1
|
Willems M, Hamaidia M, Fontaine A, Grégoire M, Halkin L, Vilanova Mañá L, Terres R, Jamakhani M, Deshayes S, Brostaux Y, Heinen V, Louis R, Duysinx B, Jean D, Wasielewski E, Scherpereel A, Blanquart C, Willems L. The impact of Charcot-Leyden Crystal protein on mesothelioma chemotherapy: targeting eosinophils for enhanced chemosensitivity. EBioMedicine 2024; 109:105418. [PMID: 39471751 PMCID: PMC11550731 DOI: 10.1016/j.ebiom.2024.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND In mesothelioma (MPM), clinical evidence indicates that the absolute eosinophil count negatively correlates with overall survival and response to standard chemotherapy. Since eosinophils poorly infiltrate MPM tumours, we hypothesised that endocrine rather than paracrine pathways mediate the therapeutic response. We thus studied the effect of eosinophil-associated factors on response to chemotherapy in mesothelioma. METHODS The culture supernatant conditioned by primary human eosinophils was added to mesothelioma cells in presence of the standard chemotherapeutic regimen. The effectiveness of an anti-eosinophil treatment was evaluated in a preclinical model of C57BL/6 mice transplanted with mesothelioma tumour cells. FINDINGS Supernatant of eosinophils differentiated from EOL1 cells or directly isolated from peripheral blood inhibited apoptosis induced by cisplatin and pemetrexed in 2D cultures and in spheroids. Transcriptomic analysis indicated that the anti-apoptotic effect mediated by eosinophils involved molecular interactions with the Charcot-Leyden Crystal protein or Galectin-10 (CLC-P/Gal10). The functional relevance of CLC-P/Gal10 was demonstrated by antibody-mediated depletion. Recombinant human CLC-P/Gal10 mimicked the anti-apoptotic activity of eosinophil-derived supernatants. In the mouse model, eosinophilia did not significantly affect tumour growth but altered the response to chemotherapy. Finally, pretreatment of eosinophilia with the anti-Siglec-F antibody before chemotherapy restored the effectiveness of the treatment. INTERPRETATION This study provides a mechanistic rationale to clinical evidence correlating the poor outcome of patients with mesothelioma and with eosinophil-derived CLC-P/Gal10, opening new prospects for intervention in this fatal solid tumour. FUNDING Belgian Foundation against Cancer, Fonds National de la Recherche Scientifique (FNRS), Télévie, Foundation Léon Fredericq, ULiège.
Collapse
Affiliation(s)
- Mégane Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Malik Hamaidia
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Alexis Fontaine
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Mélanie Grégoire
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Louise Halkin
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Lea Vilanova Mañá
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Roxane Terres
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Majeed Jamakhani
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Sophie Deshayes
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Yves Brostaux
- Modelisation and development, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Vincent Heinen
- Department of Pneumology (University Hospital of Liege), Liege, Belgium
| | - Renaud Louis
- Department of Pneumology (University Hospital of Liege), Liege, Belgium
| | - Bernard Duysinx
- Department of Pneumology (University Hospital of Liege), Liege, Belgium
| | - Didier Jean
- Centre de Recherche des Cordeliers (INSERM), Sorbonne Université (Université de Paris), Functional Genomics of Solid Tumors, Paris, France
| | - Eric Wasielewski
- Department of Pneumology and Thoracic Oncology (CHU Lille) and INSERM U1189 (ONCOTHAI), Lille, France
| | - Arnaud Scherpereel
- Department of Pneumology and Thoracic Oncology (CHU Lille) and INSERM U1189 (ONCOTHAI), Lille, France
| | - Christophe Blanquart
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium.
| |
Collapse
|
2
|
Liu YT, Wu HL, Su YD, Wang Y, Li Y. Development in the Study of Natural Killer Cells for Malignant Peritoneal Mesothelioma Treatment. Cancer Biother Radiopharm 2024; 39:551-561. [PMID: 39093850 DOI: 10.1089/cbr.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare primary malignant tumor originating from peritoneal mesothelial cells. Insufficient specificity of the symptoms and their frequent reappearance following surgery make it challenging to diagnose, creating a need for more efficient treatment options. Natural killer cells (NK cells) are part of the innate immune system and are classified as lymphoid cells. Under the regulation of activating and inhibiting receptors, NK cells secrete various cytokines to exert cytotoxic effects and participate in antiforeign body, antiviral, and antitumor activities. This review provides a comprehensive summary of the specific alterations observed in NK cells following MPeM treatment, including changes in cell number, subpopulation distribution, active receptors, and cytotoxicity. In addition, we summarize the impact of various therapeutic interventions, such as chemotherapy, immunotherapy, and targeted therapy, on NK cell function post-MPeM treatment.
