyond that derived from the tumor at initial presentation? RECOMMENDATION Level III: Repeat IDH mutation testing is not necessary if the tumor is histologically similar to the primary tumor and the patient's clinical course is as expected. QUESTION For adult patients with progressive glioblastoma does repeat testing for MGMT promoter methylation provide new or additional management or prognostic information beyond that derived from the tumor at initial presentation and what methods of detection are optimal? RECOMMENDATION Level III: Repeat MGMT promoter methylation is not recommended. QUESTION For adult patients with progressive glioblastoma does EGFR amplification or mutation testing provide management or prognostic information beyond that provided by histologic analysis and if performed on previous tissue samples, does it need to be repeated? RECOMMENDATION Level III: In cases that are difficult to classify as glioblastoma on histologic features EGFR amplification testing may help in classification. If a previous EGFR amplification was detected, repeat testing is not necessary. Repeat EGFR amplification or mutational testing may be recommended in patients in which target therapy is being considered. QUESTION For adult patients with progressive glioblastoma does large panel or whole genome sequencing provide management or prognostic information beyond that derived from histologic analysis? RECOMMENDATION Level III: Primary or repeat large panel or whole genome sequencing may be considered in patients who are eligible or interested in molecularly guided therapy or clinical trials. QUESTION For adult patients with progressive glioblastoma should immune checkpoint biomarker testing be performed to provide management and prognostic information beyond that obtained from histologic analysis? RECOMMENDATION Level III: The current evidence does not support making PD-L1 or mismatch repair (MMR) enzyme activity a component of standard testing. QUESTION For adult patients with progressive glioblastoma are there meaningful biomarkers for bevacizumab responsiveness and does their assessment provide additional information for tumor management and prognosis beyond that learned by standard histologic analysis? RECOMMENDATION Level III: No established Bevacizumab biomarkers are currently available based upon the inclusion criteria of this guideline.
Collapse
Affiliation(s)
- Abigail L Goodman
- Carolinas Pathology, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
| | - José E Velázquez Vega
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Chad Glenn
- Department of Neurosurgery, Stephenson Cancer Center, The University of Oklahoma, Oklahoma City, OK, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Karimi-Shahri M, Khorramdel M, Zarei S, Attarian F, Hashemian P, Javid H. Glioblastoma, an opportunity T cell trafficking could bring for the treatment. Mol Biol Rep 2022; 49:9863-9875. [DOI: 10.1007/s11033-022-07510-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023]
|
24
|
He J, Jiang Z, Lei J, Zhou W, Cui Y, Luo B, Zhang M. Prognostic Value and Therapeutic Perspectives of CXCR Members in the Glioma Microenvironment. Front Genet 2022; 13:787141. [PMID: 35571062 PMCID: PMC9091590 DOI: 10.3389/fgene.2022.787141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: CXCR (CXC Chemokine Receptor) is a complex of the immune-associated protein involved in tumor activation, invasion, migration, and angiogenesis through various chemical signals in the tumor microenvironment (TME). However, significant prognostic characteristics of CXCR members and their impact on the occurrence and progression of glioma have not yet been fully elucidated. Methods: In this research, we used Oncomine, TCGA, GTEx, and CGGA databases to analyze the transcription and survival data of glioma patients. Afterward, the influence of CXCR members on the TME was explored using comprehensive bioinformatics analysis. Results: The mRNA expression levels of CXCR1/2/3/4/7 were significantly up-regulated in glioma than in normal samples, whereas the mRNA expression level of CXCR5 was decreased. We then summarized the genetic alteration landscape of CXCR and identified two molecular subtypes based on CXCR expression patterns in glioma. The characteristics of CXCRs were also investigated, including the clinicopathological parameters, TME cell infiltration, and prognosis of patients with glioma. After Lasso and multivariable Cox regression, a CR-Score for predicting overall survival (OS) was constructed and the predictive performance of the signature was validated. The high-risk group was a significantly poorer prognostic group than the low-risk group as judged by the CR-Score (TCGA cohort, p < 0.001, CGGA cohort, p < 0.001). Moreover, the CR-Score was significantly correlated to the tumor-immune infiltration and cancer stem cell (CSC) index. A risk scale-based nomogram incorporating clinical factors for individual risk estimation was established thereby. Conclusion: These findings may pave the way for enhancing our understanding of CXCR modification patterns and developing better immune therapeutic approaches for glioma.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongzhong Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiawei Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biao Luo
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Natural killer cells and immune-checkpoint inhibitor therapy: Current knowledge and new challenges. Mol Ther Oncolytics 2022; 24:26-42. [PMID: 34977340 PMCID: PMC8693432 DOI: 10.1016/j.omto.2021.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery of immune checkpoints (ICs) and the development of specific blockers to relieve immune effector cells from this inhibiting mechanism has changed the view of anti-cancer therapy. In addition to cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed death 1 (PD1), classical ICs of T lymphocytes and recently described also on a fraction of natural killer (NK) cells, several NK cell receptors, including killer immunoglobulin-like inhibitory receptors (KIRs) and NGK2A, have been recognized as checkpoint members typical of the NK cell population. This offers the opportunity of a dual-checkpoint inhibition approach, targeting classical and non-classical ICs and leading to a synergistic therapeutic effect. In this review, we will overview and discuss this new perspective, focusing on the most relevant candidates for this role among the variety of potential NK ICs. Beside listing and defining classical ICs expressed also by NK cells, or non-classical ICs either on T or on NK cells, we will address their role in NK cell survival, chronic stimulation or functional exhaustion, and the potential relevance of this phenomenon on anti-tumor immune response. Furthermore, NK ICs will be proposed as possible new targets for the development of efficient combined immunotherapy, not forgetting the relevant concerns that may be raised on NK IC blockade. Finally, the impact of epigenetic drugs in such a complex therapeutic picture will be briefly addressed.
