1
|
Li P, Zhai Z, Fan Y, Li W, Ke M, Li X, Gao H, Fu Y, Ma Z, Zhang W, Yi H, Ming J, Qin Y, Wang B, Kuang J, Pei D. Condensate remodeling reorganizes innate SS18 in synovial sarcomagenesis. Oncogenesis 2024; 13:38. [PMID: 39468035 PMCID: PMC11519567 DOI: 10.1038/s41389-024-00539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
SS18-SSX onco-fusion protein formed through aberrant chromosomal translocation t (X, 18; p11, q11), is the hallmark and plays a critical role in synovial sarcomagenesis. The recent works indicated that both the pathological SS18-SSX tumorigenic fusion and the corresponding intrinsic physiological SS18 protein can form condensates but appear to have disparate properties. The underlying regulatory mechanism and the consequent biological significance remain largely unknown. We show that the physical properties of oncogenic fusion protein SS18-SSX condensates within cells undergo alterations compared to the proto-oncogene protein SS18. By small-molecule screening and mutant assay, we identified the recognition of H2AK119ub histone modification could account for the distinctive properties of SS18-SSX1 condensates. Notably, we show that SS18-SSX1 condensates have impact on SS18 condensates and hijack that in a phase separation manner, resulting in the relocation of protein SS18 to the H2AK119ub modification targeted by SS18-SSX1. Consequently, this leads to the downregulation of tumor suppressor genes occupied by SS18 physiologically, like CAV1 and DAB2. These results reveal the underlying mechanism of genomic disorder and tumorigenesis caused by the remodeling of oncoprotein SS18-SSX1 condensates at the macroscopic level.
Collapse
Affiliation(s)
- Pengli Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minjing Ke
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxi Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiru Gao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhaoyi Ma
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wenhui Zhang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Hongyan Yi
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
2
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic and Molecular Heterogeneity of Synovial Sarcoma and Associated Challenges in Therapy. Cells 2024; 13:1695. [PMID: 39451213 PMCID: PMC11506332 DOI: 10.3390/cells13201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Synovial sarcoma (SS) is one of the most common types of pediatric soft tissue sarcoma (STS) being far less frequent in adults. This STS type is characterized by one specific chromosomal translocation SS18-SSX and the associated changes in signaling. However, other genetic and epigenetic abnormalities in SS do not necessarily include SS18-SSX-related events, but abnormalities are more sporadic and do not correlate well with the prognosis and response to therapy. Currently, targeted therapy for synovial sarcoma includes a limited range of drugs, and surgical resection is the mainstay treatment for localized cancer with adjuvant or neoadjuvant chemotherapy and radiotherapy. Understanding the molecular characteristics of synovial sarcoma subtypes is becoming increasingly important for detecting new potential targets and developing innovative therapies. Novel approaches to treating synovial sarcoma include immune-based therapies (such as TCR-T cell therapy to NY-ESO-1, MAGE4, PRAME or using immune checkpoint inhibitors), epigenetic modifiers (HDAC inhibitors, EZH2 inhibitors, BRD disruptors), as well as novel or repurposed receptor tyrosine kinase inhibitors. In the presented review, we aimed to summarize the genetic and epigenetic landscape of SS as well as to find out the potential niches for the development of novel diagnostics and therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
- Oncology Department, Ryazan State Medical University Named after Academician I.P. Pavlov, Ministry of Health of Russia, Ryazan 390026, Russia;
- Institute of Medicine, RUDN University, Moscow 117198, Russia
| | - Timur I. Fetisov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Varvara P. Maksimova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Evgeny P. Kulikov
- Oncology Department, Ryazan State Medical University Named after Academician I.P. Pavlov, Ministry of Health of Russia, Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
- Institute of Medicine, RUDN University, Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
- Institute of Medicine, RUDN University, Moscow 117198, Russia
| |
Collapse
|
3
|
Bhat S, Palepu K, Hong L, Mao J, Ye T, Iyer R, Zhao L, Chen T, Vincoff S, Watson R, Wang T, Srijay D, Kavirayuni VS, Kholina K, Goel S, Vure P, Desphande AJ, Soderling SH, DeLisa MP, Chatterjee P. De Novo Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546591. [PMID: 39091799 PMCID: PMC11291000 DOI: 10.1101/2023.06.26.546591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model, and subsequently screen these novel linear sequences for target-selective interaction activity via a CLIP-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a Peptide Prioritization via CLIP (PepPrCLIP) pipeline and validate highly-ranked, target-specific peptides experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains, demonstrating functionally potent binding and degradation of conformationally diverse protein targets in vitro. Overall, our design strategy provides a modular toolkit for designing short binding linear peptides to any target protein without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.
