1
|
Anwarkhan S, Koilpillai J, Narayanasamy D. Utilizing Multifaceted Approaches to Target Drug Delivery in the Brain: From Nanoparticles to Biological Therapies. Cureus 2024; 16:e68419. [PMID: 39360065 PMCID: PMC11446487 DOI: 10.7759/cureus.68419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The blood-brain barrier (BBB) poses an important obstacle to treating neurological disorders because it limits the entry of therapeutic agents into the central nervous system (CNS). Surmounting this barrier is crucial for delivering drugs effectively and targeting precise areas of the brain affected by conditions like Parkinson's disease, Alzheimer's disease, and brain tumors. This review examines the diverse strategies employed to enhance brain targeting, including nanotechnology, viral vectors, and biological therapies. Nanoparticles, liposomes, and dendrimers offer promising approaches for encapsulating drugs and facilitating their transport across the BBB. Viral vectors, such as adeno-associated viruses, demonstrate high transfection efficiency for gene therapy applications in CNS diseases. Biological therapies, including stem cell transplantation and neuromodulation techniques, can potentially restore normal cellular function and treat genetic disorders. Challenges such as BBB permeability, safety concerns, and regulatory considerations are discussed, along with future perspectives on precision medicine, noninvasive delivery methods, and biomarker discovery. By addressing these challenges and embracing innovative approaches, the field of brain drug targeting aims to transfer the way that neurological illness is treated and improve patient outcomes.
Collapse
Affiliation(s)
- Sameenkhan Anwarkhan
- Department of Pharmacy, Sri Ramaswamy Memorial (SRM) Institute of Science and Technology, Kattankulathur, IND
| | - Jebastin Koilpillai
- Department of Pharmacy, Sri Ramaswamy Memorial (SRM) Institute of Science and Technology, Kattankulathur, IND
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, Sri Ramaswamy Memorial (SRM) Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
2
|
Qureshi S, Anjum S, Hussain M, Sheikh A, Gupta G, Almoyad MAA, Wahab S, Kesharwani P. A recent insight of applications of gold nanoparticles in glioblastoma multiforme therapy. Int J Pharm 2024; 660:124301. [PMID: 38851411 DOI: 10.1016/j.ijpharm.2024.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapy, particularly targeted therapy of glioblastoma multiforme (GBM), is an up-and-coming field of research that has gained much interest in recent years. GBM is a life-threatening malignant tumour of the brain that currently has a 95 % death rate with an average of 15 months of survival. AuNPs have proven to have wide clinical implications and compelling therapeutic potential in many researches, specifically in GBM treatment. It was found that the reason why AuNPs were highly desired for GBM treatment was due to their unique properties that diversified the applications of AuNPs further to include imaging, diagnosis, and photothermal therapy. These properties include easy synthesis, biocompatibility, and surface functionalization. Various studies also underscored the ability of AuNPs to cross the blood-brain-barrier and selectively target tumour cells while displaying no major safety concerns which resulted in better therapy results. We attempt to bring together some of these studies in this review and provide a comprehensive overview of safety evaluations and current and potential applications of AuNPs in GBM therapy that may result in AuNP-mediated therapy to be the new gold standard for GBM treatment.
Collapse
Affiliation(s)
- Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Samiah Anjum
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzammil Hussain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. https://scholar.google.com/citations?user=DJkvOAQAAAAJ&hl=en
| |
Collapse
|
3
|
Nehru S, Vergaelen M, Hoogenboom R, Sundaramurthy A. Echogenic Gold Nanorod Incorporated Hybrid Poly(2-oxazoline) Nanocapsules for Real-Time Ultrasound/Fluorescent Imaging and Targeted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2024; 7:4471-4485. [PMID: 38887037 DOI: 10.1021/acsabm.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, various nanocarrier systems have been explored to enhance the targeting of cancer cells by improving the ligand-receptor interactions between the nanocarrier and cancer cells for selective cancer cell imaging and targeted delivery of anticancer drugs. Herein, we report multifunctional hydrogen-bonded multilayer nanocapsules functionalized with both folic acid-derived quantum dots (FAQDs) and gold nanorods (AuNRs) for targeted cancer therapy and cancer cell imaging using fluorescence microscopy and medical-range ultrasound imaging systems. The encapsulation efficiency of nanocapsules was found to be 49% for 5-fluorouracil (5-FU). The release percentage reached a plateau at 37% after 1 h at pH 7.4 and increased to 57% after 3 h when the release pH was decreased to pH 5.5 (i.e., the pH of the tumor environment). Under ultrasound irradiation, the release was significantly accelerated, with a total release of 52% and 68% after only 6 min at pH 7.4 and pH 5.5, respectively. While the sonoporation process plays an important role in anticancer activity experiments under ultrasound exposure by generating temporary pores, the targeting ability of FAQDs brings the capsules closer to the cell membrane and improves the cellular uptake of the released drug, thereby increasing local drug concentration. In vitro cytotoxicity experiments with HCT-116 and HEp-2 cells demonstrated anticancer activities of 96% and 98%, respectively. The nanocapsules showed enhanced ultrasound scattering signal intensity and bright spots under ultrasound exposure, most likely caused by high scattering ability and internal reflections of preloaded AuNRs in the interior structure of the nanocapsules. Hence, the demonstrated nanocapsule system not only has the potential to be used as an integrated system for early- stage detection and treatment of cancer cells but also has the ability for live tracking and imaging of cancer cells while undergoing treatment with chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Sangamithra Nehru
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Maarten Vergaelen
- Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Ghent 9000, Belgium
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Ghent 9000, Belgium
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
4
|
Yang Z, Liu Y, Li H, Tang Q, Yang B, Shi Z, Mao Y. Microneedle Patch Delivery of PLCG1-siRNA Efficient Enhanced Temozolomide Therapy for Glioblastoma. Biomacromolecules 2024; 25:655-665. [PMID: 38242535 DOI: 10.1021/acs.biomac.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The blood-brain barrier (BBB) and drug resistance present challenges for chemotherapy of glioblastoma (GBM). A microneedle (MN) patch with excellent biocompatibility and biodegradability was designed to bypass the BBB and release temozolomide (TMZ) and PLCG1-siRNA directly into the tumor site for synergistic treatment of GBM. The codelivery of TMZ and PLCG1-siRNA enhanced DNA damage and apoptosis. The potential mechanism behind this enhancement is to knockdown of PLCG1 expression, which positively regulates the expression of signal transducer and activator of transcription 3 genes, thereby preventing DNA repair and enhancing the sensitivity of GBM to TMZ. The MN patch enables long-term sustainable drug release through in situ implantation and increases local drug concentrations in diseased areas, significantly extending mouse survival time compared to other drug treatment groups. MN drug delivery provides a platform for the combination treatment of GBM and other central nervous system diseases.
