1
|
Gáspár R, Nógrádi-Halmi D, Demján V, Diószegi P, Igaz N, Vincze A, Pipicz M, Kiricsi M, Vécsei L, Csont T. Kynurenic acid protects against ischemia/reperfusion injury by modulating apoptosis in cardiomyocytes. Apoptosis 2024; 29:1483-1498. [PMID: 39153038 PMCID: PMC11416393 DOI: 10.1007/s10495-024-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Acute myocardial infarction, often associated with ischemia/reperfusion injury (I/R), is a leading cause of death worldwide. Although the endogenous tryptophan metabolite kynurenic acid (KYNA) has been shown to exert protection against I/R injury, its mechanism of action at the cellular and molecular level is not well understood yet. Therefore, we examined the potential involvement of antiapoptotic mechanisms, as well as N-methyl-D-aspartate (NMDA) receptor modulation in the protective effect of KYNA in cardiac cells exposed to simulated I/R (SI/R). KYNA was shown to attenuate cell death induced by SI/R dose-dependently in H9c2 cells or primary rat cardiomyocytes. Analysis of morphological and molecular markers of apoptosis (i.e., membrane blebbing, apoptotic nuclear morphology, DNA double-strand breaks, activation of caspases) revealed considerably increased apoptotic activity in cardiac cells undergoing SI/R. The investigated apoptotic markers were substantially improved by treatment with the cytoprotective dose of KYNA. Although cardiac cells were shown to express NMDA receptors, another NMDA antagonist structurally different from KYNA was unable to protect against SI/R-induced cell death. Our findings provide evidence that the protective effect of KYNA against SI/R-induced cardiac cell injury involves antiapoptotic mechanisms, that seem to evoke independently of NMDA receptor signaling.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Dóra Nógrádi-Halmi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Virág Demján
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Vincze
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE-Neuroscience Research Group, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary.
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
3
|
Lima Posada I, Soulié M, Stephan Y, Palacios Ramirez R, Bonnard B, Nicol L, Pitt B, Kolkhof P, Mulder P, Jaisser F. Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Improves Diastolic Dysfunction in Preclinical Nondiabetic Chronic Kidney Disease. J Am Heart Assoc 2024; 13:e032971. [PMID: 38842271 PMCID: PMC11255738 DOI: 10.1161/jaha.123.032971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The mineralocorticoid receptor plays a significant role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Classic steroidal mineralocorticoid receptor antagonists are a therapeutic option, but their use in the clinic is limited due to the associated risk of hyperkalemia in patients with CKD. Finerenone is a nonsteroidal mineralocorticoid receptor antagonist that has been recently investigated in 2 large phase III clinical trials (FIDELIO-DKD [Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease] and FIGARO-DKD [Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease]), showing reductions in kidney and cardiovascular outcomes. METHODS AND RESULTS We tested whether finerenone improves renal and cardiac function in a preclinical nondiabetic CKD model. Twelve weeks after 5/6 nephrectomy, the rats showed classic signs of CKD characterized by a reduced glomerular filtration rate and increased kidney weight, associated with left ventricular (LV) diastolic dysfunction and decreased LV perfusion. These changes were associated with increased cardiac fibrosis and reduced endothelial nitric oxide synthase activating phosphorylation (ser 1177). Treatment with finerenone prevented LV diastolic dysfunction and increased LV tissue perfusion associated with a reduction in cardiac fibrosis and increased endothelial nitric oxide synthase phosphorylation. Curative treatment with finerenone improves nondiabetic CKD-related LV diastolic function associated with a reduction in cardiac fibrosis and increased cardiac phosphorylated endothelial nitric oxide synthase independently from changes in kidney function. Short-term finerenone treatment decreased LV end-diastolic pressure volume relationship and increased phosphorylated endothelial nitric oxide synthase and nitric oxide synthase activity. CONCLUSIONS We showed that the nonsteroidal mineralocorticoid receptor antagonist finerenone reduces renal hypertrophy and albuminuria, attenuates cardiac diastolic dysfunction and cardiac fibrosis, and improves cardiac perfusion in a preclinical nondiabetic CKD model.