Collapse
Affiliation(s)
- Suhaas Bhat
- Department of Biomedical Engineering, Duke University
| | - Kalyan Palepu
- Department of Biomedical Engineering, Duke University
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University
| | - Joey Mao
- Department of Cell Biology, Duke University
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Rema Iyer
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Institute, San Diego, CA, USA
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University
| | - Tianlai Chen
- Department of Biomedical Engineering, Duke University
| | | | - Rio Watson
- Department of Biomedical Engineering, Duke University
| | - Tian Wang
- Department of Biomedical Engineering, Duke University
| | - Divya Srijay
- Department of Biomedical Engineering, Duke University
| | | | | | - Shrey Goel
- Department of Biomedical Engineering, Duke University
| | - Pranay Vure
- Department of Biomedical Engineering, Duke University
| | - Aniruddha J Desphande
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Institute, San Diego, CA, USA
| | | | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University
- Department of Computer Science, Duke University
- Department of Biostatistics and Bioinformatics, Duke University
| |
Collapse
|
4
|
Parker K, Zhang Y, Anchondo G, Smith A, Guerrero Pacheco S, Kondo T, Su L. Combination of HDAC and FYN inhibitors in synovial sarcoma treatment. Front Cell Dev Biol 2024; 12:1422452. [PMID: 39045458 PMCID: PMC11264242 DOI: 10.3389/fcell.2024.1422452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The SS18-SSX fusion protein is an oncogenic driver in synovial sarcoma. At the molecular level, SS18-SSX functions as both an activator and a repressor to coordinate transcription of different genes responsible for tumorigenesis. Here, we identify the proto-oncogene FYN as a new SS18-SSX target gene and examine its relation to synovial sarcoma therapy. FYN is a tyrosine kinase that promotes cancer growth, metastasis and therapeutic resistance, but SS18-SSX appears to negatively regulate FYN expression in synovial sarcoma cells. Using both genetic and histone deacetylase inhibitor (HDACi)-based pharmacologic approaches, we show that suppression of SS18-SSX leads to FYN reactivation. In support of this notion, we find that blockade of FYN activity synergistically enhances HDACi action to reduce synovial sarcoma cell proliferation and migration. Our results support a role for FYN in attenuation of anti-cancer activity upon inhibition of SS18-SSX function and demonstrate the feasibility of targeting FYN to improve the effectiveness of HDACi treatment against synovial sarcoma.
Collapse
Affiliation(s)
- Kyra Parker
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Yanfeng Zhang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Anchondo
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Ashlyn Smith
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | | | | | - Le Su
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| |
Collapse
|
5
|
Manole S, Pintican R, Palade E, Duma MM, Dadarlat-Pop A, Schiau C, Bene I, Rancea R, Miclea D, Manole V, Molnar A, Solomon C. Reply to Kawasaki et al. Comment on "Manole et al. Primary Pericardial Synovial Sarcoma: A Case Report and Literature Review. Diagnostics 2022, 12, 158". Diagnostics (Basel) 2024; 14:1013. [PMID: 38786311 PMCID: PMC11120598 DOI: 10.3390/diagnostics14101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Thank you for your comment; it adds value to the article and highlights the importance of molecular testing [...].
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology, “Niculae Stancioiu” Heart Institute, 400001 Cluj-Napoca, Romania;
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (I.B.)
| | - Roxana Pintican
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (I.B.)
| | - Emanuel Palade
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.P.); (A.M.)
- Department of Thoracic Surgery, Leon Daniello“ Pneumophtysiology Hospital Cluj-Napoca, 400332 Cluj-Napoca, Romania
| | | | - Alexandra Dadarlat-Pop
- Cardiology Department, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania; (A.D.-P.)
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Calin Schiau
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (I.B.)
| | - Ioana Bene
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (I.B.)
| | - Raluca Rancea
- Cardiology Department, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania; (A.D.-P.)
| | - Diana Miclea
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Viorel Manole
- Department of Cardiovascular Surgery, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania;
| | - Adrian Molnar
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.P.); (A.M.)