Collapse
Affiliation(s)
- Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
4
|
Nel AE, Pavlisko EN, Roggli VL. The Interplay Between the Immune System, Tumor Suppressor Genes, and Immune Senescence in Mesothelioma Development and Response to Immunotherapy. J Thorac Oncol 2024; 19:551-564. [PMID: 38000500 DOI: 10.1016/j.jtho.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.
Collapse
Affiliation(s)
- Andre E Nel
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California; Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | | | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Inaguma S, Wang C, Ito S, Ueki A, Lasota J, Czapiewski P, Langfort R, Rys J, Szpor J, Waloszczyk P, Okoń K, Biernat W, Takiguchi S, Schrump DS, Miettinen M, Takahashi S. Characterization of Pleural Mesothelioma by Hierarchical Clustering Analyses Using Immune Cells within Tumor Microenvironment. Pathobiology 2024; 91:313-325. [PMID: 38527431 DOI: 10.1159/000538520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
INTRODUCTION Over the past decade, classifications using immune cell infiltration have been applied to many types of tumors; however, mesotheliomas have been less frequently evaluated. METHODS In this study, 60 well-characterized pleural mesotheliomas (PMs) were evaluated immunohistochemically for the characteristics of immune cells within tumor microenvironment (TME) using 10 immunohistochemical markers: CD3, CD4, CD8, CD56, CD68, CD163, FOXP3, CD27, PD-1, and TIM-3. For further characterization of PMs, hierarchical clustering analyses using these 10 markers were performed. RESULTS Among the immune cell markers, CD3 (p < 0.0001), CD4 (p = 0.0016), CD8 (p = 0.00094), CD163+ (p = 0.042), and FOXP3+ (p = 0.025) were significantly associated with an unfavorable clinical outcome. Immune checkpoint receptor expressions on tumor-infiltrating lymphocytes such as PD-1 (p = 0.050), CD27 (p = 0.014), and TIM-3 (p = 0.0098) were also associated with unfavorable survival. Hierarchical clustering analyses identified three groups showing specific characteristics and significant associations with patient survival (p = 0.016): the highest number of immune cells (ICHigh); the lowest number of immune cells, especially CD8+ and CD163+ cells (ICLow); and intermediate number of immune cells (ICInt). ICHigh tumors showed significantly higher expression of PD-L1 (p = 0.00038). Cox proportional hazard model identified ICHigh [hazard ratio (HR) = 2.90] and ICInt (HR = 2.97) as potential risk factors compared with ICLow. Tumor CD47 (HR = 2.36), tumor CD70 (HR = 3.04), and tumor PD-L1 (HR = 3.21) expressions were also identified as potential risk factors for PM patients. CONCLUSION Our findings indicate immune checkpoint and/or immune cell-targeting therapies against CD70-CD27 and/or CD47-SIRPA axes may be applied for PM patients in combination with PD-L1-PD-1 targeting therapies in accordance with their tumor immune microenvironment characteristics.
Collapse
Affiliation(s)
- Shingo Inaguma
- Department of Pathology, Nagoya City University East Medical Center, Nagoya, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Piotr Czapiewski
- Department of Pathology, Dessau Medical Centre, Dessau-Roßlau, Germany
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University, Kraków, Poland
| | | | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University, Kraków, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - David S Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Calabrò L, Bronte G, Grosso F, Cerbone L, Delmonte A, Nicolini F, Mazza M, Di Giacomo AM, Covre A, Lofiego MF, Crinò L, Maio M. Immunotherapy of mesothelioma: the evolving change of a long-standing therapeutic dream. Front Immunol 2024; 14:1333661. [PMID: 38259475 PMCID: PMC10800748 DOI: 10.3389/fimmu.2023.1333661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Pleural mesothelioma (PM) is an aggressive and rare disease, characterized by a very poor prognosis. For almost two decades, the world standard treatment regimen for unresectable PM has consisted of a platinum-based drug plus pemetrexed, leading to an overall survival of approximately 12 months. The dramatic therapeutic scenario of PM has recently changed with the entry into the clinic of immune checkpoint inhibition, which has proven to be an effective approach to improve the survival of PM patients. The aim of the present review is to provide a comprehensive overview of the most promising immunotherapeutic-based strategies currently under investigation for advanced PM.