Collapse
MESH Headings
- Animals
- Mineralocorticoid Receptor Antagonists/pharmacology
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Naphthyridines/pharmacology
- Naphthyridines/therapeutic use
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Male
- Disease Models, Animal
- Fibrosis
- Nitric Oxide Synthase Type III/metabolism
- Glomerular Filtration Rate/drug effects
- Ventricular Function, Left/drug effects
- Diastole/drug effects
- Kidney/drug effects
- Kidney/physiopathology
- Kidney/metabolism
- Phosphorylation
- Myocardium/metabolism
- Myocardium/pathology
- Rats, Sprague-Dawley
- Rats
- Nephrectomy
Collapse
Affiliation(s)
- Ixchel Lima Posada
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Matthieu Soulié
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Yohan Stephan
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Roberto Palacios Ramirez
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Lionel Nicol
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Bertram Pitt
- Department of MedicineUniversity of Michigan MedicineAnn ArborMI
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Research and Early Development, Pharmaceuticals, Bayer AGWuppertalGermany
| | - Paul Mulder
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
- Université de Lorraine, INSERM Centre d’Investigations Cliniques‐Plurithématique 1433, UMR 1116, CHRU de Nancy, French‐Clinical Research Infrastructure Network (F‐CRIN) INI‐CRCTNancyFrance
| |
Collapse
|
4
|
Cao C, Wu R, Wang S, Zhuang L, Chen P, Li S, Zhu Q, Li H, Lin Y, Li M, Cao L, Chen J. Elucidating the changes in the heterogeneity and function of radiation-induced cardiac macrophages using single-cell RNA sequencing. Front Immunol 2024; 15:1363278. [PMID: 38601160 PMCID: PMC11004337 DOI: 10.3389/fimmu.2024.1363278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Purpose A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process. Methods Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart. Immune cells from heart tissues were sorted by magnetic beads for single-cell RNA sequencing, and the subsets of macrophages were identified and analyzed. Trajectory analysis was used to explore the differentiation relationship of each macrophage subset. The differentially expressed genes (DEGs) were compared, and the related enriched pathways were identified. Single-cell regulatory network inference and clustering (SCENIC) analysis was performed to identify the potential transcription factors (TFs) which participated in this process. Results Cardiac function temporarily decreased on Day 7 and returned to normal level on Day 35, accompanied by macrophages decreased and increased respectively. Then, we identified 7 clusters of macrophages by single-cell RNA sequencing and found two kinds of stage specific macrophages: senescence-associated macrophage (Cdkn1ahighC5ar1high) on Day 7 and interferon-associated macrophage (Ccr2highIsg15high) on Day 35. Moreover, we observed cardiac macrophages polarized over these two-time points based on M1/M2 and CCR2/major histocompatibility complex II (MHCII) expression. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses suggested that macrophages on Day 7 were characterized by an inflammatory senescent phenotype with enhanced chemotaxis and inflammatory factors, while macrophages on Day 35 showed enhanced phagocytosis with reduced inflammation, which was associated with interferon-related pathways. SCENIC analysis showed AP-1 family members were associated with IR-induced macrophages changes. Conclusion We are the first study to characterize the diversity, features, and evolution of macrophages during the early stages in an IR-induced cardiac injury animal model.
Collapse
Affiliation(s)
- Chunxiang Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Ran Wu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Shubei Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Qian Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Yingying Lin
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Min Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| |
Collapse
|
5
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
6
|
Tavakol DN, Nash TR, Kim Y, He S, Fleischer S, Graney PL, Brown JA, Liberman M, Tamargo M, Harken A, Ferrando AA, Amundson S, Garty G, Azizi E, Leong KW, Brenner DJ, Vunjak-Novakovic G. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023; 301:122267. [PMID: 37633022 PMCID: PMC10528250 DOI: 10.1016/j.biomaterials.2023.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.
Collapse
Affiliation(s)
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Sally Amundson
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Li H, Li C, Zheng T, Wang Y, Wang J, Fan X, Zheng X, Tian G, Yuan Z, Chen T. Cardiac Fibroblast Activation Induced by Oxygen-Glucose Deprivation Depends on the HIF-1α/miR-212-5p/KLF4 Pathway. J Cardiovasc Transl Res 2023; 16:778-792. [PMID: 37284939 DOI: 10.1007/s12265-023-10360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 06/08/2023]
Abstract
It is widely accepted that miRNAs play an important role in the pathogenesis of myocardial fibrosis. This study aimed to identify a new pathway of miR-212-5p in the activation of human cardiac fibroblasts (HCFs) induced by oxygen-glucose deprivation (OGD). First, we found that KLF4 protein was markedly decreased in OGD-induced HCFs. Then, bioinformatics analysis and verification experiments were used to identify the existence of an interaction of KLF4 with miR-212-5p. Functional experiments indicated that OGD significantly upregulated the expression of hypoxia inducible factor-1 alpha (HIF-1α) in HCFs, which positively regulated miR-212-5p transcription by binding to its promoter. MiR-212-5p inhibited the expression of Krüppel-like factor 4 (KLF4) protein by binding to the 3' untranslated coding regions (UTRs) of KLF4 mRNA. Inhibition of miR-212-5p effectively inhibited the activation of OGD-induced HCFs by upregulating KLF4 expression and inhibited cardiac fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Hongbing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Chenxing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Tao Zheng
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Yaning Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jin Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xiaojuan Fan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xueyang Zheng
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200001, China.