Collapse
|
26
|
HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies. Int J Mol Sci 2022; 23:ijms23062925. [PMID: 35328349 PMCID: PMC8948858 DOI: 10.3390/ijms23062925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
HLA-G is an HLA-class Ib molecule that is involved in the establishment of tolerance at the maternal/fetal interface during pregnancy. The expression of HLA-G is highly restricted in adults, but the de novo expression of this molecule may be observed in different hematological and solid tumors and is related to cancer progression. Indeed, tumor cells expressing high levels of HLA-G are able to suppress anti-tumor responses, thus escaping from the control of the immune system. HLA-G has been proposed as an immune checkpoint (IC) molecule due to its crucial role in tumor progression, immune escape, and metastatic spread. We here review data available in the literature in which the interaction between HLA-G and other IC molecules is reported, in particular PD-1, CTLA-4, and TIM-3, but also IDO and TIGIT. Clinical trials using monoclonal antibodies against HLA-G and other IC are currently ongoing with cancer patients where antibodies and inhibitors of PD-1 and CTLA-4 showed encouraging results. With this background, we may envisage that combined therapies using antibodies targeting HLA-G and another IC may be successful for clinical purposes. Indeed, such immunotherapeutic protocols may achieve a better rescue of effective anti-tumor immune response, thus improving the clinical outcome of patients.
Collapse
|
27
|
Bi Y, Wu ZH, Cao F. Prognostic value and immune relevancy of a combined autophagy-, apoptosis- and necrosis-related gene signature in glioblastoma. BMC Cancer 2022; 22:233. [PMID: 35241019 PMCID: PMC8892733 DOI: 10.1186/s12885-022-09328-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prognostic implications in GBM patients. Methods Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognostic signature. Kaplan–Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external validation. Finally, we investigated the differences in the immune microenvironment between different prognostic groups and predicted potential compounds targeting each group. Results A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of PDCD1LG2, CD86, CD48 and IDO1. Conclusion Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide patients’ selection for preferential use of immunotherapy in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09328-3.
Collapse
Affiliation(s)
- Ying Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Anti-glioblastoma effects of phenolic variants of benzoylphenoxyacetamide (BPA) with high potential for blood brain barrier penetration. Sci Rep 2022; 12:3384. [PMID: 35232976 PMCID: PMC8888627 DOI: 10.1038/s41598-022-07247-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 months. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthetized based compounds, which were synthetized based on the chemical structure of a common lipid-lowering drug, fenofibrate, and share a general molecular skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their physical properties such as solubility (logS), blood–brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System—Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood–brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.
Collapse
|
29
|
El Samman DM, El Mahdy MM, Cousha HS, El Rahman Kamar ZA, Mohamed KAK, Gabal HHA. Immunohistochemical expression of programmed death-ligand 1 and CD8 in glioblastomas. J Pathol Transl Med 2021; 55:388-397. [PMID: 34638219 PMCID: PMC8601951 DOI: 10.4132/jptm.2021.08.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive primary malignant brain tumor in adults and is characterized by poor prognosis. Immune evasion occurs via programmed death-ligand 1 (PD-L1)/programmed death receptor 1 (PD-1) interaction. Some malignant tumors have responded to PD-L1/PD-1 blockade treatment strategies, and PD-L1 has been described as a potential predictive biomarker. This study discussed the expression of PD-L1 and CD8 in glioblastomas. METHODS Thirty cases of glioblastoma were stained immunohistochemically for PD-L1 and CD8, where PD-L1 expression in glioblastoma tumor tissue above 1% is considered positive and CD-8 is expressed in tumor infiltrating lymphocytes. The expression of each marker was correlated with clinicopathologic parameters. Survival analysis was conducted to correlate progression-free survival (PFS) and overall survival (OS) with PD-L1 and CD8 expression. RESULTS Diffuse/fibrillary PD-L1 was expressed in all cases (mean expression, 57.6%), whereas membranous PD-L1 was expressed in six of 30 cases. CD8-positive tumor-infiltrating lymphocytes (CD8+ TILs) had a median expression of 10%. PD-L1 and CD8 were positively correlated (p = .001). High PD-L1 expression was associated with worse PFS and OS (p = .026 and p = .001, respectively). Correlation of CD8+ TILs percentage with age, sex, tumor site, laterality, and outcomes were statistically insignificant. Multivariate analysis revealed that PD-L1 was the only independent factor that affected prognosis. CONCLUSIONS PD-L1 expression in patients with glioblastoma is robust; higher PD-L1 expression is associated with lower CD8+ TIL expression and worse prognosis.