- Department of Cardiovascular Surgery, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania;
| | - Carolina Solomon
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (I.B.)
| |
Collapse
|
6
|
Alqualo NO, Campos-Fernandez E, Picolo BU, Ferreira EL, Henriques LM, Lorenti S, Moreira DC, Simião MPS, Oliveira LBT, Alonso-Goulart V. Molecular biomarkers in prostate cancer tumorigenesis and clinical relevance. Crit Rev Oncol Hematol 2024; 194:104232. [PMID: 38101717 DOI: 10.1016/j.critrevonc.2023.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men and assessing circulating tumor cells (CTCs) by liquid biopsy is a promising tool to help in cancer early detection, staging, risk of recurrence evaluation, treatment prediction and monitoring. Blood-based liquid biopsy approaches enable the enrichment, detection and characterization of CTCs by biomarker analysis. Hence, comprehending the molecular markers, their role on each stage of cancer development and progression is essential to provide information that can help in future implementation of these biomarkers in clinical assistance. In this review, we studied the molecular markers most associated with PCa CTCs to better understand their function on tumorigenesis and metastatic cascade, the methodologies utilized to analyze these biomarkers and their clinical significance, in order to summarize the available information to guide researchers in their investigations, new hypothesis formulation and target choice for the development of new diagnostic and treatment tools.
Collapse
Affiliation(s)
- Nathalia Oliveira Alqualo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Esther Campos-Fernandez
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Bianca Uliana Picolo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Emanuelle Lorrayne Ferreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Laila Machado Henriques
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Sabrina Lorenti
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Danilo Caixeta Moreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Maria Paula Silva Simião
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Luciana Beatriz Tiago Oliveira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil.
| |
Collapse
|
7
|
Kawai A, Ishihara M, Nakamura T, Kitano S, Iwata S, Takada K, Emori M, Kato K, Endo M, Matsumoto Y, Kakunaga S, Sato E, Miyahara Y, Morino K, Tanaka S, Takahashi S, Matsuo F, Matsumine A, Kageyama S, Ueda T. Safety and Efficacy of NY-ESO-1 Antigen-Specific T-Cell Receptor Gene-Transduced T Lymphocytes in Patients with Synovial Sarcoma: A Phase I/II Clinical Trial. Clin Cancer Res 2023; 29:5069-5078. [PMID: 37792433 PMCID: PMC10722137 DOI: 10.1158/1078-0432.ccr-23-1456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE To determine, for patients with advanced or recurrent synovial sarcoma (SS) not suitable for surgical resection and resistant to anthracycline, the safety and efficacy of the infusion of autologous T lymphocytes expressing NY-ESO-1 antigen-specific T-cell receptor (TCR) gene and siRNA to inhibit the expression of endogenous TCR (product code: TBI-1301). PATIENTS AND METHODS Eligible Japanese patients (HLA-A*02:01 or *02:06, NY-ESO-1-positive tumor expression) received cyclophosphamide 750 mg/m2 on days -3 and -2 (induction period) followed by a single dose of 5×109 (±30%) TBI-1301 cells as a divided infusion on days 0 and 1 (treatment period). Primary endpoints were safety-related (phase I) and efficacy-related [objective response rate (ORR) by RECIST v1.1/immune-related RECIST (irRECIST); phase II]. Safety- and efficacy-related secondary endpoints were considered in both phase I/II parts. RESULTS For the full analysis set (N = 8; phase I, n = 3; phase II, n = 5), the ORR was 50.0% (95% confidence interval, 15.7-84.3) with best overall partial response in four of eight patients according to RECIST v1.1/irRECIST. All patients experienced adverse events and seven of eight patients (87.5%) had adverse drug reactions, but no deaths were attributed to adverse events. Cytokine release syndrome occurred in four of eight patients (50.0%), but all cases recovered with prespecified treatment. Immune effector cell-associated neurotoxicity syndrome, replication-competent retrovirus, and lymphocyte clonality were absent. CONCLUSIONS Adoptive immunotherapy with TBI-1301 to selectively target NY-ESO-1-positive tumor cells appears to be a promising strategy for the treatment of advanced or recurrent SS with acceptable toxicity.