| | - Gang Tian
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Tao Chen
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
8
|
Chałubińska-Fendler J, Nowicka Z, Dróżdż I, Graczyk Ł, Piotrowski G, Tomasik B, Spych M, Fijuth J, Papis-Ubych A, Kędzierawski P, Kozono D, Fendler W. Radiation-induced circulating microRNAs linked to echocardiography parameters after radiotherapy. Front Oncol 2023; 13:1150979. [PMID: 37274244 PMCID: PMC10232985 DOI: 10.3389/fonc.2023.1150979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Patients treated with radiotherapy to the chest region are at risk of cardiac sequelae, however, identification of those with greatest risk of complications remains difficult. Here, we sought to determine whether short-term changes in circulating miRNA expression are related to measures of cardiac dysfunction in follow-up. Materials and methods Two parallel patient cohorts were enrolled and followed up for 3 years after completion of RT to treat left-sided breast cancer. In the primary group (N=28) we used a a panel of 752 miRNAs to identify miRNAs associated with radiation and cardiac indices at follow up. In the second, independent cohort (N=56) we validated those candidate miRNAs with a targeted qPCR panel. In both cohorts. serum samples were collected before RT, 24h after the last dose and 1 month after RT; cardiac echocardiography was performed 2.5-3 year after RT. Results Seven miRNAs in the primary group showed marked changes in serum miRNAs immediately after RT compared to baseline and associations with cardiopulmonary dose-volume histogram metrics. Among those miRNAs: miR-15b-5p, miR-22-3p, miR-424-5p and miR-451a were confirmed to show significant decrease of expression 24 hours post-RT in the validation cohort. Moreover, miR-29c, miR-451 and miR-424 were correlated with the end-diastolic diameter of the left ventricle, which was also confirmed in multivariable analysis adjusting for RT-associated factors. Conclusion We identified a subset of circulating miRNAs predictive for cardiac function impairment in patients treated for left-sided breast cancer, although longer clinical observation could determine if these can be used to predict major clinical endpoints.
Collapse
Affiliation(s)
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Łukasz Graczyk
- Department of Radiation Oncology, Oncology Center of Radom, Radom, Poland
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
| | - Grzegorz Piotrowski
- Cardiooncology Department, Medical University of Lodz, Łódź, Poland
- Cardiology Department, Nicolaus Copernicus Memorial Hospital, Łódź, Poland
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Spych
- Department of Radiotherapy, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Anna Papis-Ubych
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
| | | | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
9
|
TRPM4 Participates in Irradiation-Induced Aortic Valve Remodeling in Mice. Cancers (Basel) 2022; 14:cancers14184477. [PMID: 36139640 PMCID: PMC9497207 DOI: 10.3390/cancers14184477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite its benefit in cancer treatment, thoracic irradiation can induce aortic valve stenosis with fibrosis and calcification. The TRPM4 cation channel is known to participate in cellular remodeling including the transition of cardiac fibroblasts to myofibroblasts, similar to that observed during aortic valve stenosis. This study evaluates if TRPM4 is involved in irradiation-induced aortic valve damage. The aortic valve of mice was targeted by irradiation. Cardiac echography 5 months after treatment revealed an increase in aortic jet velocity, indicating stenosis. This was not observed in non-treated animals. Histological analysis revealed an increase in valvular cusp surface associated with fibrosis which was not observed in non-treated animals. The experiments were reproduced on mice after Trpm4 gene disruption. In these animals, irradiation did not induce valvular remodeling. It indicates that TRPM4 influences irradiation-induced aortic valve damage and thus could be a target to prevent such side effects of irradiation. Abstract Thoracic radiotherapy can lead to cardiac remodeling including valvular stenosis due to fibrosis and calcification. The monovalent non-selective cation channel TRPM4 is known to be involved in calcium handling and to participate in fibroblast transition to myofibroblasts, a phenomenon observed during aortic valve stenosis. The goal of this study was to evaluate if TRPM4 is involved in irradiation-induced aortic valve damage. Four-month-old Trpm4+/+ and Trpm4−/− mice received 10 Gy irradiation at the aortic valve. Cardiac parameters were evaluated by echography until 5 months post-irradiation, then hearts were collected for morphological and histological assessments. At the onset of the protocol, Trpm4+/+ and Trpm4−/− mice exhibited similar maximal aortic valve jet velocity and mean pressure gradient. Five months after irradiation, Trpm4+/+ mice exhibited a significant increase in those parameters, compared to the untreated animals while no variation was detected in Trpm4−/− mice. Morphological analysis revealed that irradiated Trpm4+/+ mice exhibited a 53% significant increase in the aortic valve cusp surface while no significant variation was observed in Trpm4−/− animals. Collagen staining revealed aortic valve fibrosis in irradiated Trpm4+/+ mice but not in irradiated Trpm4−/− animals. It indicates that TRPM4 influences irradiation-induced valvular remodeling.
Collapse
|
10
|
Investigation of the Antiremodeling Effects of Losartan, Mirabegron and Their Combination on the Development of Doxorubicin-Induced Chronic Cardiotoxicity in a Rat Model. Int J Mol Sci 2022; 23:ijms23042201. [PMID: 35216317 PMCID: PMC8877618 DOI: 10.3390/ijms23042201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of doxorubicin (DOXO) as a chemotherapeutic agent, dose-dependent development of chronic cardiotoxicity limits its application. The angiotensin-II receptor blocker losartan is commonly used to treat cardiac remodeling of various etiologies. The beta-3 adrenergic receptor agonist mirabegron was reported to improve chronic heart failure. Here we investigated the effects of losartan, mirabegron and their combination on the development of DOXO-induced chronic cardiotoxicity. Male Wistar rats were divided into five groups: (i) control; (ii) DOXO-only; (iii) losartan-treated DOXO; (iv) mirabegron-treated DOXO; (v) losartan plus mirabegron-treated DOXO groups. The treatments started 5 weeks after DOXO administration. At week 8, echocardiography was performed. At week 9, left ventricles were prepared for histology, qRT-PCR, and Western blot measurements. Losartan improved diastolic but not systolic dysfunction and ameliorated SERCA2a repression in our DOXO-induced cardiotoxicity model. The DOXO-induced overexpression of Il1 and Il6 was markedly decreased by losartan and mirabegron. Mirabegron and the combination treatment improved systolic and diastolic dysfunction and significantly decreased overexpression of Smad2 and Smad3 in our DOXO-induced cardiotoxicity model. Only mirabegron reduced DOXO-induced cardiac fibrosis significantly. Mirabegron and its combination with losartan seem to be promising therapeutic tools against DOXO-induced chronic cardiotoxicity.