Collapse
Affiliation(s)
- Zhipeng Yang
- Institute of Biomedical Engineering and Technology, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Yanjie Liu
- Henan University of Chinese Medicine, Zhengzhou 200433 Henan, China
| | - Haoyuan Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Mao
- Institute of Biomedical Engineering and Technology, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
6
|
Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Semin Cancer Biol 2022; 86:1143-1157. [PMID: 34182141 PMCID: PMC8710185 DOI: 10.1016/j.semcancer.2021.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
The intentional use of viruses for cancer therapy dates back over a century. As viruses are inherently immunogenic and naturally optimized delivery vehicles, repurposing viruses for drug delivery, tumor antigen presentation, or selective replication in cancer cells represents a simple and elegant approach to cancer treatment. While early virotherapy was fraught with harsh side effects and low response rates, virus-based therapies have recently seen a resurgence due to newfound abilities to engineer and tune oncolytic viruses, virus-like particles, and virus-mimicking nanoparticles for improved safety and efficacy. However, despite their great potential, very few virus-based therapies have made it through clinical trials. In this review, we present an overview of virus-inspired approaches for cancer therapy, discuss engineering strategies to enhance their mechanisms of action, and highlight their application for overcoming the challenges of traditional cancer therapies.
Collapse
Affiliation(s)
- Xiao Yin Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trang Hoang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
7
|
Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The greatest obstacle to using drugs to treat brain tumors is the blood-brain barrier (BBB), making it difficult for conventional drug molecules to enter the brain. Therefore, how to safely and effectively penetrate the BBB to achieve targeted drug delivery to brain tumors has been a challenging research problem. With the intensive research in micro- and nanotechnology in recent years, nano drug-targeted delivery technologies have shown great potential to overcome this challenge, such as inorganic nanocarriers, organic polymer-carriers, liposomes, and biobased carriers, which can be designed in different sizes, shapes, and surface functional groups to enhance their ability to penetrate the BBB and targeted drug delivery for brain tumors. In this review, the composition and overcoming patterns of the BBB are detailed, and then the hot research topics of drug delivery carriers for brain tumors in recent years are summarized, and their mechanisms of action on the BBB and the factors affecting drug delivery are described in detail, and the effectiveness of targeted therapy for brain tumors is evaluated. Finally, the challenges and dilemmas in developing brain tumor drug delivery systems are discussed, which will be promising in the future for targeted drug delivery to brain tumors based on micro-nanocarriers technology.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Youyuan Shi
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jingzhen Jiang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chan Li
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hengrui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xinhui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
8
|
Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022; 14:pharmaceutics14081697. [PMID: 36015322 PMCID: PMC9415007 DOI: 10.3390/pharmaceutics14081697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Aggressive glioblastoma (GBM) has no known treatment as a primary brain tumor. Since the cancer is so heterogeneous, an immunosuppressive tumor microenvironment (TME) exists, and the blood–brain barrier (BBB) prevents chemotherapeutic chemicals from reaching the central nervous system (CNS), therapeutic success for GBM has been restricted. Drug delivery based on nanocarriers and nanotechnology has the potential to be a handy tool in the continuing effort to combat the challenges of treating GBM. There are various new therapies being tested to extend survival time. Maximizing therapeutic effectiveness necessitates using many treatment modalities at once. In the fight against GBM, combination treatments outperform individual ones. Combination therapies may be enhanced by using nanotechnology-based delivery techniques. Nano-chemotherapy, nano-chemotherapy–radiation, nano-chemotherapy–phototherapy, and nano-chemotherapy–immunotherapy for GBM are the focus of the current review to shed light on the current status of innovative designs.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zahra Talaie
- School of Biology, Nour Danesh Institute of Higher Education, Isfahan 84156-83111, Iran
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
9
|
Chew BC, Liew FF, Tan HW, Chung I. Chemical Advances in Therapeutic Application of Exosomes and Liposomes. Curr Med Chem 2022; 29:4445-4473. [PMID: 35189798 DOI: 10.2174/0929867329666220221094044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Exosomes and liposomes are vesicular nanoparticles that can encapsulate functional cargo. The chemical similarities between naturally occurring exosomes and synthetic liposomes have accelerated the development of exosome mimetics as a therapeutic drug delivery platform under physiological and pathological environments. To maximise the applications of exosomes and liposomes in the clinical setting, it is essential to look into their basic chemical properties and utilise these characteristics to optimise the preparation, loading, modification and hybridisation. This review summarises the chemical and biological properties of both exosomal and liposomal systems as well as some of the challenges related to their production and application. This article concludes with a discussion on potential perspectives for the integration of exosomal and liposomal technologies in mapping better approaches for their biomedical use, especially in therapeutics.
Collapse
Affiliation(s)
- Boon Cheng Chew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Science, Faculty of Dentistry, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Hsiao Wei Tan
- Institute of Research Management and Services, Research and Innovation Management Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Rahimifard M, Haghi-Aminjan H, Hadjighassem M, Pourahmad Jaktaji R, Bagheri Z, Azami Movahed M, Zarghi A, Pourahmad J. Assessment of cytotoxic effects of new derivatives of pyrazino[1,2-a] benzimidazole on isolated human glioblastoma cells and mitochondria. Life Sci 2021; 286:120022. [PMID: 34626606 DOI: 10.1016/j.lfs.2021.120022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
AIMS Glioblastoma multiforme (GBM) is a highly devastating malignant brain tumor with poor pharmacotherapy. Based on COX-2 inhibitory effects in preventing cancer progression, new pyrazino[1,2-a]benzimidazole derivatives were assessed on isolated human GBM cells. MAIN METHODS In this study, firstly, primary culture of astrocytes from human GBM samples was prepared and exposed to 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) for finding their half-maximal inhibitory concentration (IC50). In the following, in two phases, cell apoptosis pathway and mitochondrial markers were investigated on GBM and also HEK293 cells (as non-cancerous normal cells). KEY FINDINGS The MTT results represented a remarkable selective cytotoxic effect of both L1 and L2 on GBM cells, and interestingly not on normal cells. After 48 h, IC50 of L1 and L2 were calculated as 13 μM and 85 μM, respectively. Annexin/PI staining showed that L1 and L2 induce apoptosis in GBM cells, and caspase measurement showed that apoptosis occurs through mitochondrial signaling. In the clonogenic assay, GBM cells formed more paraclones and fewer holoclones after treating with L1 and L2. L1 and L2 also selectively enhanced mitochondrial damaged markers, including reactive oxygen species (ROS) formation, and mitochondrial swelling, decreased mitochondrial membrane potential (MMP) and cytochrome c release in isolated cancerous GBM mitochondria. SIGNIFICANCE Our findings on human primary astrocyte cells illustrated that L1 and L2 compounds, with COX-2 inhibitory effect, through the intrinsic pathway of apoptosis concerning mitochondrial damage enhancement have therapeutic potentials on GBM.