Collapse
Affiliation(s)
- Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
8
|
Ferrari A, Berlanga P, Gatz SA, Schoot RA, van Noesel MM, Hovsepyan S, Chiaravalli S, Bergamaschi L, Minard-Colin V, Corradini N, Alaggio R, Gasparini P, Brennan B, Casanova M, Pasquali S, Orbach D. Treatment at Relapse for Synovial Sarcoma of Children, Adolescents and Young Adults: From the State of Art to Future Clinical Perspectives. Cancer Manag Res 2023; 15:1183-1196. [PMID: 37920695 PMCID: PMC10618684 DOI: 10.2147/cmar.s404371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
While the overall prognosis is generally quite satisfactory in children, adolescents and young adults with localised synovial sarcoma at first diagnosis, the outcome remains poor for patients after relapse. Conversely to the front-line standardised treatment options, patients with relapse generally have an individualised approach and to date, there is still a lack of consensus regarding standard treatment approaches. Studies on relapsed synovial sarcoma were able to identify some prognostic variables that influence post-relapse survival, in order to plan risk-adapted salvage protocols. Treatment proposals must consider previous first-line treatments, potential toxicities, and the possibility of achieving an adequate local treatment by new surgery and/or re-irradiation. Effective second-line drug therapies are urgently needed. Notably, experimental treatments such as adoptive engineered TCR-T cell immunotherapy seem promising in adults and are currently under validation also in paediatric patients.
Collapse
Affiliation(s)
- Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Susanne Andrea Gatz
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Reineke A Schoot
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division Imaging & Cancer, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shushan Hovsepyan
- Pediatric Cancer and Blood Disorders Center of Armenia, Yerevan, Armenia
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nadege Corradini
- Department of Pediatric Hematology and Oncology-IHOPe, Léon Bérard Center, Lyon, France
| | - Rita Alaggio
- Pathology Department, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bernadette Brennan
- Pediatric Oncology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel Orbach
- SIREDO Oncology Center(Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| |
Collapse
|
9
|
Blay JY, von Mehren M, Jones RL, Martin-Broto J, Stacchiotti S, Bauer S, Gelderblom H, Orbach D, Hindi N, Dei Tos A, Nathenson M. Synovial sarcoma: characteristics, challenges, and evolving therapeutic strategies. ESMO Open 2023; 8:101618. [PMID: 37625194 PMCID: PMC10470271 DOI: 10.1016/j.esmoop.2023.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Synovial sarcoma (SS) is a rare and aggressive disease that accounts for 5%-10% of all soft tissue sarcomas. Although it can occur at any age, it typically affects younger adults and children, with a peak incidence in the fourth decade of life. In >95% of cases, the oncogenic driver is a translocation between chromosomes X and 18 that leads to the formation of the SS18::SSX fusion oncogenes. Early and accurate diagnosis is often a challenge; optimal outcomes are achieved by referral to a specialist center for diagnosis and management by a multidisciplinary team as soon as SS is suspected. Surgery with or without radiotherapy and/or chemotherapy can be effective in localized disease, especially in children. However, the prognosis in the advanced stages is poor, with treatment strategies that have relied heavily on traditional cytotoxic chemotherapies. Therefore, there is an unmet need for novel effective management strategies for advanced disease. An improved understanding of disease pathology and its molecular basis has paved the way for novel targeted agents and immunotherapies that are being investigated in clinical trials. This review provides an overview of the epidemiology and characteristics of SS in children and adults, as well as the patient journey from diagnosis to treatment. Current and future management strategies, focusing particularly on the potential of immunotherapies to improve clinical outcomes, are also summarized.
Collapse
Affiliation(s)
- J-Y Blay
- Department of Medicine, Centre Léon Bérard & University Claude Bernard Lyon I & UNICANCER Lyon, France.
| | - M von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - R L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - J Martin-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid; Department of Oncology, University Hospital General de Villalba, Madrid; Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - S Stacchiotti
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Bauer
- Department of Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - D Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - N Hindi
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid; Department of Oncology, University Hospital General de Villalba, Madrid; Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - A Dei Tos
- Department of Medicine, University of Padua School of Medicine and Department of Integrated Diagnostics, Azienda Ospedale-Università Padova, Padua, Italy
| | - M Nathenson
- Oncology Clinical Development, Cell and Gene Therapy, GSK, Waltham, USA
| |
Collapse
|
10
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
11
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
12
|
Landuzzi L, Manara MC, Pazzaglia L, Lollini PL, Scotlandi K. Innovative Breakthroughs for the Treatment of Advanced and Metastatic Synovial Sarcoma. Cancers (Basel) 2023; 15:3887. [PMID: 37568703 PMCID: PMC10416854 DOI: 10.3390/cancers15153887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70-80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Laura Pazzaglia
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| |
Collapse
|
13
|
Haas BJ, Dobin A, Ghandi M, Van Arsdale A, Tickle T, Robinson JT, Gillani R, Kasif S, Regev A. Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector. CELL REPORTS METHODS 2023; 3:100467. [PMID: 37323575 PMCID: PMC10261907 DOI: 10.1016/j.crmeth.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.