Collapse
|
11
|
Zhang DM, Deng JJ, Wu YG, Tang T, Xiong L, Zheng YF, Xu XM. MicroRNA-223-3p Protect Against Radiation-Induced Cardiac Toxicity by Alleviating Myocardial Oxidative Stress and Programmed Cell Death via Targeting the AMPK Pathway. Front Cell Dev Biol 2022; 9:801661. [PMID: 35111759 PMCID: PMC8801819 DOI: 10.3389/fcell.2021.801661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Radiotherapy improves the survival rate of cancer patients, yet it also involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications, especially the radiotherapy of thoracic tumors, which is characterized by cardiac oxidative stress disorder and programmed cell death. At present, there is no effective treatment strategy for RIHD; in addition, it cannot be reversed when it progresses. This study aims to explore the role and potential mechanism of microRNA-223-3p (miR-223-3p) in RIHD.Methods: Mice were injected with miR-223-3p mimic, inhibitor, or their respective controls in the tail vein and received a single dose of 20 Gy whole-heart irradiation (WHI) for 16 weeks after 3 days to construct a RIHD mouse model. To inhibit adenosine monophosphate activated protein kinase (AMPK) or phosphodiesterase 4D (PDE4D), compound C (CompC) and AAV9-shPDE4D were used.Results: WHI treatment significantly inhibited the expression of miR-223-3p in the hearts; furthermore, the levels of miR-223-3p decreased in a radiation time-dependent manner. miR-223-3p mimic significantly relieved, while miR-223-3p inhibitor aggravated apoptosis, oxidative damage, and cardiac dysfunction in RIHD mice. In addition, we found that miR-223-3p mimic improves WHI-induced myocardial injury by activating AMPK and that the inhibition of AMPK by CompC completely blocks these protective effects of miR-223-3p mimic. Further studies found that miR-223-3p lowers the protein levels of PDE4D and inhibiting PDE4D by AAV9-shPDE4D blocks the WHI-induced myocardial injury mediated by miR-223-3p inhibitor.Conclusion: miR-223-3p ameliorates WHI-induced RIHD through anti-oxidant and anti-programmed cell death mechanisms via activating AMPK by PDE4D regulation. miR-223-3p mimic exhibits potential value in the treatment of RIHD.
Collapse
Affiliation(s)
- Dao-ming Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun-jian Deng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao-gui Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tian Tang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-fa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| | - Xi-ming Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| |
Collapse
|
12
|
JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine. PLoS One 2021; 16:e0261388. [PMID: 34914791 PMCID: PMC8675748 DOI: 10.1371/journal.pone.0261388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac hypertrophy is a complex process induced by the activation of multiple signaling pathways. We previously reported that anacardic acid (AA), a histone acetyltransferase (HAT) inhibitor, attenuates phenylephrine (PE)-induced cardiac hypertrophy by downregulating histone H3 acetylation at lysine 9 (H3K9ac). Unfortunately, the related upstream signaling events remained unknown. The mitogen-activated protein kinase (MAPK) pathway is an important regulator of cardiac hypertrophy. In this study, we explored the role of JNK/MAPK signaling pathway in cardiac hypertrophy induced by PE. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. This study showed that p-JNK directly interacts with HATs (P300 and P300/CBP-associated factor, PCAF) and alters H3K9ac. In addition, both the JNK inhibitor SP600125 and the HAT inhibitor AA attenuated p-JNK overexpression and H3K9ac hyperacetylation by inhibiting P300 and PCAF during PE-induced cardiomyocyte hypertrophy. Moreover, we demonstrated that both SP600125 and AA attenuate the overexpression of cardiac hypertrophy-related genes (MEF2A, ANP, BNP, and β-MHC), preventing cardiomyocyte hypertrophy and dysfunction. These results revealed a novel mechanism through which AA might protect mice from PE-induced cardiomyocyte hypertrophy. In particular, AA inhibits the effects of JNK signaling on HATs-mediated histone acetylation, and could therefore be used to prevent and treat pathological cardiac hypertrophy.