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Faculty of Pharmacy, Department of Pharmacology/Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang J, Zhou M, Chen F, Liu X, Gao J, Wang W, Wang H, Yu H. Stimuli-Sheddable Nanomedicine Overcoming Pathophysiological Barriers for Potentiating Immunotherapy of Cancer. J Biomed Nanotechnol 2021; 17:1486-1509. [PMID: 34544528 DOI: 10.1166/jbn.2021.3134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immunotherapy displays potent potential for clinical cancer management by activating the protective immune response; however, the microenvironment of the immunosuppressive tumor restricts the efficiency of immunotherapies. Along with the complex pathophysiological barrier of the solid tumors, successful immunotherapeutic delivery remains a formidable challenge for conventional nanomedicine. Stimuli-sheddable nano vectors may facilitate the delivery of cargoes to tumors with minimal premature cargo leakage in blood circulation while enhancing the tumor penetration of nanomedicines by deshielding the polyethylene glycol (PEG) corona upon endogenous activity such as acidity, enzymes and glutathione, or external stimuli, such as laser irradiation. Throughout this study, researchers overviewed the recent advances of nanomedicine-based cancer immunotherapy using the stimuli-responsive deshielding nano vectors, which allowed researchers to integrate multiple therapeutic regimens for inducing immunogenic cell death. This aided in blocking the immune checkpoints, repolarizing the macrophages, and regulating the kynurenine metabolism. Furthermore, researchers discussed the critical issues in the development of stimuli-sheddable nanoimmunodulators, primarily aimed at speeding up their clinical translation. Finally, researchers provided novel perspectives for improving cancer management with the stimuli-sheddable nanomedicine.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Chemistry and Chemical Engineering, Inner Magnolia University, Huhhot, 010021, China
| | - Mengxue Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jin Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Inner Magnolia University, Huhhot, 010021, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
12
|
Zhao X, Ye Y, Ge S, Sun P, Yu P. Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Curr Top Med Chem 2021; 20:2762-2776. [PMID: 32851962 DOI: 10.2174/1568026620666200826122402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Yun Ye
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Pingping Sun
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ping Yu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
13
|
Fan Y, Cui Y, Hao W, Chen M, Liu Q, Wang Y, Yang M, Li Z, Gong W, Song S, Yang Y, Gao C. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact Mater 2021; 6:4402-4414. [PMID: 33997516 PMCID: PMC8111096 DOI: 10.1016/j.bioactmat.2021.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Nanosuspensions, as a new drug delivery system for insoluble drugs, are only composed of a drug and a small amount of stabilizer, which is dispersed in an aqueous solution with high drug-loading, small particle size, high dispersion, and large specific surface area. It can significantly improve the dissolution, bioavailability, and efficacy of insoluble drugs. In this study, paclitaxel nanosuspensions ((PTX)NS) were prepared by an ultrasonic precipitation method, with the characteristics of simple preparation and easy repetition. With the help of a homologous targeting mechanism, a kind of glioma C6 cancer cell membrane (CCM)-coated (PTX)NS was developed and modified with DWSW peptide to obtain DWSW-CCM-(PTX)NS with the functions of BBB penetration and tumor targeting. The results showed that the cancer cell membrane could effectively camouflage the nanosuspensions so that it was not cleared by the immune system and could cross the blood-brain-barrier (BBB) and selectively target tumor tissues. Cell uptake experiments and in vivo imaging confirmed that the uptake of DWSW-CCM-(PTX)NS by tumor cells and the distribution in intracranial gliomas increased. Cytotoxicity test and in vivo anti-glioma studies showed that DWSW-CCM-(PTX)NS could significantly inhibit the growth of glioma cells and significantly prolong the survival time of glioma-bearing mice. Finally, the cancer cell membrane coating endowed the nanosuspensions with the biological properties of homologous adhesion and immune escape. This study provides an integrated solution for improving the targeting of nanosuspensions and demonstrates the encouraging potential of biomimetic nanosuspensions applicable to tumor therapy. Paclitaxel nanosuspensions with high drug-loading and without carrier. Biomimetic nanosuspensions wrapped by peptide-modified cancer cell membranes. Penetrate BBB and BBTB to transport drugs to glioma. Dual effects of active and homology targeting improve therapeutic efficiency.
Collapse
Affiliation(s)
- Yueyue Fan
- College of Pharmacy, Henan University, Kaifeng, 475000, PR China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yuexin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Mengyu Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Qianqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Shiyong Song
- College of Pharmacy, Henan University, Kaifeng, 475000, PR China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Chunsheng Gao
- College of Pharmacy, Henan University, Kaifeng, 475000, PR China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| |
Collapse
|
14
|
Shlapakova TI, Tyagunova EE, Kostin RK, Danilova DA. Targeted Antitumor Drug Delivery to Glioblastoma Multiforme Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Reddy S, Tatiparti K, Sau S, Iyer AK. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today 2021; 26:1944-1952. [PMID: 33865978 DOI: 10.1016/j.drudis.2021.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/24/2021] [Accepted: 04/08/2021] [Indexed: 02/09/2023]
Abstract
Gliomas constitute about 80% of brain tumors and have a meager two-year survival rate. The treatment options available are very few because of poor prognosis and a lack of targeted nanodelivery systems that can cross the blood-brain barrier (BBB) and the blood-tumor barrier. This short review attempts to clarify the challenges for delivery systems designed to cross the BBB, and provides a brief description of the different types of targeted nanodelivery system that have shown potential for success in delivering drugs to the brain. Further, this review describes the most recent studies that have developed nanoparticles for brain delivery in the past five years. We also provide an insight into the most recent clinical trials designed to assess the efficacy of these nanodelivery systems for glioma.
Collapse
Affiliation(s)
- Shriya Reddy
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Northville High School, Northville, MI 48168, USA
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Dallet L, Stanicki D, Voisin P, Miraux S, Ribot EJ. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci Rep 2021; 11:3286. [PMID: 33558583 PMCID: PMC7870900 DOI: 10.1038/s41598-021-82095-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Iron oxide particles (IOP) are commonly used for Cellular Magnetic Resonance Imaging (MRI) and in combination with several treatments, like Magnetic Fluid Hyperthermia (MFH), due to the rise in temperature they provoke under an Alternating Magnetic Field (AMF). Micrometric IOP have a high sensitivity of detection. Nevertheless, little is known about their internalization processes or their potential heat power. Two micrometric commercial IOP (from Bangs Laboratories and Chemicell) were characterized by Transmission Electron Microscopy (TEM) and their endocytic pathways into glioma cells were analyzed. Their Specific Absorption Rate (SAR) and cytotoxicity were evaluated using a commercial AMF inductor. T2-weighted imaging was used to monitor tumor growth in vivo after MFH treatment in mice. The two micron-sized IOP had similar structures and r2 relaxivities (100 mM-1 s-1) but involved different endocytic pathways. Only ScreenMAG particles generated a significant rise in temperature following AMF (SAR = 113 W g-1 Fe). After 1 h of AMF exposure, 60% of ScreenMAG-labeled cells died. Translated to a glioma model, 89% of mice responded to the treatment with smaller tumor volume 42 days post-implantation. Micrometric particles were investigated from their characterization to their intracellular internalization pathways and applied in one in vivo cancer treatment, i.e. MFH.