Collapse
|
30
|
Abstract
Amongst the several types of brain cancers known to humankind, glioma is one of the most severe and life-threatening types of cancer, comprising 40% of all primary brain tumors. Recent reports have shown the incident rate of gliomas to be 6 per 100,000 individuals per year globally. Despite the various therapeutics used in the treatment of glioma, patient survival rate remains at a median of 15 months after undergoing first-line treatment including surgery, radiation, and chemotherapy with Temozolomide. As such, the discovery of newer and more effective therapeutic agents is imperative for patient survival rate. The advent of computer-aided drug design in the development of drug discovery has emerged as a powerful means to ascertain potential hit compounds with distinctively high therapeutic effectiveness against glioma. This review encompasses the recent advances of bio-computational in-silico modeling that have elicited the discovery of small molecule inhibitors and/or drugs against various therapeutic targets in glioma. The relevant information provided in this report will assist researchers, especially in the drug design domains, to develop more effective therapeutics against this global disease.
Collapse
|
31
|
Mitchell D, Shireman J, Sierra Potchanant EA, Lara-Velazquez M, Dey M. Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Front Cell Neurosci 2021; 15:716947. [PMID: 34483843 PMCID: PMC8414998 DOI: 10.3389/fncel.2021.716947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
According to classical dogma, the central nervous system (CNS) is defined as an immune privileged space. The basis of this theory was rooted in an incomplete understanding of the CNS microenvironment, however, recent advances such as the identification of resident dendritic cells (DC) in the brain and the presence of CNS lymphatics have deepened our understanding of the neuro-immune axis and revolutionized the field of neuroimmunology. It is now understood that many pathological conditions induce an immune response in the CNS, and that in many ways, the CNS is an immunologically distinct organ. Hyperactivity of neuro-immune axis can lead to primary neuroinflammatory diseases such as multiple sclerosis and antibody-mediated encephalitis, whereas immunosuppressive mechanisms promote the development and survival of primary brain tumors. On the therapeutic front, attempts are being made to target CNS pathologies using various forms of immunotherapy. One of the most actively investigated areas of CNS immunotherapy is for the treatment of glioblastoma (GBM), the most common primary brain tumor in adults. In this review, we provide an up to date overview of the neuro-immune axis in steady state and discuss the mechanisms underlying neuroinflammation in autoimmune neuroinflammatory disease as well as in the development and progression of brain tumors. In addition, we detail the current understanding of the interactions that characterize the primary brain tumor microenvironment and the implications of the neuro-immune axis on the development of successful therapeutic strategies for the treatment of CNS malignancies.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jack Shireman
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | - Montserrat Lara-Velazquez
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
32
|
Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front Immunol 2021; 12:679425. [PMID: 34305910 PMCID: PMC8301219 DOI: 10.3389/fimmu.2021.679425] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Despite the fact that they are relatively rare, they cause significant morbidity and mortality. High-grade gliomas or glioblastomas are rapidly progressing tumors with a very poor prognosis. The presence of an intrinsic immune system in the central nervous system is now more accepted. During the last decade, there has been no major progress in glioma therapy. The lack of effective treatment for gliomas can be explained by the strategies that cancer cells use to escape the immune system. This being said, immunotherapy, which involves blockade of immune checkpoint inhibitors, has improved patients' survival in different cancer types. This novel cancer therapy appears to be one of the most promising approaches. In the present study, we will start with a review of the general concept of immune response within the brain and glioma microenvironment. Then, we will try to decipher the role of various immune checkpoint inhibitors within the glioma microenvironment. Finally, we will discuss some promising therapeutic pathways, including immune checkpoint blockade and the body's effective anti-glioma immune response.
Collapse
Affiliation(s)
- Amina Ghouzlani
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mariam Tall
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Konala Priyanka Reddy
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Faculty of Medicine, Medical University of Pleven, Pleven, Bulgaria
| | - Soumaya Rafii
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
33
|
Oncolytic Viruses for Malignant Glioma: On the Verge of Success? Viruses 2021; 13:v13071294. [PMID: 34372501 PMCID: PMC8310195 DOI: 10.3390/v13071294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is one of the most difficult tumor types to treat with conventional therapy options like tumor debulking and chemo- and radiotherapy. Immunotherapeutic agents like oncolytic viruses, immune checkpoint inhibitors, and chimeric antigen receptor T cells have revolutionized cancer therapy, but their success in glioblastoma remains limited and further optimization of immunotherapies is needed. Several oncolytic viruses have demonstrated the ability to infect tumors and trigger anti-tumor immune responses in malignant glioma patients. Leading the pack, oncolytic herpesvirus, first in its class, awaits an approval for treating malignant glioma from MHLW, the federal authority of Japan. Nevertheless, some major hurdles like the blood–brain barrier, the immunosuppressive tumor microenvironment, and tumor heterogeneity can engender suboptimal efficacy in malignant glioma. In this review, we discuss the current status of malignant glioma therapies with a focus on oncolytic viruses in clinical trials. Furthermore, we discuss the obstacles faced by oncolytic viruses in malignant glioma patients and strategies that are being used to overcome these limitations to (1) optimize delivery of oncolytic viruses beyond the blood–brain barrier; (2) trigger inflammatory immune responses in and around tumors; and (3) use multimodal therapies in combination to tackle tumor heterogeneity, with an end goal of optimizing the therapeutic outcome of oncolytic virotherapy.