Collapse
|
13
|
Kovács MG, Kovács ZZA, Varga Z, Szűcs G, Freiwan M, Farkas K, Kővári B, Cserni G, Kriston A, Kovács F, Horváth P, Földesi I, Csont T, Kahán Z, Sárközy M. Investigation of the Antihypertrophic and Antifibrotic Effects of Losartan in a Rat Model of Radiation-Induced Heart Disease. Int J Mol Sci 2021; 22:12963. [PMID: 34884782 PMCID: PMC8657420 DOI: 10.3390/ijms222312963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced heart disease (RIHD) is a potential late side-effect of thoracic radiotherapy resulting in left ventricular hypertrophy (LVH) and fibrosis due to a complex pathomechanism leading to heart failure. Angiotensin-II receptor blockers (ARBs), including losartan, are frequently used to control heart failure of various etiologies. Preclinical evidence is lacking on the anti-remodeling effects of ARBs in RIHD, while the results of clinical studies are controversial. We aimed at investigating the effects of losartan in a rat model of RIHD. Male Sprague-Dawley rats were studied in three groups: (1) control, (2) radiotherapy (RT) only, (3) RT treated with losartan (per os 10 mg/kg/day), and were followed for 1, 3, or 15 weeks. At 15 weeks post-irradiation, losartan alleviated the echocardiographic and histological signs of LVH and fibrosis and reduced the overexpression of chymase, connective tissue growth factor, and transforming growth factor-beta in the myocardium measured by qPCR; likewise, the level of the SMAD2/3 protein determined by Western blot decreased. In both RT groups, the pro-survival phospho-AKT/AKT and the phospho-ERK1,2/ERK1,2 ratios were increased at week 15. The antiremodeling effects of losartan seem to be associated with the repression of chymase and several elements of the TGF-β/SMAD signaling pathway in our RIHD model.
Collapse
Affiliation(s)
- Mónika Gabriella Kovács
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Zsuzsanna Z. A. Kovács
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Zoltán Varga
- Department of Oncotherapy, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Gergő Szűcs
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Marah Freiwan
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Katalin Farkas
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (K.F.); (I.F.)
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (B.K.); (G.C.)
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (B.K.); (G.C.)
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.K.); (F.K.); (P.H.)
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014 Helsinki, Finland
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.K.); (F.K.); (P.H.)
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014 Helsinki, Finland
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.K.); (F.K.); (P.H.)
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014 Helsinki, Finland
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (K.F.); (I.F.)
| | - Tamás Csont
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Márta Sárközy
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| |
Collapse
|
14
|
Tang N, Dou X, You X, Li Y, Li X, Liu G. Androgen Receptors Act as a Tumor Suppressor Gene to Suppress Hepatocellular Carcinoma Cells Progression via miR-122-5p/RABL6 Signaling. Front Oncol 2021; 11:756779. [PMID: 34745992 PMCID: PMC8564478 DOI: 10.3389/fonc.2021.756779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a high degree of malignancy and a poor prognosis. Androgen receptor (AR) has been reported to play important roles in the regulation of the progression of HCC, but the underlying mechanisms of how AR regulates HCC initiation, progression, metastasis, and chemotherapy resistance still need further study. Our study found that AR could act as a tumor suppression gene to suppress HCC cells invasion and migration capacities via miR-122-5p/RABL6 signaling, and the mechanism study further confirmed that miR-122-5p could suppress the expression of RABL6 to influence HCC cells progression by directly targeting the 3'UTR of the mRNA of RABL6. The preclinical study using an in vivo mouse model with orthotopic xenografts of HCC cells confirmed the in vitro data, and the clinical data gotten from online databases based on TCGA samples also confirmed the linkage of AR/miR-122-5p/RABL6 signaling to the HCC progression. Together, these findings suggest that AR could suppress HCC invasion and migration capacities via miR-122-5p/RABL6 signaling, and targeting this newly explored signaling may help us find new therapeutic targets for better treatment of HCC.
Collapse
Affiliation(s)
- Neng Tang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Dou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xing You
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guodong Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Ischemic preconditioning protects the heart against ischemia-reperfusion injury in chronic kidney disease in both males and females. Biol Sex Differ 2021; 12:49. [PMID: 34488888 PMCID: PMC8420010 DOI: 10.1186/s13293-021-00392-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Uremic cardiomyopathy is a common cardiovascular complication of chronic kidney disease (CKD) characterized by left ventricular hypertrophy (LVH) and fibrosis enhancing the susceptibility of the heart to acute myocardial infarction. In the early stages of CKD, approximately 60% of patients are women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy and the infarct size-limiting effect of ischemic preconditioning (IPRE) in experimental CKD. METHODS CKD was induced by 5/6 nephrectomy in 9-week-old male and female Wistar rats. Two months later, serum and urine laboratory parameters were measured to verify the development of CKD. Transthoracic echocardiography was performed to assess cardiac function and morphology. Cardiomyocyte hypertrophy and fibrosis were measured by histology. Left ventricular expression of A- and B-type natriuretic peptides (ANP and BNP) were measured by qRT-PCR and circulating BNP level was measured by ELISA. In a subgroup of animals, hearts were perfused according to Langendorff and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPRE (3 × 5 min I/R cycles applied before index ischemia). Then infarct size or phosphorylated and total forms of proteins related to the cardioprotective RISK (AKT, ERK1,2) and SAFE (STAT3) pathways were measured by Western blot. RESULTS The severity of CKD was similar in males and females. However, CKD males developed more severe LVH compared to females as assessed by echocardiography. Histology revealed cardiac fibrosis only in males in CKD. LV ANP expression was significantly increased due to CKD in both sexes, however, LV BNP and circulating BNP levels failed to significantly increase in CKD. In both sexes, IPRE significantly decreased the infarct size in both the sham-operated and CKD groups. IPRE significantly increased the phospho-STAT3/STAT3 ratio in sham-operated but not in CKD animals in both sexes. There were no significant differences in phospho-AKT/AKT and phospho-ERK1,2/ERK1,2 ratios between the groups. CONCLUSION The infarct size-limiting effect of IPRE was preserved in both sexes in CKD despite the more severe uremic cardiomyopathy in male CKD rats. Further research is needed to identify crucial molecular mechanisms in the cardioprotective effect of IPRE in CKD.