Collapse
Affiliation(s)
- Laurence Dallet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000, Mons, Belgium
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
17
|
Poonaki E, Ariakia F, Jalili-Nik M, Shafiee Ardestani M, Tondro G, Samini F, Ghasemi S, Sahab-Negah S, Gorji A. Targeting BMI-1 with PLGA–PEG nanoparticle-containing PTC209 modulates the behavior of human glioblastoma stem cells and cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00078-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractDespite advances in glioblastoma (GBM) treatments, current approaches have failed to improve the overall survival of patients. The oncogene BMI-1, a core member of the polycomb group proteins, is a potential novel therapeutic target for GBM. To enhance the efficacy and reduce the toxicity, PTC209, a BMI-1 inhibitor, was loaded into a PLGA–PEG nanoparticle conjugated with CD133 antibody (Nano-PTC209) and its effect on the behavior of human GBM stem-like cells (GSCs) and the human glioblastoma cell line (U87MG) was assessed. Nano-PTC209 has a diameter of ~ 75 nm with efficient drug loading and controlled release. The IC50 values of Nano-PTC209 for GSCs and U87MG cells were considerably lower than PTC209. Nano-PTC209 significantly decreased the viability of both GSCs and U87MG cells in a dose-dependent manner and caused a significant enhancement of apoptosis and p53 levels as well as inhibition of AKT and JNK signaling pathways. Furthermore, Nano-PTC209 significantly inhibited the migration ability, decreased the activity of metalloproteinase-2 and -9, and increased the generation of reactive oxygen species in both GSCs and U87MG cells. Our data indicate that PLGA–PEG nanoparticle conjugated with CD133 antibody could be an ideal nanocarrier to deliver PTC209 and effectively target BMI-1 for potential approaches in the treatment of GBM.
Collapse
|
18
|
Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res (Stuttg) 2020; 71:122-137. [DOI: 10.1055/a-1296-7870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.
Collapse
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Md. Akram Minhaj
- Department of Pharmacology, Maulana Azad Medical College and Hospital, New Delhi, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Kingdom of Saudi Arabia (KSA)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Abstract
Although surgical resection of the solid tumor component of glioblastoma has been shown to provide a survival advantage, it will never be a curative procedure. Yet, systemically applied adjuvants (radiation therapy and chemotherapy) also are not curative and their options are limited by the inability of most agents to cross the blood-brain barrier. Direct delivery of adjuvant therapies during a surgical procedure potentially provides an approach to bypass the blood-brain barrier and effectively treat residual tumor cells. This article summarizes the approaches and therapeutics that have been evaluated to date, and challenges that remain to be overcome.
Collapse
|
20
|
Cui Y, Sun J, Hao W, Chen M, Wang Y, Xu F, Gao C. Dual-Target Peptide-Modified Erythrocyte Membrane-Enveloped PLGA Nanoparticles for the Treatment of Glioma. Front Oncol 2020; 10:563938. [PMID: 33194638 PMCID: PMC7609867 DOI: 10.3389/fonc.2020.563938] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Penetration of the blood–brain barrier (BBB) and the blood–brain tumor barrier (BBTB) remains a significant challenge for the delivery of drugs in the treatment of glioma. Therefore, the development of targeted preparations with the ability to penetrate the BBB and BBTB, and target gliomas, is an important approach if we are to improve the efficacy of glioma treatment. In the current study, an active targeting preparation based on PLGA nanoparticles coated with erythrocyte membranes (RBCNPs) and dual-modified with DWSW and NGR peptide ligands (DWSW/NGR-RBCNPs). Euphorbia factor L1 (EFL1) extracted from euphorbiae semen was used as the model drug. The final nanoparticles were characterized by in vivo and in vitro tests. In vitro results showed that EFL1-loaded DWSW/NGR-RBCNPs were taken up by cells and had the ability to penetrate the BBB and BBTB and produce cytotoxic effects. Furthermore, in vivo studies in mice showed that when injected intravenously, these specialized NPs could enter the brain, target tumor tissue, and significantly extend life span. The results showed that dual-targeting EFL1-loaded DWSW/NGR-RBCNPs have significant potential as a nanotherapeutic tool for the treatment of brain glioma.
Collapse
Affiliation(s)
- Yuexin Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Mengyu Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fenghua Xu
- Department of Pharmacy, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
21
|
Groo AC, Hedir S, Since M, Brotin E, Weiswald LB, Paysant H, Nee G, Coolzaet M, Goux D, Delépée R, Freret T, Poulain L, Voisin-Chiret AS, Malzert-Fréon A. Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. Int J Pharm 2020; 587:119655. [PMID: 32712252 DOI: 10.1016/j.ijpharm.2020.119655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pyridoclax is an original lead, recently identified as very promising in treatment of chemoresistant ovarian cancers. To correct the unfavorable intrinsic physico-chemical properties of this BCS II drug, a formulation strategy was implied in the drug discovery step. Pyridoclax-loaded nanoemulsions (NEs) were developed to permit its preclinical evaluation. RESULTS The resulting nanoemulsions displayed a mean size of about 100 nm and a high encapsulation efficiency (>95%) at a drug loading of 2 wt%, enabling a 1,000-fold increase of the Pyridoclax apparent solubility. NEs have enabled a sustained release of the drug as assayed by a dialysis bag method. In addition, anti-tumor effects of the Pyridoclax-loaded nanoemulsions (PNEs) showed a 2.5-fold higher activity on chemoresistant ovarian cancer cells than free Pyridoclax. This effect was confirmed by a drastic increase of caspase 3/7 activation from 10 µM PNEs, as newly objectified by real time apoptose imaging. The Pyridoclax bioavailability was kept unchanged after encapsulation in nanoemulsions as determined in a mice model after oral administration. CONCLUSION Thus, NEs should permit valuable Pyridoclax oral administration, and valorization of this promising anticancer drug by maintaining its original anticancer activity, and by reducing the Pyridoclax therapeutic concentration.