Collapse
|
34
|
Tang S, Zhuge Y. An immune-related pseudogene signature to improve prognosis prediction of endometrial carcinoma patients. Biomed Eng Online 2021; 20:64. [PMID: 34193185 PMCID: PMC8243762 DOI: 10.1186/s12938-021-00902-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background Pseudogenes show multiple functions in various cancer types, and immunotherapy is a promising cancer treatment. Therefore, this study aims to identify immune-related pseudogene signature in endometrial cancer (EC). Methods Gene transcriptome data of EC tissues and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA) through UCSC Xena browser. Spearman correlation analysis was performed to identify immune-related pseudogenes (IRPs) between the immune genes and pseudogenes. Univariate Cox regression, LASSO, and multivariate were performed to develop a risk score signature to investigate the different overall survival (OS) between high- and low-risk groups. The prognostic significance of the signature was assessed by the Kaplan–Meier curve, time-dependent receiver operating characteristic (ROC) curve. The abundance of 22 immune cell subtypes of EC patients was evaluated using CIBERSORT. Results Nine IRPs were used to build a prognostic signature. Survival analysis revealed that patients in the low-risk group presented longer OS than those in the high-risk group as well as in multiple subgroups. The signature risk score was independent of other clinical covariates and was associated with several clinicopathological variables. The prognostic signature reflected infiltration by multiple types of immune cells and revealed the immunotherapy response of patients with anti-programmed death-1 (PD-1) and anti-programmed cell death 1 ligand 1 (PD-L1) therapy. Function enrichment analysis revealed that the nine IRPs were mainly involved in multiple cancer-related pathways. Conclusion We identified an immune-related pseudogene signature that was strongly correlated with the prognosis and immune response to EC. The signature might have important implications for improving the clinical survival of EC patients and provide new strategies for cancer treatment.
Collapse
Affiliation(s)
- Shanshan Tang
- Department of Gynecology, Hangzhou Women's Hospital, No. 369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China
| | - Yiyi Zhuge
- Department of Gynecology, Hangzhou Women's Hospital, No. 369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
35
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Knudsen AM, Rudkjøbing SJ, Sørensen MD, Dahlrot RH, Kristensen BW. Expression and Prognostic Value of the Immune Checkpoints Galectin-9 and PD-L1 in Glioblastomas. J Neuropathol Exp Neurol 2021; 80:541-551. [PMID: 33990845 DOI: 10.1093/jnen/nlab041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunotherapeutic targeting of the PD-1/PD-L1 axis has been widely implemented for treatment of several cancer types but shown disappointing results in glioblastomas (GBMs), potentially due to compensatory mechanisms of other expressed immune checkpoints. Galectin-9 is an immune-checkpoint protein that facilitates T-cell exhaustion and apoptosis and could be a potential target for immune-checkpoint inhibition. A total of 163 GBMs IDH wildtype were immunostained with anti-Galectin-9 and PD-L1 antibodies. Software-based quantitation of immunostainings was performed and co-expression was investigated using double immunofluorescence. Both Galectin-9 and PD-L1 protein expression were found in all 163 tumors and showed a significant positive correlation (p = 0.0017). Galectin-9 expression varied from 0.01% to 32% (mean = 6.61%), while PD-L1 membrane expression ranged from 0.003% to 0.14% (mean = 0.048%) of total tumor area. Expression of Galectin-9 and PD-L1 was found on both microglia/macrophages and tumor cells, and colocalization of both markers was found in 88.3% of tumors. In multivariate analysis, neither Galectin-9 (HR = 0.99), PD-L1 (HR = 1.05), nor their combinations showed prognostic value. Galectin-9 and PD-L1 were expressed in all investigated GBMs and the majority of patients had co-expression, which may provide rationale for multi-targeted immune checkpoint inhibition.