Collapse
|
16
|
Chauhan V, Hamada N, Monceau V, Ebrahimian T, Adam N, Wilkins RC, Sebastian S, Patel ZS, Huff JL, Simonetto C, Iwasaki T, Kaiser JC, Salomaa S, Moertl S, Azimzadeh O. Expert consultation is vital for adverse outcome pathway development: a case example of cardiovascular effects of ionizing radiation. Int J Radiat Biol 2021; 97:1516-1525. [PMID: 34402738 DOI: 10.1080/09553002.2021.1969466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The circulatory system distributes nutrients, signaling molecules, and immune cells to vital organs and soft tissues. Epidemiological, animal, and in vitro cellular mechanistic studies have highlighted that exposure to ionizing radiation (IR) can induce molecular changes in cellular and subcellular milieus leading to long-term health impacts, particularly on the circulatory system. Although the mechanisms for the pathologies are not fully elucidated, endothelial dysfunction is proven to be a critical event via radiation-induced oxidative stress mediators. To delineate connectivities of events specifically to cardiovascular disease (CVD) initiation and progression, the adverse outcome pathway (AOP) approach was used with consultation from field experts. AOPs are a means to organize information around a disease of interest to a regulatory question. An AOP begins with a molecular initiating event and ends in an adverse outcome via sequential linkages of key event relationships that are supported by evidence in the form of the modified Bradford-Hill criteria. Detailed guidelines on building AOPs are provided by the Organisation for Economic Cooperation and Development (OECD) AOP program. Here, we report on the questions and discussions needed to develop an AOP for CVD resulting from IR exposure. A recent workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations brought together experts from the OECD to present the AOP approach and tools with examples from the toxicology field. As part of this workshop, four working groups were formed to discuss the identification of adverse outcomes relevant to radiation exposures and development of potential AOPs, one of which was focused on IR-induced cardiovascular effects. Each working group comprised subject matter experts and radiation researchers interested in the specific disease area and included an AOP coach. CONCLUSION The CVD working group identified the critical questions of interest for AOP development, including the exposure scenario that would inform the evidence, the mechanisms of toxicity, the initiating event, intermediate key events/relationships, and the type of data currently available. This commentary describes the four-day discussion of the CVD working group, its outcomes, and demonstrates how collaboration and expert consultation is vital to informing AOP construction.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Virginie Monceau
- Institute of Radiation and Nuclear Safety (IRSN), Radiotoxicology and Radiobiology Research Laboratory (LRTOX), Fontenay-Aux-Roses, France
| | - Teni Ebrahimian
- Institute of Radiation and Nuclear Safety (IRSN), Radiotoxicology and Radiobiology Research Laboratory (LRTOX), Fontenay-Aux-Roses, France
| | - Nadine Adam
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Soji Sebastian
- Radiobiology, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Zarana S Patel
- KBR Inc, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | | | - Cristoforo Simonetto
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), Neuherberg, Germany
| | - Toshiyasu Iwasaki
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), Neuherberg, Germany
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simone Moertl
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| |
Collapse
|
17
|
Kovács ZZA, Szűcs G, Freiwan M, Kovács MG, Márványkövi FM, Dinh H, Siska A, Farkas K, Kovács F, Kriston A, Horváth P, Kővári B, Cserni BG, Cserni G, Földesi I, Csont T, Sárközy M. Comparison of the antiremodeling effects of losartan and mirabegron in a rat model of uremic cardiomyopathy. Sci Rep 2021; 11:17495. [PMID: 34471171 PMCID: PMC8410807 DOI: 10.1038/s41598-021-96815-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Uremic cardiomyopathy is characterized by diastolic dysfunction (DD), left ventricular hypertrophy (LVH), and fibrosis. Angiotensin-II plays a major role in the development of uremic cardiomyopathy via nitro-oxidative and inflammatory mechanisms. In heart failure, the beta-3 adrenergic receptor (β3-AR) is up-regulated and coupled to endothelial nitric oxide synthase (eNOS)-mediated pathways, exerting antiremodeling effects. We aimed to compare the antiremodeling effects of the angiotensin-II receptor blocker losartan and the β3-AR agonist mirabegron in uremic cardiomyopathy. Chronic kidney disease (CKD) was induced by 5/6th nephrectomy in male Wistar rats. Five weeks later, rats were randomized into four groups: (1) sham-operated, (2) CKD, (3) losartan-treated (10 mg/kg/day) CKD, and (4) mirabegron-treated (10 mg/kg/day) CKD groups. At week 13, echocardiographic, histologic, laboratory, qRT-PCR, and Western blot measurements proved the development of uremic cardiomyopathy with DD, LVH, fibrosis, inflammation, and reduced eNOS levels, which were significantly ameliorated by losartan. However, mirabegron showed a tendency to decrease DD and fibrosis; but eNOS expression remained reduced. In uremic cardiomyopathy, β3-AR, sarcoplasmic reticulum ATPase (SERCA), and phospholamban levels did not change irrespective of treatments. Mirabegron reduced the angiotensin-II receptor 1 expression in uremic cardiomyopathy that might explain its mild antiremodeling effects despite the unchanged expression of the β3-AR.