Collapse
Affiliation(s)
- Luana Calabrò
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Oncology, University Hospital of Ferrara, Ferrara, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Federica Grosso
- Mesothelioma, Melanoma and Sarcoma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Luigi Cerbone
- Mesothelioma, Melanoma and Sarcoma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Fabio Nicolini
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimiliano Mazza
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
- EPigenetic Immune-Oncology Consortium Airc (EPICA), Siena, Italy
| | - Maria Fortunata Lofiego
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
- EPigenetic Immune-Oncology Consortium Airc (EPICA), Siena, Italy
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
- EPigenetic Immune-Oncology Consortium Airc (EPICA), Siena, Italy
- Fondazione Network Italiano per la Bioterapia dei Tumori (NIBIT) Onlus, Siena, Italy
| |
Collapse
|
7
|
Avilés-Salas A, Cabrera-Miranda L, Hernández-Pedro N, Vargas-Lías DS, Samtani S, Muñoz-Montaño W, Motola-Kuba D, Corrales-Rodríguez L, Martín C, Cardona AF, Palomares-Palomares CB, Arrieta O. PD-L1 expression complements CALGB prognostic scoring system in malignant pleural mesothelioma. Front Oncol 2023; 13:1269029. [PMID: 38111532 PMCID: PMC10725960 DOI: 10.3389/fonc.2023.1269029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023] Open
Abstract
Background Programmed death ligand-1 (PD-L1) expression is a predictive biomarker in patients with lung cancer, but its role in malignant pleural mesothelioma (MPM) remains unclear. Evidence suggests that higher PD-L1 expression is correlated with worse survival. CALGB is the main scoring system used to predict the benefit of chemotherapy treatment. This study aimed to determine the prognostic value of PD-L1 expression and its addition to CALGB scoring system in patients with MPM. Methods In this retrospective analysis, we evaluated samples with confirmed locally advanced or metastatic MPM. PD-L1 Tumor Proportional Score (TPS) was determined by immunohistochemistry at diagnosis. Results 73 patients were included in this study. A cutoff value of 15 was set for a high or low PD-L1 TPS. In total, 71.2% (n=52) and 28.8% (n=21) of individuals harbored low or high PD-L1 expression, respectively. PD-L1High was associated with worse median progression-free Survival (mPFS) [4.9 vs. 10.8 months; HR 2.724, 95% CI (1.44-5.14); p = 0.002] and Overall Survival (OS) [6.0 vs. 20.9 months; HR 6.87, 95% CI (3.4-8.7); p<0.001] compared to patients with PD-L1Low. Multivariate analysis confirmed that PD-L1 expression was an independent factor for PFS and OS in patients with MPM and CALGB score of 5-6. Conclusion PD-L1 addition to CALGB scale improves its prognostic estimation of MPM survival and should be considered in future research.
Collapse
Affiliation(s)
| | - Luis Cabrera-Miranda
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Suraj Samtani
- Medical Oncology Department, Clínica Las Condes Santiago, Santiago, Chile
| | - Wendy Muñoz-Montaño
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Daniel Motola-Kuba
- Departments of Biomedical Research and Gastroenterology and Liver Unit and Hemodialysis Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| | | | - Claudio Martín
- Department of Medicine, Western University, London, ON, Canada
| | - Andrés F. Cardona
- Thoracic Oncology Unit and Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
8
|
Chiaro J, Antignani G, Feola S, Feodoroff M, Martins B, Cojoc H, Russo S, Fusciello M, Hamdan F, Ferrari V, Ciampi D, Ilonen I, Räsänen J, Mäyränpää M, Partanen J, Koskela S, Honkanen J, Halonen J, Kuryk L, Rescigno M, Grönholm M, Branca RM, Lehtiö J, Cerullo V. Development of mesothelioma-specific oncolytic immunotherapy enabled by immunopeptidomics of murine and human mesothelioma tumors. Nat Commun 2023; 14:7056. [PMID: 37923723 PMCID: PMC10624665 DOI: 10.1038/s41467-023-42668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients' primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors.