Collapse
Affiliation(s)
- Arnon Møldrup Knudsen
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sisse Josephine Rudkjøbing
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Mia Dahl Sørensen
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Rikke Hedegaard Dahlrot
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Bjarne Winther Kristensen
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
38
|
Zeng F, Li G, Liu X, Zhang K, Huang H, Jiang T, Zhang Y. Plasminogen Activator Urokinase Receptor Implies Immunosuppressive Features and Acts as an Unfavorable Prognostic Biomarker in Glioma. Oncologist 2021; 26:e1460-e1469. [PMID: 33687124 DOI: 10.1002/onco.13750] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical outcomes of patients with glioma are still poor, even after standard treatments, including surgery combined with radiotherapy and chemotherapy. New therapeutic strategies and targets for glioma are urgently needed. Plasminogen activator urokinase receptor (PLAUR), a highly glycosylated integral membrane protein, is reported to modulate plasminogen activation and extracellular matrix degradation in many malignant cancers, but its role in gliomas remains unclear. METHODS Glioma samples with mRNA sequencing data and clinical information from the Chinese Glioma Genome Atlas (n = 310) data set and The Cancer Genome Atlas (n = 611) data set were collected for this study. Analyses using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, Cox regression, and nomograms were conducted to evaluate the prognostic performance of PLAUR expression. Analyses using Metascape, ESTIMATE, EPIC, and immunohistochemical staining were performed to reveal the potential biological mechanism. The statistical analysis and graphical work were completed using SPSS, R language, and GraphPad Prism. RESULTS PLAUR was highly expressed in phenotypes associated with glioma malignancy and could serve as an independent prognostic indicator. Functional analysis revealed the correlation between PLAUR and immune response. Further studies found that samples with higher PLAUR expression were infiltrated with fewer CD8 T cells and many more M2 macrophages. Strong positive correlation was demonstrated between PLAUR expression and some immunosuppressive markers, including immune checkpoints and cytokines. These findings were also confirmed in patient samples. CONCLUSION Our results elucidated the clinical significance and immunosuppressive effect of PLAUR in gliomas, which might provide some clues in glioma immunotherapy. IMPLICATIONS FOR PRACTICE Although the efficacy of immunotherapy has been verified in other tumors, its application in glioma is impeded because of the unique microenvironment. Tumor-associated macrophages, which are particularly abundant in a glioma mass, contribute much to the immunosuppressive microenvironment and offer new opportunities in glioma immunotherapy. The results of this study identified plasminogen activator urokinase receptor (PLAUR) expression as a potential marker to predict the infiltration of macrophages and the status of immune microenvironment in patients with glioma, suggesting that treatment decisions could be based on PLAUR level when administering immunotherapeutics. The soluble PLAUR in blood and other body fluids would make this approach easy to implement in the clinic.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Xiu Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kenan Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Hua Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
39
|
Zhang H, He J, Dai Z, Wang Z, Liang X, He F, Xia Z, Feng S, Cao H, Zhang L, Cheng Q. PDIA5 is Correlated With Immune Infiltration and Predicts Poor Prognosis in Gliomas. Front Immunol 2021; 12:628966. [PMID: 33664747 PMCID: PMC7921737 DOI: 10.3389/fimmu.2021.628966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common and lethal primary malignant tumor of the brain. Routine treatment including surgical resection, chemotherapy, and radiotherapy produced limited therapeutic effect, while immunotherapy targeting the glioma microenvironment has offered a novel therapeutic option. PDIA5 protein is the member of PDI family, which is highly expressed in glioma and participates in glioma progression. Based on large-scale bioinformatics analysis, we discovered that PDIA5 expression level is upregulated in aggressive gliomas, with high PDIA5 expression predicting poor clinical outcomes. We also observed positive correlation between PDIA5 and immune infiltrating cells, immune related pathways, inflammatory activities, and other immune checkpoint members. Patients with high PDIA5 high-expression benefited from immunotherapies. Additionally, immunohistochemistry revealed that PDIA5 and macrophage biomarker CD68 were upregulated in high-grade gliomas, and patients with low PDIA5 level experienced favorable outcomes among 33 glioma patients. Single cell RNA sequencing exhibited that PDIA5 was in high level presenting in neoplastic cells and macrophages. Cell transfection and co-culture of glioma cells and macrophages revealed that PDIA5 in tumor cells mediated macrophages exhausting. Altogether, our findings indicate that PDIA5 overexpression is associated with immune infiltration in gliomas, and may be a promising therapeutic target for glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Wielgat P, Wawrusiewicz-Kurylonek N, Czarnomysy R, Rogowski K, Bielawski K, Car H. The Paired Siglecs in Brain Tumours Therapy: The Immunomodulatory Effect of Dexamethasone and Temozolomide in Human Glioma In Vitro Model. Int J Mol Sci 2021; 22:ijms22041791. [PMID: 33670244 PMCID: PMC7916943 DOI: 10.3390/ijms22041791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The paired sialic acid-binding immunoglobulin like lectins (Siglecs) are characterized by similar cellular distribution and ligand recognition but opposing signalling functions attributed to different intracellular sequences. Since sialic acid—Siglec axis are known to control immune homeostasis, the imbalance between activatory and inhibitory mechanisms of glycan-dependent immune control is considered to promote pathology. The role of sialylation in cancer is described, however, its importance in immune regulation in gliomas is not fully understood. The experimental and clinical observation suggest that dexamethasone (Dex) and temozolomide (TMZ), used in the glioma management, alter the immunity within the tumour microenvironment. Using glioma-microglia/monocytes transwell co-cultures, we investigated modulatory action of Dex/TMZ on paired Siglecs. Based on real-time PCR and flow cytometry, we found changes in SIGLEC genes and their products. These effects were accompanied by altered cytokine profile and immune cells phenotype switching measured by arginases expression. Additionally, the exposure to Dex or TMZ increased the binding of inhibitory Siglec-5 and Siglec-11 fusion proteins to glioma cells. Our study suggests that the therapy-induced modulation of the interplay between sialoglycans and paired Siglecs, dependently on patient’s phenotype, is of particular signification in the immune surveillance in the glioma management and may be useful in glioma patient’s therapy plan verification.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | | | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