Collapse
Affiliation(s)
- Zsuzsanna Z A Kovács
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Gergő Szűcs
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Marah Freiwan
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Mónika G Kovács
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Fanni M Márványkövi
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Hoa Dinh
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
| | - Katalin Farkas
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726, Hungary
- Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726, Hungary
- Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726, Hungary
- Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720, Hungary
| | - Bálint Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
| | - Tamás Csont
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| | - Márta Sárközy
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
18
|
MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via decreasing SLITRK4 expression. Biosci Rep 2021; 40:222640. [PMID: 32285917 PMCID: PMC7199452 DOI: 10.1042/bsr20193295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/29/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
The microRNA, miR-139-5p, has been proved to play important roles in regulating tumor progression, including prostate cancer, osteosarcoma, esophageal cancer, and so on, but its correlation of hepatocellular carcinoma (HCC) still remains unclear. Here we found that hsa-miR-139-5p (miR-139-5p) was decreased in HCC samples compared with normal liver tissues, and a lower expression of miR-139-5p was connected to a poorer prognosis. Mechanism study indicated that a decreased/increased miR-139-5p could increase/decrease HCC cells invasion and proliferation capacities via increasing SLITRK4 expression, what’s more, the reverse assays also confirmed the conclusion when we knocked down SLITRK4 in the miR-139-5p low-expression cells. Luciferase assay confirmed that miR-139-5p could directly bind to the 3′UTR of SLITRK4 mRNA to regulate its expression. Together, these findings show the importance of miR-139-5p/SLITRK4 pathway in HCC growth and progression and may provide new targets for us to better arrange the progression of HCC.
Collapse
|
19
|
Pathomechanisms and therapeutic opportunities in radiation-induced heart disease: from bench to bedside. Clin Res Cardiol 2021; 110:507-531. [PMID: 33591377 PMCID: PMC8055626 DOI: 10.1007/s00392-021-01809-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022]
Abstract
Cancer management has undergone significant improvements, which led to increased long-term survival rates among cancer patients. Radiotherapy (RT) has an important role in the treatment of thoracic tumors, including breast, lung, and esophageal cancer, or Hodgkin's lymphoma. RT aims to kill tumor cells; however, it may have deleterious side effects on the surrounding normal tissues. The syndrome of unwanted cardiovascular adverse effects of thoracic RT is termed radiation-induced heart disease (RIHD), and the risk of developing RIHD is a critical concern in current oncology practice. Premature ischemic heart disease, cardiomyopathy, heart failure, valve abnormalities, and electrical conduct defects are common forms of RIHD. The underlying mechanisms of RIHD are still not entirely clear, and specific therapeutic interventions are missing. In this review, we focus on the molecular pathomechanisms of acute and chronic RIHD and propose preventive measures and possible pharmacological strategies to minimize the burden of RIHD.