Collapse
Affiliation(s)
- Brian J. Haas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | | | - Anne Van Arsdale
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Timothy Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James T. Robinson
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Kasif
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
14
|
Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma. Nat Commun 2022; 13:5296. [PMID: 36075914 PMCID: PMC9458750 DOI: 10.1038/s41467-022-32491-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Autologous T cells transduced to express a high affinity T-cell receptor specific to NY-ESO-1 (letetresgene autoleucel, lete-cel) show promise in the treatment of metastatic synovial sarcoma, with 50% overall response rate. The efficacy of lete-cel treatment in 45 synovial sarcoma patients (NCT01343043) has been previously reported, however, biomarkers predictive of response and resistance remain to be better defined. This post-hoc analysis identifies associations of response to lete-cel with lymphodepleting chemotherapy regimen (LDR), product attributes, cell expansion, cytokines, and tumor gene expression. Responders have higher IL-15 levels pre-infusion (p = 0.011) and receive a higher number of transduced effector memory (CD45RA- CCR7-) CD8 + cells per kg (p = 0.039). Post-infusion, responders have increased IFNγ, IL-6, and peak cell expansion (p < 0.01, p < 0.01, and p = 0.016, respectively). Analysis of tumor samples post-treatment illustrates lete-cel infiltration and a decrease in expression of macrophage genes, suggesting remodeling of the tumor microenvironment. Here we report potential predictive and pharmacodynamic markers of lete-cel response that may inform LDR, cell dose, and strategies to enhance anticancer efficacy. Biomarkers predictive of response to T cell therapy remain to be better defined. This study identifies potential predictive and pharmacodynamic markers of response to NY-ESO-1 T-cell therapy in a solid tumor that may inform lymphodepletion, cell dose, and strategies to enhance anticancer efficacy.
Collapse
|
15
|
Hindi N, Haas RL. Management of Synovial Sarcoma and Myxoid Liposarcoma. Surg Oncol Clin N Am 2022; 31:547-558. [PMID: 35715149 DOI: 10.1016/j.soc.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synovial sarcoma and myxoid liposarcoma are translocation-related sarcomas, with a high risk of developing distant metastasis, which often affect young patients and which are sensitive to chemo and radiotherapy. Surgery is the mainstay of therapy in localized disease. In these entities, perioperative radiotherapy is frequently administered, and chemotherapy is evaluated in patients with high-risk limb/trunk wall tumors in which an advantage in overall survival has been shown in the latest clinical trials. In the advanced setting, new strategies, such as cellular therapy are being developed in these histologic types, with promising, although still preliminary, results.
Collapse
Affiliation(s)
- Nadia Hindi
- Department of Oncology, Fundación Jimenez Diaz University Hospital and Hospital General de Villalba, Madrid, Spain; Health Research Institute Fundación Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain.
| | - Rick L Haas
- Department of Radiotherapy at the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiotherapy at the Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Rytlewski J, Brockman QR, Dodd RD, Milhem M, Monga V. Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:25-35. [PMID: 35582536 PMCID: PMC8992584 DOI: 10.20517/cdr.2021.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022]
Abstract
Sarcomas are a class of rare malignancies of mesenchymal origin with a heterogeneous histological spectrum. They are classically associated with poor outcomes, especially once metastasized. A path to improving clinical outcomes may be made through modifying the epigenome, where a variety of sarcomas demonstrate changes that contribute to their oncogenic phenotypes. This Perspective article identifies and describes changes in the sarcoma genome, while discussing specific epigenetic changes and their effect on clinical outcomes. Clinical attempts at modulating epigenetics in sarcoma are reviewed, as well as potential implications of these studies. Epigenetic targets to reverse and delay chemotherapy resistance are discussed. Future directions with primary next steps are proposed to invigorate the current understanding of epigenetic biomarkers to enact targeted therapies to epigenetic phenotypes of sarcoma subtypes. Modifications to prior studies, as well as proposed clinical steps, are also addressed.