41
|
Kazim SF, Martinez E, Hough TJ, Spangler BQ, Bowers CA, Chohan MO. The Survival Benefit of Postoperative Bacterial Infections in Patients With Glioblastoma Multiforme: Myth or Reality? Front Neurol 2021; 12:615593. [PMID: 33613432 PMCID: PMC7894197 DOI: 10.3389/fneur.2021.615593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most common malignant brain tumor, universally carries a poor prognosis. Despite aggressive multimodality treatment, the median survival is ~18-20 months, depending on molecular subgroups. A long history of observations suggests antitumor effects of bacterial infections against malignant tumors. The present review summarizes and critically analyzes the clinical data providing evidence for or against the survival benefit of post-operative bacterial infections in GBM patients. Furthermore, we explore the probable underlying mechanism(s) from basic science studies on the topic. There are plausible explanations from immunobiology for the mechanism of the "favorable effect" of bacterial infections in GBM patients. However, available clinical literature does not provide a definitive association between postoperative bacterial infection and prolonged survival in GBM patients. The presently available, single-/multi-center and national database retrospective case-control studies on the topic provide conflicting results. A prospective randomized study on the subject is clearly not possible. Immunobiology literature supports development of genetically modified bacteria as part of multimodal regimen against GBM.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, United States
| | - Erick Martinez
- School of Medicine, New York Medical College (NYMC), Valhalla, NY, United States
| | - Tyler J Hough
- School of Medicine, University of New Mexico (UNM), Albuquerque, NM, United States
| | - Benjamin Q Spangler
- School of Medicine, University of New Mexico (UNM), Albuquerque, NM, United States
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, United States
| | - Muhammad Omar Chohan
- Department of Neurosurgery, University of Mississippi Medical Center (UMMC), Jackson, MS, United States
| |
Collapse
|
42
|
Ye D, Yuan J, Yue Y, Rubin JB, Chen H. Focused Ultrasound-Enhanced Delivery of Intranasally Administered Anti-Programmed Cell Death-Ligand 1 Antibody to an Intracranial Murine Glioma Model. Pharmaceutics 2021; 13:pharmaceutics13020190. [PMID: 33535531 PMCID: PMC7912734 DOI: 10.3390/pharmaceutics13020190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoint inhibitors have great potential for the treatment of gliomas; however, their therapeutic efficacy has been partially limited by their inability to efficiently cross the blood–brain barrier (BBB). The objective of this study was to evaluate the capability of focused-ultrasound-mediated intranasal brain drug delivery (FUSIN) in achieving the locally enhanced delivery of anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain. Both non-tumor mice and mice transcranially implanted with GL261 glioma cells at the brainstem were used in this study. aPD-L1 was labeled with a near-infrared fluorescence dye (IRDye 800CW) and administered to mice through the nasal route to the brain, followed by focused ultrasound sonication in the presence of systemically injected microbubbles. FUSIN enhanced the accumulation of aPD-L1 at the FUS-targeted brainstem by an average of 4.03- and 3.74-fold compared with intranasal (IN) administration alone in the non-tumor mice and glioma mice, respectively. Immunohistochemistry staining found that aPD-L1 was mainly located within the perivascular spaces after IN delivery, while FUSIN further enhanced the penetration depth and delivery efficiency of aPD-L1 to the brain parenchyma. The delivered aPD-L1 was found to be colocalized with the tumor cells after FUSIN delivery to the brainstem glioma. These findings suggest that FUSIN is a promising technique to enhance the delivery of immune checkpoint inhibitors to gliomas.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (J.Y.); (Y.Y.)
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (J.Y.); (Y.Y.)
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (J.Y.); (Y.Y.)
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Correspondence:
| |
Collapse
|
43
|
Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, Fecci PE. Immune suppression in gliomas. J Neurooncol 2021; 151:3-12. [PMID: 32542437 PMCID: PMC7843555 DOI: 10.1007/s11060-020-03483-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The overall survival in patients with gliomas has not significantly increased in the modern era, despite advances such as immunotherapy. This is in part due to their notorious ability to suppress local and systemic immune responses, severely restricting treatment efficacy. METHODS We have reviewed the preclinical and clinical evidence for immunosuppression seen throughout the disease process in gliomas. This review aims to discuss the various ways that brain tumors, and gliomas in particular, co-opt the body's immune system to evade detection and ensure tumor survival and proliferation. RESULTS A multitude of mechanisms are discussed by which neoplastic cells evade detection and destruction by the immune system. These include tumor-induced T-cell and NK cell dysfunction, regulatory T-cell and myeloid-derived suppressor cell expansion, M2 phenotypic transformation in glioma-associated macrophages/microglia, upregulation of immunosuppressive glioma cell surface factors and cytokines, tumor microenvironment hypoxia, and iatrogenic sequelae of immunosuppressive treatments. CONCLUSIONS Gliomas create a profoundly immunosuppressive environment, both locally within the tumor and systemically. Future research should aim to address these immunosuppressive mechanisms in the effort to generate treatment options with meaningful survival benefits for this patient population.