Collapse
|
20
|
Li L, Nie X, Zhang P, Huang Y, Ma L, Li F, Yi M, Qin W, Yuan X. Dexrazoxane ameliorates radiation-induced heart disease in a rat model. Aging (Albany NY) 2021; 13:3699-3711. [PMID: 33406500 PMCID: PMC7906151 DOI: 10.18632/aging.202332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Treatment of thoracic tumors with radiotherapy can lead to severe cardiac injury. We investigated the effects of dexrazoxane, a USFDA-approved cardioprotective drug administered with chemotherapy, on radiation-induced heart disease (RIHD) in a rat model. Male Sprague-Dawley rats were irradiated with a single dose of 20 Gy to the heart and treated with dexrazoxane at the time of irradiation and for 12 subsequent weeks. Dexrazoxane suppressed radiation-induced myocardial apoptosis and significantly reversed changes in serum cardiac troponin I levels and histopathological characteristics six months post-radiation. Treatment with dexrazoxane did not alter the radiosensitivity of thoracic tumors in a tumor formation experiment using male nude Balb/C mice with tumors generated by H292 cells. Dexrazoxane reduced the accumulation of reactive oxygen species in rat cardiac tissues, but not in tumors in nude mice. Transcriptome sequencing showed that IKBKE, MAP3K8, NFKBIA, and TLR5, which are involved in Toll-like receptor signaling, may be associated with the anti-RIHD effects of dexrazoxane. Immunohistochemistry revealed that dexrazoxane significantly decreased NF-κB p65 expression in cardiomyocytes. These findings suggest dexrazoxane may protect against RIHD by suppressing apoptosis and oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Bergom C, Rubenstein J, Wilson JF, Welsh A, Ibrahim ESH, Prior P, Schottstaedt AM, Eastwood D, Zhang MJ, Currey A, Puckett L, Strande JL, Bradley JA, White J. A Pilot Study of Cardiac MRI in Breast Cancer Survivors After Cardiotoxic Chemotherapy and Three-Dimensional Conformal Radiotherapy. Front Oncol 2020; 10:506739. [PMID: 33178571 PMCID: PMC7596658 DOI: 10.3389/fonc.2020.506739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE/OBJECTIVES Node-positive breast cancer patients often receive chemotherapy and regional nodal irradiation. The cardiotoxic effects of these treatments, however, may offset some of the survival benefit. Cardiac magnetic resonance (CMR) is an emerging modality to assess cardiac injury. This is a pilot trial assessing cardiac damage using CMR in patients who received anthracycline-based chemotherapy and three-dimensional conformal radiotherapy (3DCRT) regional nodal irradiation using heart constraints. MATERIALS AND METHODS Node-positive breast cancer patients (2000-2008) treated with anthracycline-based chemotherapy and 3DCRT regional nodal irradiation (including the internal mammary chain nodes) with heart ventricular constraints (V25 < 10%) were invited to participate. Cardiac tissues were contoured and analyzed separately for whole heart (pericardium) and for combined ventricles and left atrium (myocardium). CMR obtained ventricular function/dimensions, late gadolinium enhancement (LGE), global longitudinal strain (GLS), and extracellular volume fraction (ECV) as measures of cardiac injury and/or early fibrosis. CMR parameters were correlated with dose-volume constraints using Spearman correlations. RESULTS Fifteen left-sided and five right-sided patients underwent CMR. Median diagnosis age was 50 (32-77). No patients had baseline cardiac disease before regional nodal irradiation. Median time after 3DCRT was 8.3 years (5.2-14.4). Median left-sided mean heart dose (MHD) was 4.8 Gy (1.1-11.2) and V25 was 5.7% (0-12%). Median left ventricular ejection fraction (LVEF) was 63%. No abnormal LGE was observed. No correlations were seen between whole heart doses and LVEF, LV mass, GLS, or LV dimensions. Increasing ECV did not correlate with increased heart or ventricular doses. However, correlations between higher LV mass and ventricular mean dose, V10, and V25 were seen. CONCLUSION At a median follow-up of 8.3 years, this cohort of node-positive breast cancer patients who received anthracycline-based chemotherapy and regional nodal irradiation had no clinically abnormal CMR findings. However, correlations between ventricular mean dose, V10, and V25 and LV mass were seen. Larger corroborating studies that include advanced techniques for measuring regional heart mechanics are warranted.
Collapse
Affiliation(s)
- Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jason Rubenstein
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - J. Frank Wilson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aimee Welsh
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - El-Sayed H. Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Phillip Prior
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Daniel Eastwood
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mei-Jie Zhang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Adam Currey
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lindsay Puckett
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer L. Strande
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julie A. Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Julia White
- Department of Radiation Oncology, James Cancer Hospital, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
22
|
Szabó MR, Gáspár R, Pipicz M, Zsindely N, Diószegi P, Sárközy M, Bodai L, Csont T. Hypercholesterolemia Interferes with Induction of miR-125b-1-3p in Preconditioned Hearts. Int J Mol Sci 2020; 21:ijms21113744. [PMID: 32466450 PMCID: PMC7312064 DOI: 10.3390/ijms21113744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic preconditioning (IPre) reduces ischemia/reperfusion (I/R) injury in the heart. The non-coding microRNA miR-125b-1-3p has been demonstrated to play a role in the mechanism of IPre. Hypercholesterolemia is known to attenuate the cardioprotective effect of preconditioning; nevertheless, the exact underlying mechanisms are not clear. Here we investigated, whether hypercholesterolemia influences the induction of miR-125b-1-3p by IPre. Male Wistar rats were fed with a rodent chow supplemented with 2% cholesterol and 0.25% sodium-cholate hydrate for 8 weeks to induce high blood cholesterol levels. The hearts of normo- and hypercholesterolemic animals were then isolated and perfused according to Langendorff, and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPre (3 × 5 min I/R cycles applied before index ischemia). IPre significantly reduced infarct size in the hearts of normocholesterolemic rats; however, IPre was ineffective in the hearts of hypercholesterolemic animals. Similarly, miR-125b-1-3p was upregulated by IPre in hearts of normocholesterolemic rats, while in the hearts of hypercholesterolemic animals IPre failed to increase miR-125b-1-3p significantly. Phosphorylation of cardiac Akt, ERK, and STAT3 was not significantly different in any of the groups at the end of reperfusion. Based on these results we propose here that hypercholesterolemia attenuates the upregulation of miR-125b-1-3p by IPre, which seems to be associated with the loss of cardioprotection.
Collapse
Affiliation(s)
- Márton R. Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary;
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Márta Sárközy
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary;
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-096
| |
Collapse
|
23
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|