Collapse
Affiliation(s)
- A C Groo
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.
| | - S Hedir
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - M Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France
| | - E Brotin
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France; Normandie Univ, UNICAEN, SF4206 Icore, ImpedanCELL Platform, 14000 Caen, France
| | - L-B Weiswald
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - H Paysant
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - G Nee
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - M Coolzaet
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - D Goux
- Normandie Univ, UNICAEN, CMAbio(3), SF4206 Icore, 14000 Caen, France
| | - R Delépée
- Normandie Univ, UNICAEN, PRISMM Platform, SF4206 ICORE, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - T Freret
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - L Poulain
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | | | | |
Collapse
|
22
|
Teng CW, Amirshaghaghi A, Cho SS, Cai SS, De Ravin E, Singh Y, Miller J, Sheikh S, Delikatny E, Cheng Z, Busch TM, Dorsey JF, Singhal S, Tsourkas A, Lee JYK. Combined fluorescence-guided surgery and photodynamic therapy for glioblastoma multiforme using cyanine and chlorin nanocluster. J Neurooncol 2020; 149:243-252. [PMID: 32914293 PMCID: PMC7720701 DOI: 10.1007/s11060-020-03618-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary intracranial malignancy; survival can be improved by maximizing the extent-of-resection. METHODS A near-infrared fluorophore (Indocyanine-Green, ICG) was combined with a photosensitizer (Chlorin-e6, Ce6) on the surface of superparamagnetic-iron-oxide-nanoparticles (SPIONs), all FDA-approved for clinical use, yielding a nanocluster (ICS) using a microemulsion. The physical-chemical properties of the ICS were systematically evaluated. Efficacy of photodynamic therapy (PDT) was evaluated in vitro with GL261 cells and in vivo in a subtotal resection trial using a syngeneic flank tumor model. NIR imaging properties of ICS were evaluated in both a flank and an intracranial GBM model. RESULTS ICS demonstrated high ICG and Ce6 encapsulation efficiency, high payload capacity, and chemical stability in physiologic conditions. In vitro cell studies demonstrated significant PDT-induced cytotoxicity using ICS. Preclinical animal studies demonstrated that the nanoclusters can be detected through NIR imaging in both flank and intracranial GBM tumors (ex: 745 nm, em: 800 nm; mean signal-to-background 8.5 ± 0.6). In the flank residual tumor PDT trial, subjects treated with PDT demonstrated significantly enhanced local control of recurrent neoplasm starting on postoperative day 8 (23.1 mm3 vs 150.5 mm3, p = 0.045), and the treatment effect amplified to final mean volumes of 220.4 mm3 vs 806.1 mm3 on day 23 (p = 0.0055). CONCLUSION A multimodal theragnostic agent comprised solely of FDA-approved components was developed to couple optical imaging and PDT. The findings demonstrated evidence for the potential theragnostic benefit of ICS in surgical oncology that is conducive to clinical integration.
Collapse
Affiliation(s)
- Clare W Teng
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Steve S Cho
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuting S Cai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma De Ravin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yash Singh
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saad Sheikh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA.
| |
Collapse
|
23
|
Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Cheng ZJ, Cai HQ, Zhang MJ, Zhong Y, He J, Yuan Q, Hao JJ, Wang MR, Wan JH. High S phase kinase-associated protein 2 expression is a potential prognostic biomarker for glioma. Oncol Lett 2020; 20:2788-2796. [PMID: 32782596 PMCID: PMC7400960 DOI: 10.3892/ol.2020.11818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
S phase kinase-associated protein 2 (SKP2), a substrate recognizing protein, serves an important role in promoting cell cycle progression through ubiquitination and degradation of cell cycle inhibitors. In the present study, the clinical significance of SKP2 in gliomas was studied; 395 glioma specimens and 20 non-neoplastic tissues were collected and immunohistochemical analysis was performed. χ2 test was used to assess the associations between SKP2 expression and clinical parameters. Overall survival (OS) curves were plotted according to the Kaplan-Meier method. In the tested glioma samples, SKP2 expression was mainly observed in glioblastomas (GBMs). Survival analysis demonstrated that the overall survival time of the high SKP2 expression group was lower compared with the low SKP2 expression group (median OS, 10.04 months vs. 16.50 months; P=0.003). Moreover, SKP2 was independently associated with an unfavorable prognosis in GBMs. In addition, the expression of SKP2 was associated with the expression of phosphorylated retinoblastoma protein and the epidermal growth factor receptor. A combination of SKP2 expression along with isocitrate dehydrogenase 1 (IDH1) mutations and telomerase reverse transcriptase (TERT) promoter mutations was used to classify glioma patients for survival analysis. Patients with low SKP2 expression, IDH1 mutation and wild-type TERT promoter demonstrated the longest survival time. The findings of the present study, indicate that SKP2 is a potential prognostic biomarker in patients with GBMs.
Collapse
Affiliation(s)
- Zhi-Jian Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Min-Jie Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yi Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jie He
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qing Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jia-Jie Hao
- Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ming-Rong Wang
- Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
25
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
26
|
Cursaru LM, Piticescu RM, Dragut DV, Morel R, Thébault C, Carrière M, Joisten H, Dieny B. One-Step Soft Chemical Synthesis of Magnetite Nanoparticles under Inert Gas Atmosphere. Magnetic Properties and In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1500. [PMID: 32751692 PMCID: PMC7466389 DOI: 10.3390/nano10081500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Iron oxide nanoparticles have received remarkable attention in different applications. For biomedical applications, they need to possess suitable core size, acceptable hydrodynamic diameter, high saturation magnetization, and reduced toxicity. Our aim is to control the synthesis parameters of nanostructured iron oxides in order to obtain magnetite nanoparticles in a single step, in environmentally friendly conditions, under inert gas atmosphere. The physical-chemical, structural, magnetic, and biocompatible properties of magnetite prepared by hydrothermal method in different temperature and pressure conditions have been explored. Magnetite formation has been proved by Fourier-transform infrared spectroscopy and X-ray diffraction characterization. It has been found that crystallite size increases with pressure and temperature increase, while hydrodynamic diameter is influenced by temperature. Magnetic measurements indicated that the magnetic core of particles synthesized at high temperature is larger, in accordance with the crystallite size analysis. Particles synthesized at 100 °C have nearly identical magnetic moments, at 20 × 103 μB, corresponding to magnetic cores of 10-11 nm, while the particles synthesized at 200 °C show slightly higher magnetic moments (25 × 103 μB) and larger magnetic cores (13 nm). Viability test results revealed that the particles show only minor intrinsic toxicity, meaning that these particles could be suited for biomedical applications.
Collapse
Affiliation(s)
- Laura Madalina Cursaru
- National R & D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, 077145 Pantelimon, Ilfov, Romania;
| | - Roxana Mioara Piticescu
- National R & D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, 077145 Pantelimon, Ilfov, Romania;
| | - Dumitru Valentin Dragut
- National R & D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, 077145 Pantelimon, Ilfov, Romania;
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Spintec , 38000 Grenoble, France; (R.M.); (C.T.); (H.J.); (B.D.)
| | - Caroline Thébault
- Univ. Grenoble Alpes, CEA, CNRS, Spintec , 38000 Grenoble, France; (R.M.); (C.T.); (H.J.); (B.D.)
| | - Marie Carrière
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France;
| | - Hélène Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Spintec , 38000 Grenoble, France; (R.M.); (C.T.); (H.J.); (B.D.)
- Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
| | - Bernard Dieny
- Univ. Grenoble Alpes, CEA, CNRS, Spintec , 38000 Grenoble, France; (R.M.); (C.T.); (H.J.); (B.D.)
| |
Collapse
|
27
|
Sahli F, Courcelle M, Palama T, Djaker N, Savarin P, Spadavecchia J. Temozolomide, Gemcitabine, and Decitabine Hybrid Nanoconjugates: From Design to Proof-of-Concept (PoC) of Synergies toward the Understanding of Drug Impact on Human Glioblastoma Cells. J Med Chem 2020; 63:7410-7421. [PMID: 32524814 DOI: 10.1021/acs.jmedchem.0c00694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper emphasizes the synthesis of novel hybrid drug nanoparticles (Hyb-D-AuNPs) based on gold-temozolomide (TMZ) complexes combined with gemcitabine (GEM) and decitabine (DAC) to improve the efficiency and reduce the resistance of U87 malignant glial cells against TMZ. All products were evaluated by several spectroscopic techniques (Raman, UV-Vis) and transmission electron microscopy (TEM). Besides, for therapeutic purposes, the effect of these nanoparticles on cell proliferation and toxicity was evaluated, which clearly showed a synergic action of TMZ and GEM. Through the analysis of the exometabolome by nuclear magnetic resonance (NMR), the metabolic changes in the culture medium were measured in glial cells. Moreover, these nanoparticles are especially appropriated to the thermal destruction of cancer in the case of photothermal therapy due to their photothermal heating properties. This study presents an original chemical approach that it could play a central role in the field of nanomedicine, with novel perspectives for the development of new drugs and active targeting in glioblastoma multiforme (GBM) cancer therapy.
Collapse
Affiliation(s)
- Ferdaous Sahli
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Manon Courcelle
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Tony Palama
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Nadia Djaker
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Philippe Savarin
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Jolanda Spadavecchia
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| |
Collapse
|
28
|
Oddone N, Boury F, Garcion E, Grabrucker AM, Martinez MC, Da Ros F, Janaszewska A, Forni F, Vandelli MA, Tosi G, Ruozi B, Duskey JT. Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Front Pharmacol 2020; 11:574. [PMID: 32425795 PMCID: PMC7212708 DOI: 10.3389/fphar.2020.00574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the brain and averages a life expectancy in diagnosed patients of only 15 months. Hence, more effective therapies against this malignancy are urgently needed. Several diseases, including cancer, are featured by high levels of reactive oxygen species (ROS), which are possible GBM hallmarks to target or benefit from. Therefore, the covalent linkage of drugs to ROS-responsive molecules can be exploited aiming for a selective drug release within relevant pathological environments. In this work, we designed a new ROS-responsive prodrug by using Melphalan (MPH) covalently coupled with methoxy polyethylene glycol (mPEG) through a ROS-cleavable group thioketal (TK), demonstrating the capacity to self-assembly into nanosized micelles. Full chemical-physical characterization was conducted on the polymeric-prodrug and proper controls, along with in vitro cytotoxicity assayed on different GBM cell lines and “healthy” astrocyte cells confirming the absence of any cytotoxicity of the prodrug on healthy cells (i.e. astrocytes). These results were compared with the non-ROS responsive counterpart, underlining the anti-tumoral activity of ROS-responsive compared to the non-ROS-responsive prodrug on GBM cells expressing high levels of ROS. On the other hand, the combination treatment with this ROS-responsive prodrug and X-ray irradiation on human GBM cells resulted in an increase of the antitumoral effect, and this might be connected to radiotherapy. Hence, these results represent a starting point for a rationale design of innovative and tailored ROS-responsive prodrugs to be used in GBM therapy and in combination with radiotherapy.
Collapse
Affiliation(s)
- Natalia Oddone
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | | | - Federica Da Ros
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Flavio Forni
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason T Duskey
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Umberto Veronesi Foundation, Milano, Italy
| |
Collapse
|
29
|
Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, Nicolini G. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 2019; 28:115300. [PMID: 31937477 DOI: 10.1016/j.bmc.2019.115300] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
The imidazobenzoxazin-5-thione MV1035, synthesized as a new sodium channel blocker, has been tested on tumoral cells that differ for origin and for expressed NaV pool (U87-MG, H460 and A549). In this paper we focus on the effect of MV1035 in reducing U87 glioblastoma cell line migration and invasiveness. Since the effect of this compound on U87-MG cells seemed not dependent on its sodium channel blocking capability, alternative off-target interaction for MV1035 have been identified using SPILLO-PBSS software. This software performs a structure-based in silico screening on a proteome-wide scale, that allows to identify off-target interactions. Among the top-ranked off-targets of MV1035, we focused on the RNA demethylase ALKBH5 enzyme, known for playing a key role in cancer. In order to prove the effect of MV1035 on ALKBH5 in vitro coincubation of MV1035 and ALKBH5 has been performed demonstrating a consequent increase of N6-methyladenosine (m6A) RNA. To further validate the pathway involving ALKBH5 inhibition by MV1035 in U87-MG reduced migration and invasiveness, we evaluated CD73 as possible downstream protein. CD73 is an extrinsic protein involved in the generation of adenosine and is overexpressed in several tumors including glioblastoma. We have demonstrated that treating U87-MG with MV1035, CD73 protein expression was reduced without altering CD73 transcription. Our results show that MV1035 is able to significantly reduce U87 cell line migration and invasiveness inhibiting ALKBH5, an RNA demethylase that can be considered an interesting target in fighting glioblastoma aggressiveness. Our data encourage to further investigate the MV1035 inhibitory effect on glioblastoma.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy.