Collapse
Affiliation(s)
- Jeff Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qierra R Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
18
|
Fiore M, Sambri A, Spinnato P, Zucchini R, Giannini C, Caldari E, Pirini MG, De Paolis M. The Biology of Synovial Sarcoma: State-of-the-Art and Future Perspectives. Curr Treat Options Oncol 2021; 22:109. [PMID: 34687366 PMCID: PMC8541977 DOI: 10.1007/s11864-021-00914-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
New molecular insights are being achieved in synovial sarcoma (SS) that can provide new potential diagnostic and prognostic markers as well as therapeutic targets. In particular, the advancement of research on epigenomics and gene regulation is promising. The concrete hypothesis that the pathogenesis of SS might mainly depend on the disruption of the balance of the complex interaction between epigenomic regulatory complexes and the consequences on gene expression opens interesting new perspectives. The standard of care for primary SS is wide surgical resection combined with radiation in selected cases. The role of chemotherapy is still under refinement and can be considered in patients at high risk of metastasis or in those with advanced disease. Cytotoxic chemotherapy (anthracyclines, ifosfamide, trabectedin, and pazopanib) is the treatment of choice, despite several possible side effects. Many possible drug-able targets have been identified. However, the impact of these strategies in improving SS outcome is still limited, thus making current and future research strongly needed to improve the survival of patients with SS.
Collapse
Affiliation(s)
- Michele Fiore
- Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Andrea Sambri
- Alma Mater Studiorum - University of Bologna, Bologna, Italy. .,IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy.
| | | | | | | | - Emilia Caldari
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Giulia Pirini
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Massimiliano De Paolis
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
19
|
Yao Q, He YL, Wang N, Dong SS, Tu He Ta Mi Shi ME, Feng X, Chen H, Pang LJ, Zou H, Zhou WH, Li F, Qi Y. Identification of Potential Genomic Alterations and the circRNA-miRNA-mRNA Regulatory Network in Primary and Recurrent Synovial Sarcomas. Front Mol Biosci 2021; 8:707151. [PMID: 34485383 PMCID: PMC8414803 DOI: 10.3389/fmolb.2021.707151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Synovial sarcoma (SS) is one of the most invasive soft tissue sarcomas, prone to recurrence and metastasis, and the efficacy of surgical treatment and chemotherapy for SS remains poor. Therefore, the diagnosis and treatment of SS remain a significant challenge. This study aimed to analyze the mutated genes of primary SS (PSS) and recurrent SS (RSS), discover whether these sarcomas exhibit some potential mutated genes, and then predict associated microRNAs (miRNA) and circular RNAs (circRNA) by analyzing the mutated genes. We focused on the regulation mechanism of the circRNA-miRNA-mutated hub gene in PSS and RSS. Methods: We performed a comprehensive genomic analysis of four pairs of formalin-fixed paraffin-embedded samples of PSS and RSS, using Illumina human exon microarrays. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) function, and pathway enrichment of the mutated genes were analyzed, and the protein-protein interaction (PPI) network was forecast using String software 11.0. The hub genes were then obtained using the Molecular Complex Detection (MCODE) plug-in for Cytoscape 3.7.2 and were used to analyze overall survival (OS) using the Gene Expression Profiling Interactive Analysis (GEPIA) database. The corresponding miRNAs were obtained from the miRDB 5.0 and TargetScan 7.2 databases. The corresponding circRNAs of the hub genes were found through the miRNAs from these databases: Circbank, CircInteractome, and StarBase v2.0. Thereafter we set up a competing endogenous RNA (ceRNA) network with circRNA-miRNA and miRNA-messenger RNA (mRNA) pairs. Results: Using the chi-squared test, 391 mutated genes were screened using a significance level of p-values < 0.01 from the four pairs of PSS and RSS samples. A GO pathway analysis of 391 mutated genes demonstrated that differential expression mRNAs (DEmRNAs) might be bound up with the “positive regulation of neurogenesis,” “cell growth,” “axon part,” “cell−substrate junction,” or “protein phosphatase binding” of SS. The PPI network was constructed using 391 mutated genes, and 53 hub genes were identified (p < 0.05). Eight variant hub genes were discovered to be statistically significant using the OS analysis (p < 0.05). The circRNA-miRNA-mRNA (ceRNA) network was constructed, and it identified two circRNAs (hsa_circ_0070557 and hsa_circ_0070558), 10 miRNAs (hsa-let-7a-3p, hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-let-7f-2-3p, hsa-mir-1244, hsa-mir-1197, hsa-mir-124-3p, hsa-mir-1249-5p, hsa-mir-1253, and hsa-mir-1271-5p) and five hub genes (CENPE, ENPP3, GPR18, MDC1, and PLOD2). Conclusion: This study screened novel biological markers and investigated the differentiated circRNA-miRNA-mutated hub gene axis, which may play a pivotal role in the nosogenesis of PSS and RSS. Some circRNAs may be deemed new diagnostic or therapeutic targets that could be conducive to the future clinical treatment of SS.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Yong-Lai He
- Department of Pathology, Certral People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Shuang-Shuang Dong
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Mei Er Tu He Ta Mi Shi
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Xiao Feng
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Hao Chen
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Hong Zou
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Wen-Hu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Certral People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Angione SDA, Akalu AY, Gartrell J, Fletcher EP, Burckart GJ, Reaman GH, Leong R, Stewart CF. Fusion Oncoproteins in Childhood Cancers: Potential Role in Targeted Therapy. J Pediatr Pharmacol Ther 2021; 26:541-555. [PMID: 34421403 PMCID: PMC8372856 DOI: 10.5863/1551-6776-26.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Cancer remains the leading cause of death from disease in children. Historically, in contrast to their adult counterparts, the causes of pediatric malignancies have remained largely unknown, with most pediatric cancers displaying low mutational burdens. Research related to molecular genetics in pediatric cancers is advancing our understanding of potential drivers of tumorigenesis and opening new opportunities for targeted therapies. One such area is fusion oncoproteins, which are a product of chromosomal rearrangements resulting in the fusion of different genes. They have been identified as oncogenic drivers in several sarcomas and leukemias. Continued advancement in the understanding of the biology of fusion oncoproteins will contribute to the discovery and development of new therapies for childhood cancers. Here we review the current scientific knowledge on fusion oncoproteins, focusing on pediatric sarcomas and hematologic cancers, and highlight the challenges and current efforts in developing drugs to target fusion oncoproteins.