Collapse
Affiliation(s)
- Matthew M Grabowski
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Eric W Sankey
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Katherine J Ryan
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Selena J Lorrey
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA.
| |
Collapse
|
44
|
Zhang N, Wei L, Ye M, Kang C, You H. Treatment Progress of Immune Checkpoint Blockade Therapy for Glioblastoma. Front Immunol 2020; 11:592612. [PMID: 33329578 PMCID: PMC7734213 DOI: 10.3389/fimmu.2020.592612] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is a highly malignant and aggressive primary brain tumor mostly prevalent in adults and is associated with a very poor prognosis. Moreover, only a few effective treatment regimens are available due to their rapid invasion of the brain parenchyma and resistance to conventional therapy. However, the fast development of cancer immunotherapy and the remarkable survival benefit from immunotherapy in several extracranial tumor types have recently paved the way for numerous interventional studies involving GBM patients. The recent success of checkpoint blockade therapy, targeting immunoinhibitory proteins such as programmed cell death protein-1 and/or cytotoxic T lymphocyte-associated antigen-4, has initiated a paradigm shift in clinical and preclinical investigations, and the use of immunotherapy for solid tumors, which would be a potential breakthrough in the field of drug therapy for the GBM treatment. However clinical trial showed limited benefits for GBM patients. The main reason is drug resistance. This review summarizes the clinical research progress of immune checkpoint molecules and inhibitors, introduces the current research status of immune checkpoint inhibitors in the field of GBM, analyzes the molecular resistance mechanism of checkpoint blockade therapy, proposes corresponding re-sensitive strategies, and describes a reference for the design and development of subsequent clinical studies on immunotherapy for GBM.
Collapse
Affiliation(s)
- Na Zhang
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Meng Ye
- Medical Oncology Department, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Chunsheng Kang
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Laboartory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua You
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Khaddour K, Johanns TM, Ansstas G. The Landscape of Novel Therapeutics and Challenges in Glioblastoma Multiforme: Contemporary State and Future Directions. Pharmaceuticals (Basel) 2020; 13:E389. [PMID: 33202642 PMCID: PMC7696377 DOI: 10.3390/ph13110389] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme is a malignant intracranial neoplasm that constitutes a therapeutic challenge because of the associated high morbidity and mortality given the lack of effective approved medication and aggressive nature of the tumor. However, there has been extensive research recently to address the reasons implicated in the resistant nature of the tumor to pharmaceutical compounds, which have resulted in several clinical trials investigating promising treatment approaches. METHODS We reviewed literature published since 2010 from PUBMED and several annual meeting abstracts through 15 September 2020. Selected articles included those relevant to topics of glioblastoma tumor biology, original basic research, clinical trials, seminal reviews, and meta-analyses. We provide a discussion based on the collected evidence regarding the challenging factors encountered during treatment, and we highlighted the relevant trials of novel therapies including immunotherapy and targeted medication. RESULTS Selected literature revealed four main factors implicated in the low efficacy encountered with investigational treatments which included: (1) blood-brain barrier; (2) immunosuppressive microenvironment; (3) genetic heterogeneity; (4) external factors related to previous systemic treatment that can modulate tumor microenvironment. Investigational therapies discussed in this review were classified as immunotherapy and targeted therapy. Immunotherapy included: (1) immune checkpoint inhibitors; (2) adoptive cell transfer therapy; (3) therapeutic vaccines; (4) oncolytic virus therapy. Targeted therapy included tyrosine kinase inhibitors and other receptor inhibitors. Finally, we provide our perspective on future directions in treatment of glioblastoma. CONCLUSION Despite the limited success in development of effective therapeutics in glioblastoma, many treatment approaches hold potential promise including immunotherapy and novel combinational drugs. Addressing the molecular landscape and resistant immunosuppressive nature of glioblastoma are imperative in further development of effective treatments.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Medical Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| | - Tanner M. Johanns
- Division of Medical Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| | - George Ansstas
- Division of Medical Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
46
|
Stylli SS. Novel Treatment Strategies for Glioblastoma. Cancers (Basel) 2020; 12:cancers12102883. [PMID: 33049911 PMCID: PMC7599818 DOI: 10.3390/cancers12102883] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor in adults. It is a highly invasive disease, making it difficult to achieve a complete surgical resection, resulting in poor prognosis with a median survival of 12–15 months after diagnosis, and less than 5% of patients survive more than 5 years. Surgical, instrument technology, diagnostic and radio/chemotherapeutic strategies have slowly evolved over time, but this has not translated into significant increases in patient survival. The current standard of care for GBM patients involving surgery, radiotherapy, and concomitant chemotherapy temozolomide (known as the Stupp protocol), has only provided a modest increase of 2.5 months in median survival, since the landmark publication in 2005. There has been considerable effort in recent years to increase our knowledge of the molecular landscape of GBM through advances in technology such as next-generation sequencing, which has led to the stratification of the disease into several genetic subtypes. Current treatments are far from satisfactory, and studies investigating acquired/inherent resistance to current therapies, restricted drug delivery, inter/intra-tumoral heterogeneity, drug repurposing and a tumor immune-evasive environment have been the focus of intense research over recent years. While the clinical advancement of GBM therapeutics has seen limited progression compared to other cancers, developments in novel treatment strategies that are being investigated are displaying encouraging signs for combating this disease. This aim of this editorial is to provide a brief overview of a select number of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Stanley S. Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; or
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
47
|
Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett 2020; 496:134-143. [PMID: 33022290 DOI: 10.1016/j.canlet.2020.09.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a high mortality rate. Surgical resection combined with radiotherapy and chemotherapy is the standard treatment for GBM patients, but the 5-year survival rate of patients despite this treatment is low. Immunotherapy has attracted increasing attention in recent years. As the pioneer and the main effector cells of immunotherapy, T cells play a key role in tumor immunotherapy. However, the T cells in GBM microenvironment are inhibited by the highly immunosuppressive environment of GBM, posing huge challenges to T cell-based GBM immunotherapy. This review summarizes the effects of the GBM microenvironment on the infiltration and function of different T-cell subsets and the possible strategies to overcome immunosuppression, and thus enhance the effectiveness of GBM immunotherapy.