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy; SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Giacomo Cislaghi
- SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Mariarosaria Miloso
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Valentina Zuliani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| |
Collapse
|
30
|
Marino A, Camponovo A, Degl'Innocenti A, Bartolucci M, Tapeinos C, Martinelli C, De Pasquale D, Santoro F, Mollo V, Arai S, Suzuki M, Harada Y, Petretto A, Ciofani G. Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. NANOSCALE 2019; 11:21227-21248. [PMID: 31663592 PMCID: PMC6867905 DOI: 10.1039/c9nr07976a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aiming at finding new solutions for fighting glioblastoma multiforme, one of the most aggressive and lethal human cancer, here an in vitro validation of multifunctional nanovectors for drug delivery and hyperthermia therapy is proposed. Hybrid magnetic lipid nanoparticles have been fully characterized and tested on a multi-cellular complex model resembling the tumor microenvironment. Investigations of cancer therapy based on a physical approach (namely hyperthermia) and on a pharmaceutical approach (by exploiting the chemotherapeutic drug temozolomide) have been extensively carried out, by evaluating its antiproliferative and pro-apoptotic effects on 3D models of glioblastoma multiforme. A systematic study of transcytosis and endocytosis mechanisms has been moreover performed with multiple complimentary investigations, besides a detailed description of local temperature increments following hyperthermia application. Finally, an in-depth proteomic analysis corroborated the obtained findings, which can be summarized in the preparation of a versatile, multifunctional, and effective nanoplatform able to overcome the blood-brain barrier and to induce powerful anti-cancer effects on in vitro complex models.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Alice Camponovo
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy. and Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Santoro
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Valentina Mollo
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Satoshi Arai
- Kanazawa University, Nano Life Science Institute (WPI-NanoLSI), Kakuma-Machi, 920-1192 Kanazawa, Japan and Waseda University, Research Institute for Science and Engineering, 3-4-1 Ohkubo, Shinjuku-ku, 169-8555 Tokyo, Japan
| | - Madoka Suzuki
- Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita-Shi, 565-0871 Osaka, Japan and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, 332-0012 Saitama, Japan
| | - Yoshie Harada
- Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita-Shi, 565-0871 Osaka, Japan
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy. and Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
31
|
Del Grosso A, Galliani M, Angella L, Santi M, Tonazzini I, Parlanti G, Signore G, Cecchini M. Brain-targeted enzyme-loaded nanoparticles: A breach through the blood-brain barrier for enzyme replacement therapy in Krabbe disease. SCIENCE ADVANCES 2019; 5:eaax7462. [PMID: 31799395 PMCID: PMC6867879 DOI: 10.1126/sciadv.aax7462] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/19/2019] [Indexed: 05/31/2023]
Abstract
Lysosomal storage disorders (LSDs) result from an enzyme deficiency within lysosomes. The systemic administration of the missing enzyme, however, is not effective in the case of LSDs with central nervous system (CNS)-involvement. Here, an enzyme delivery system based on the encapsulation of cross-linked enzyme aggregates (CLEAs) into poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) functionalized with brain targeting peptides (Ang2, g7 or Tf2) is demonstrated for Krabbe disease, a neurodegenerative LSD caused by galactosylceramidase (GALC) deficiency. We first synthesize and characterize Ang2-, g7- and Tf2-targeted GALC CLEA NPs. We study NP cell trafficking and capability to reinstate enzymatic activity in vitro. Then, we successfully test our formulations in the Twitcher mouse. We report enzymatic activity measurements in the nervous system and in accumulation districts upon intraperitoneal injections, demonstrating activity recovery in the brain up to the unaffected mice level. Together, these results open new therapeutic perspectives for all LSDs with major CNS-involvement.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marianna Galliani
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Center for Nanotechnology Innovation@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lucia Angella
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- Center for Nanotechnology Innovation@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giovanni Signore
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
32
|
Evaluation of Elastin-Like Polypeptides for Tumor Targeted Delivery of Doxorubicin to Glioblastoma. Molecules 2019; 24:molecules24183242. [PMID: 31489879 PMCID: PMC6767252 DOI: 10.3390/molecules24183242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
To increase treatment efficiency for glioblastoma, we have developed a system to selectively deliver chemotherapeutic doxorubicin (Dox) to Glioblastoma (GBM) tumors. This carrier is based on elastin-like polypeptide (ELP), which is soluble at physiological temperatures but undergoes a phase transition and accumulates at tumor sites with externally applied, mild (40–41 °C) hyperthermia. The CPP-ELP-Dox conjugate consists of a cell penetrating peptide (CPP), which facilitates transcytosis through the blood brain barrier and cell entry, and a 6-maleimidocaproyl hydrazone derivative of doxorubicin at the C-terminus of ELP. The acid-sensitive hydrazone linker ensures release of Dox in the lysosomes/endosomes after cellular uptake of the drug conjugate. We have shown that CPP-ELP-Dox effectively inhibits cell proliferation in three GBM cell lines. Both the free drug and CPP-ELP-Dox conjugate exhibited similar in vitro cytotoxicity, although their subcellular localization was considerably different. The Dox conjugate was mainly dispersed in the cytoplasm, while free drug had partial nuclear accumulation in addition to cytoplasmic distribution. The intracellular Dox concentration was increased in the CPP-ELP-Dox cells compared to that in the cells treated with free Dox, which positively correlates with cytotoxic activity. In summary, our findings demonstrate that CPP-ELP-Dox effectively kills GBM cells. Development of such a drug carrier has the potential to greatly improve current therapeutic approaches for GBM by increasing the specificity and efficacy of treatment and reducing cytotoxicity in normal tissues.
Collapse
|
33
|
Marvin CM, Ding S, White RE, Orlova N, Wang Q, Zywot EM, Vickerman BM, Harr L, Tarrant TK, Dayton PA, Lawrence DS. On Command Drug Delivery via Cell-Conveyed Phototherapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901442. [PMID: 31353802 PMCID: PMC6739139 DOI: 10.1002/smll.201901442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Herein, the use of red blood cells (RBCs) as carriers of cytoplasmically interned phototherapeutic agents is described. Photolysis promotes drug release from the RBC carrier thereby providing the means to target specific diseased sites. This strategy is realized with a vitamin B12-taxane conjugate (B12-TAX), in which the drug is linked to the vitamin via a photolabile CoC bond. The conjugate is introduced into mouse RBCs (mRBCs) via a pore-forming/pore-resealing procedure and is cytoplasmically retained due to the membrane impermeability of B12. Photolysis separates the taxane from the B12 cytoplasmic anchor, enabling the drug to exit the RBC carrier. A covalently appended Cy5 antenna sensitizes the conjugate (Cy5-B12-TAX) to far red light, thereby circumventing the intense light absorbing properties of hemoglobin (350-600 nm). Microscopy and imaging flow cytometry reveal that Cy5-B12-TAX-loaded mRBCs act as drug carriers. Furthermore, intravital imaging of mice furnish a real time assessment of circulating phototherapeutic-loaded mRBCs as well as evidence of the targeted photorelease of the taxane upon photolysis. Histopathology confirms that drug release occurs in a well resolved spatiotemporal fashion. Finally, acoustic angiography is employed to assess the consequences of taxane release at the tumor site in Nu/Nu-tumor-bearing mice.