Collapse
|
21
|
DeSalvo J, Ban Y, Li L, Sun X, Jiang Z, Kerr DA, Khanlari M, Boulina M, Capecchi MR, Partanen JM, Chen L, Kondo T, Ornitz DM, Trent JC, Eid JE. ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control. J Clin Invest 2021; 131:141908. [PMID: 33983905 DOI: 10.1172/jci141908] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial sarcoma is an aggressive malignancy with no effective treatments for patients with metastasis. The synovial sarcoma fusion SS18-SSX, which recruits the SWI/SNF-BAF chromatin remodeling and polycomb repressive complexes, results in epigenetic activation of FGF receptor (FGFR) signaling. In genetic FGFR-knockout models, culture, and xenograft synovial sarcoma models treated with the FGFR inhibitor BGJ398, we show that FGFR1, FGFR2, and FGFR3 were crucial for tumor growth. Transcriptome analyses of BGJ398-treated cells and histological and expression analyses of mouse and human synovial sarcoma tumors revealed prevalent expression of two ETS factors and FGFR targets, ETV4 and ETV5. We further demonstrate that ETV4 and ETV5 acted as drivers of synovial sarcoma growth, most likely through control of the cell cycle. Upon ETV4 and ETV5 knockdown, we observed a striking upregulation of DUX4 and its transcriptional targets that activate the zygotic genome and drive the atrophy program in facioscapulohumeral dystrophy patients. In addition to demonstrating the importance of inhibiting all three FGFRs, the current findings reveal potential nodes of attack for the cancer with the discovery of ETV4 and ETV5 as appropriate biomarkers and molecular targets, and activation of the embryonic DUX4 pathway as a promising approach to block synovial sarcoma tumors.
Collapse
Affiliation(s)
- Joanna DeSalvo
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, and.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Luyuan Li
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | | | - Zhijie Jiang
- University of Miami Center for Computational Science, Coral Gables, Florida, USA
| | | | | | - Maria Boulina
- Analytical Imaging Core Facility, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mario R Capecchi
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Juha M Partanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lin Chen
- Center of Bone Metabolism and Repair, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jonathan C Trent
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | - Josiane E Eid
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| |
Collapse
|
22
|
Boulay G, Cironi L, Garcia SP, Rengarajan S, Xing YH, Lee L, Awad ME, Naigles B, Iyer S, Broye LC, Keskin T, Cauderay A, Fusco C, Letovanec I, Chebib I, Nielsen PG, Tercier S, Cherix S, Nguyen-Ngoc T, Cote G, Choy E, Provero P, Suvà ML, Rivera MN, Stamenkovic I, Riggi N. The chromatin landscape of primary synovial sarcoma organoids is linked to specific epigenetic mechanisms and dependencies. Life Sci Alliance 2020; 4:4/2/e202000808. [PMID: 33361335 PMCID: PMC7768195 DOI: 10.26508/lsa.202000808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
We have addressed the mechanisms by which the fusion protein SS18-SSX modifies the epigenome toward the development of synovial sarcoma and the establishment of its potentially targetable vulnerabilities. Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene SS18 to one of three SSX genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces broad BAF domains at its binding sites, which oppose polycomb repressor complex (PRC) 2 activity, while facilitating recruitment of a non-canonical (nc)PRC1 variant. Along with the uncoupling of polycomb complexes, we observed H3K27me3 eviction, H2AK119ub deposition and the establishment of de novo active regulatory elements that drive SyS identity. These alterations are completely reversible upon SS18-SSX depletion and are associated with vulnerability to USP7 loss, a core member of ncPRC1.1. Using the power of primary tumor organoids, our work helps define the mechanisms of epigenetic dysregulation on which SyS cells are dependent.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luisa Cironi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sara P Garcia
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu-Hang Xing
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukuo Lee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliane C Broye
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tugba Keskin
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Cauderay
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carlo Fusco
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Petur Gunnalugur Nielsen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stéphane Tercier
- Department of Woman-Mother Child, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Cherix