Collapse
|
48
|
Immunotherapy for Glioblastoma: Current State, Challenges, and Future Perspectives. Cancers (Basel) 2020; 12:cancers12092334. [PMID: 32824974 PMCID: PMC7565291 DOI: 10.3390/cancers12092334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most lethal intracranial primary malignancy by no optimal treatment option. Cancer immunotherapy has achieved remarkable survival benefits against various advanced tumors, such as melanoma and non-small-cell lung cancer, thus triggering great interest as a new therapeutic strategy for glioblastoma. Moreover, the central nervous system has been rediscovered recently as a region for active immunosurveillance. There are vibrant investigations for successful glioblastoma immunotherapy despite the fact that initial clinical trial results are somewhat disappointing with unique challenges including T-cell dysfunction in the patients. This review will explore the potential of current immunotherapy modalities for glioblastoma treatment, especially focusing on major immune checkpoint inhibitors and the future strategies with novel targets and combo therapies. Immune-related adverse events and clinical challenges in glioblastoma immunotherapy are also summarized. Glioblastoma provides persistent difficulties for immunotherapy with a complex state of patients’ immune dysfunction and a variety of constraints in drug delivery to the central nervous system. However, rational design of combinational regimens and new focuses on myeloid cells and novel targets to circumvent current limitations hold promise to advent truly viable immunotherapy for glioblastoma.
Collapse
|
49
|
Wu X, Hou P, Qiu Y, Wang Q, Lu X. Large-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in Glioma. Onco Targets Ther 2020; 13:7531-7543. [PMID: 32801772 PMCID: PMC7402863 DOI: 10.2147/ott.s257050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Long non-coding RNA DGCR5 plays different roles in different types of cancer. The purpose of this study was to investigate the clinicopathological features, potential biological functions and prognostic significance of DGCR5 in glioma in a large-scale study. Materials and Methods A total of 697 RNA-seq data from The Cancer Genome Atlas (TCGA) and 301 mRNA microarray data from Chinese Glioma Genome Atlas (CGGA) were enrolled in this study. R language was used as the main tool for statistical analysis and graphical work. Results DGCR5 showed a negative correlation with the WHO grade of malignancy in glioma. Specifically, DGCR5 expression was significantly decreased in GBM and IDH wild-type glioma. Gene ontology analysis showed that DGCR5 was predominantly enriched in immune-related biological processes. Additionally, DGCR5 showed a significant correlation with stromal and immune cell populations, inflammatory activities and immune checkpoints. Clinically, patients with low-expression level of DGCR5 exhibited a worse overall survival. Conclusion DGCR5 expression is downregulated in glioma, and low DGCR5 independently predicts worse prognosis in glioma patients. Moreover, DGCR5 is significantly associated with immune response and immune infiltration. These findings suggest that DGCR5 is a promising immunotherapy target and a novel prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Xuechao Wu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Peng Hou
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Yun Qiu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Xiaojie Lu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| |
Collapse
|
50
|
Chen Z, Herting CJ, Ross JL, Gabanic B, Puigdelloses Vallcorba M, Szulzewsky F, Wojciechowicz ML, Cimino PJ, Ezhilarasan R, Sulman EP, Ying M, Ma'ayan A, Read RD, Hambardzumyan D. Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia 2020; 68:2148-2166. [PMID: 32639068 DOI: 10.1002/glia.23883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor. In addition to being genetically heterogeneous, GBMs are also immunologically heterogeneous. However, whether the differences in immune microenvironment are driven by genetic driver mutation is unexplored. By leveraging the versatile RCAS/tv-a somatic gene transfer system, we establish a mouse model for Classical GBM by introducing EGFRvIII expression in Nestin-positive neural stem/progenitor cells in adult mice. Along with our previously published Nf1-silenced and PDGFB-overexpressing models, we investigate the immune microenvironments of the three models of human GBM subtypes by unbiased multiplex profiling. We demonstrate that both the quantity and composition of the microenvironmental myeloid cells are dictated by the genetic driver mutations, closely mimicking what was observed in human GBM subtypes. These myeloid cells express high levels of the immune checkpoint protein PD-L1; however, PD-L1 targeted therapies alone or in combination with irradiation are unable to increase the survival time of tumor-bearing mice regardless of the driver mutations, reflecting the outcomes of recent human trials. Together, these results highlight the critical utility of immunocompetent mouse models for preclinical studies of GBM, making these models indispensable tools for understanding the resistance mechanisms of immune checkpoint blockade in GBM and immune cell-targeting drug discovery.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cameron J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA
| | - James L Ross
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Ben Gabanic
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Montse Puigdelloses Vallcorba
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program of Solid Tumors, Center for the Applied Medical Research (CIMA), Pamplona, Navarra, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Mingyao Ying
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory Usniversity School of Medicine, Atlanta, Georgia, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|