Collapse
Affiliation(s)
- Christina M Marvin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Song Ding
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rachel E White
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Natalia Orlova
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Qunzhao Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Emilia M Zywot
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brianna M Vickerman
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lauren Harr
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC, 27710, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - David S Lawrence
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
34
|
Zanganeh S, Georgala P, Corbo C, Arabi L, Ho JQ, Javdani N, Sepand MR, Cruickshank K, Campesato LF, Weng C, Hemayat S, Andreou C, Alvim R, Hutter G, Rafat M, Mahmoudi M. Immunoengineering in glioblastoma imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1575. [DOI: 10.1002/wnan.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Steven Zanganeh
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Jim Q. Ho
- Albert Einstein College of Medicine Bronx New York
| | - Najme Javdani
- Institute De Recherche Clinique De Montreal Montreal Quebec Canada
| | | | | | | | - Chien‐Huan Weng
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Chrysafis Andreou
- Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus
| | - Ricardo Alvim
- Sloan Kettering Institute for Cancer Research New York New York
| | - Gregor Hutter
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
- Department of Radiation Oncology Vanderbilt University Medical Center Nashville Tennessee
| | - Morteza Mahmoudi
- Precision Health Program Michigan State University East Lansing Michigan
| |
Collapse
|
35
|
Ahmad A, Khan F, Mishra RK, Khan R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J Med Chem 2019; 62:10475-10496. [DOI: 10.1021/acs.jmedchem.9b00511] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Farheen Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| |
Collapse
|
36
|
Ma Z, Hu P, Guo C, Wang D, Zhang X, Chen M, Wang Q, Sun M, Zeng P, Lu F, Sun L, She L, Zhang H, Yao J, Yang F. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy. Int J Nanomedicine 2019; 14:5527-5540. [PMID: 31413561 PMCID: PMC6661377 DOI: 10.2147/ijn.s208649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Nonspecific tumor targeting, potential relapse and metastasis of tumor after treatment are the main barriers in clinical photodynamic therapy (PDT) for cancer, hence, inhibiting relapse and metastasis of tumor is significant issues in clinic. Purpose: In this work, chidamide as a histone deacetylases inhibitor (HADCi) was bound onto a pH-responsive block polymer folate polyethylene glycol-b-poly(aspartic acid) (PEG-b-PAsp) grafted folate (FA-PEG-b-PAsp) to obtain the block polymer folate polyethylene glycol-b-poly(asparaginyl-chidamide) (FA-PEG-b-PAsp-chidamide, FPPC) as multimodal tumor-targeting drug-delivery carrier to inhibiting tumor cell proliferation and tumor metastasis in mice. Methods: Model photosensitizer pyropheophorbide-a (Pha) was encapsulated by FPPC in PBS to form the polymer micelles Pha@FPPC [folate polyethylene glycol-b-poly(asparaginyl-chidamide) micelles encapsulating Pha]. Pha@FPPC was characterized by transmission electron microscope and dynamic light scattering; also, antitumor activity in vivo and in vitro were investigated by determination of cellular ROS level, detection of cell apoptosis and cell cycle arrest, PDT antitumor activity in vivo and histological analysis. Results: With favorable and stable sphere morphology under transmission electron microscope (TEM) (~93.0 nm), Pha@FPPC greatly enhanced the cellular uptake due to its folate-mediated effective endocytosis by mouse melanoma B16-F10 cells and the yield of ROS in tumor cells induced by PDT, and mainly caused necrocytosis and blocked cell growth cycle not only in G2 phase but also in G1/G0 phase after PDT. Pha@FPPC exhibited lower dark cytotoxicity in vitro and a better therapeutic index because of its higher dark cytotoxicity/photocytotoxicity ratio. Moreover, Pha@FPPC not only significantly inhibited the growth of implanted tumor and prolonged the survival time of melanoma-bearing mice due to both its folate-mediated tumor-targeting and selectively accumulation at tumor site by EPR (enhanced permeability and retention)effect as micelle nanoparticles but also remarkably prevented pulmonary metastasis of mice melanoma after PDT compared to free Pha, demonstrating its dual antitumor characteristics of PDT and HDACi. Conclusion: As a folate-mediated and acid-activated chidamide-grafted drug-delivery carrier, FPPC may have great potential to inhibit tumor metastasis in clinical photodynamic treatment for cancer because of its effective and multimodal tumor-targeting performance as photosensitizer vehicle.
Collapse
Affiliation(s)
- Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Pengwei Hu
- Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Changyong Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Min Chen
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Qirong Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Peiyu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Fengkun Lu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lan She
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| |
Collapse
|
37
|
Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. NANOMATERIALS 2019; 9:nano9040638. [PMID: 31010180 PMCID: PMC6523119 DOI: 10.3390/nano9040638] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Many therapeutically active molecules are non-soluble in aqueous systems, chemically and biologically fragile or present severe side effects. Lipid-based nanoparticle (LBNP) systems represent one of the most promising colloidal carriers for bioactive organic molecules. Their current application in oncology has revolutionized cancer treatment by improving the antitumor activity of several chemotherapeutic agents. LBNPs advantages include high temporal and thermal stability, high loading capacity, ease of preparation, low production costs, and large-scale industrial production since they can be prepared from natural sources. Moreover, the association of chemotherapeutic agents with lipid nanoparticles reduces active therapeutic dose and toxicity, decreases drug resistance and increases drug levels in tumor tissue by decreasing them in healthy tissue. LBNPs have been extensively assayed in in vitro cancer therapy but also in vivo, with promising results in some clinical trials. This review summarizes the types of LBNPs that have been developed in recent years and the main results when applied in cancer treatment, including essential assays in patients.
Collapse
|
38
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
39
|
Wang Y, Liu X, Guan G, Zhao W, Zhuang M. A Risk Classification System With Five-Gene for Survival Prediction of Glioblastoma Patients. Front Neurol 2019; 10:745. [PMID: 31379707 PMCID: PMC6646669 DOI: 10.3389/fneur.2019.00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: Glioblastoma (GBM) is the most common and fatal primary brain tumor in adults. It is necessary to identify novel and effective biomarkers or risk signatures for GBM patients. Methods: Differentially expressed genes (DEGs) between GBM and low-grade glioma (LGG) in TCGA samples were screened out and weight correlation network analysis (WGCNA) was performed to confirm WHO grade-related genes. Five genes were selected via multivariate Cox proportional hazards regression analysis and were used to construct a risk signature. A nomogram composed of the risk signature and clinical characters (age, radiotherapy, and chemotherapy experience) was established to predict 1, 3, 5-year survival rate for GBM patients. Results: One hundred ninety-four DEGs in blue gene module were found to be positively related to WHO grade via WGCNA. Five genes (DES, RANBP17, CLEC5A, HOXC11, POSTN) were selected to construct a risk signature for GBM via R language. This risk signature was identified to independently predict the outcome of GBM patients, as well as stratified by IDH1 status, MGMT promoter status, and radio-chemotherapy. The nomogram was established which combined the risk signature with clinical factors. The results of c-index, ROC curve and calibration plot revealed the nomogram showing a good accuracy for predicting 1, 3, or 5-year survival of GBM patients. Conclusion: The risk signature with five genes could serve as an independent factor for predicting the prognosis of patients with GBM. Moreover, the nomogram with the risk signature and clinical traits proved to perform better for predicting 1, 3, 5-year survival rate.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xin Liu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Weijiang Zhao
| | - Minghua Zhuang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Minghua Zhuang
| |
Collapse
|