- Department of Orthopedics, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gregory Cote
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Provero
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ivan Stamenkovic
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland .,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolò Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland .,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Hernandez Tejada FN, Zamudio A, Marques-Piubelli ML, Cuglievan B, Harrison D. Advances in the Management of Pediatric Sarcomas. Curr Oncol Rep 2020; 23:3. [PMID: 33196879 DOI: 10.1007/s11912-020-00995-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The prognosis of pediatric patients who present with metastatic or recurrent sarcomas remains poor. In this review, we summarize the advances in the management of metastatic and relapsed pediatric sarcoma by highlighting recent and future clinical trials. RECENT FINDINGS Research into the identification of novel therapies for refractory pediatric sarcomas continues to advance. Outcomes have not improved in several decades underlying a need for improved understanding of the biology behind these tumors and the identification of novel therapeutic molecular targets that can be exploited pharmacologically. Multiple challenges remain for novel therapy in sarcomas such as the selection of effective targets, management of toxicities, and the tumor microenvironment. Many unique challenges remain in the treatment of patients with refractory pediatric sarcomas. Multiple strategies and targets are under investigation that hold promise.
Collapse
Affiliation(s)
- Fiorela N Hernandez Tejada
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Alejandro Zamudio
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Douglas Harrison
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Cassandri M, Fioravanti R, Pomella S, Valente S, Rotili D, Del Baldo G, De Angelis B, Rota R, Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front Pharmacol 2020; 11:1230. [PMID: 32903585 PMCID: PMC7438590 DOI: 10.3389/fphar.2020.01230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-Dependent Kinases (CDKs) are well-known reliable targets for cancer treatment being often deregulated. Among them, since the transcription-associated CDK9 represents the sentry of cell transcriptional homeostasis, it can be a valuable target for managing cancers in which the transcriptional machinery is dysregulated by tumor-driver oncogenes. Here we give an overview of some natural compounds identified as CDK inhibitors with reported activity also against CDK9, that were taken as a model for the development of highly active synthetic anti-CDK9 agents. After, we summarize the data on CDK9 inhibition in a group of rare pediatric solid tumors such as rhabdomyosarcoma, Ewing’s sarcoma, synovial sarcoma and malignant rhabdoid tumors (soft tissue sarcomas), highlighting the more recent results in this field. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020; 11:5293-5308. [PMID: 32742476 PMCID: PMC7391194 DOI: 10.7150/jca.42816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis, treatment and prognosis of sarcoma are mainly dependent on tissue biopsy, which is limited in its ability to provide a panoramic view into the dynamics of tumor progression. In addition, effective biomarkers to monitor the progression and therapeutic response of sarcoma are lacking. Liquid biopsy, a recent technological breakthrough, has gained great attention in the last few decades. Nucleic acids (such as DNA, mRNAs, microRNAs, and long non-coding RNAs) that are released from tumors circulate in the blood of cancer patients and can be evaluated through liquid biopsy. Circulating tumor nucleic acids reflect the intertumoral and intratumoral heterogeneity, and thus liquid biopsy provides a noninvasive strategy to examine these molecules compared with traditional tissue biopsy. Over the past decade, a great deal of information on the potential utilization of circulating tumor nucleic acids in sarcoma screening, prognosis and therapy efficacy monitoring has emerged. Several specific gene mutations in sarcoma can be detected in peripheral blood samples from patients and can be found in circulating tumor DNA to monitor sarcoma. In addition, circulating tumor non-coding RNA may also be a promising biomarker in sarcoma. In this review, we discuss the clinical application of circulating tumor nucleic acids as blood-borne biomarkers in sarcoma.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xinyue Liu
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ting Li
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Peipei Xing
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chao Zhang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jilong Yang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|