Collapse
Affiliation(s)
- Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Sara Feola
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Hanne Cojoc
- Valo Therapeutics Oy, Viikinkaari 6, Helsinki, Finland, 00790, Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Firas Hamdan
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Valentina Ferrari
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Daniele Ciampi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ilkka Ilonen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital, 00029, Helsinki, Finland
- Department of Surgery, Clinicum, University of Helsinki, 00029, Helsinki, Finland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital, 00029, Helsinki, Finland
- Department of Surgery, Clinicum, University of Helsinki, 00029, Helsinki, Finland
| | - Mikko Mäyränpää
- Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Jukka Partanen
- Research & Development Finnish Red Cross Blood Service Helsinki, Kivihaantie 7, 00310, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Jarno Honkanen
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Jussi Halonen
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Lukasz Kuryk
- Valo Therapeutics Oy, Viikinkaari 6, Helsinki, Finland, 00790, Helsinki, Finland
- Department of Virology, National Institute of Public Health NIH-National Research Institute, 24 Chocimska Str., 00-791, Warsaw, Poland
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Mikaela Grönholm
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Rui M Branca
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland.
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland.
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, 80131, Naples, Italy.
| |
Collapse
|
9
|
Weng J, Chen J. Comprehensive bioinformatics analysis of the role of VWF in the tumor microenvironment of malignant mesothelioma. Medicine (Baltimore) 2023; 102:e35579. [PMID: 37832118 PMCID: PMC10578691 DOI: 10.1097/md.0000000000035579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
To explore the influence and effect of tumor microenvironment on the development of malignant mesothelioma using machine learning methods. 87 open cases were downloaded from the Cancer Genome Atlas database including transcriptome data, clinical data, and mutation data. The immune, stromal, and estimate scores were calculated for each case by using the ESTIMATE algorithm, and then the cases were grouped according to high and low stromal scores to predict all-cause survival in malignant mesothelioma cases. Their mutation data were analyzed to reveal the differences in mutated genes between the 2 groups, and then the von Willebrand factor (VWF) and FCRL3 genes were identified according to the intersection of DEGs and high-frequency mutated genes. Lastly, the correlation between VWF and the immune checkpoint of 22 kinds of immune cells was analyzed by using the CIBERSORT package of R software. A significant difference was found in the survival time of patients between the high and low stromal score groups. High expression of the VWF gene was negatively correlated with the prognosis of malignant mesothelioma, and the expression of VWF was positively correlated with naive B cells and activated CD4 memory T cells and negatively correlated with NK cells. The results revealed that high expression of VWF may involve in the development of malignant mesothelioma, and the anti-CTLA4 immune checkpoint treatment may have certain efficacy.
Collapse
Affiliation(s)
- Jiren Weng
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Homicsko K, Zygoura P, Norkin M, Tissot S, Shakarishvili N, Popat S, Curioni-Fontecedro A, O'Brien M, Pope A, Shah R, Fisher P, Spicer J, Roy A, Gilligan D, Rusakiewicz S, Fortis E, Marti N, Kammler R, Finn SP, Coukos G, Dafni U, Peters S, Stahel RA. PD-1-expressing macrophages and CD8 T cells are independent predictors of clinical benefit from PD-1 inhibition in advanced mesothelioma. J Immunother Cancer 2023; 11:e007585. [PMID: 37880184 PMCID: PMC10603330 DOI: 10.1136/jitc-2023-007585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Few tissue biomarkers exist to date that could enrich patient with cancer populations to benefit from immune checkpoint blockade by programmed cell death protein 1/ligand-1 (PD-/L-1) inhibitors. PD-L1 expression has value in this context in some tumor types but is an imperfect predictor of clinical benefit. In malignant pleural mesothelioma, PD-L1 expression is not predictive of the benefit from PD-1 blockade. We aimed to identify novel markers in malignant pleural mesothelioma to select patients better. METHODS We performed a multiplex-immune histochemistry analysis of tumor samples from the phase III PROMISE-meso study, which randomized 144 pretreated patients to receive either pembrolizumab or standard second-line chemotherapy. Our panel focused on CD8+T cell, CD68+macrophages, and the expression of PD-1 and PD-L1 on these and cancer cells. We analyzed single and double positive cells within cancer tissues (infiltrating immune cells) and in the stroma. In addition, we performed cell neighborhood analysis. The cell counts were compared with clinical outcomes, including responses, progression-free and overall survivals. RESULTS We confirmed the absence of predictive value for PD-L1 in this cohort of patients. Furthermore, total CD8 T cells, CD68+macrophages, or inflammatory subtypes (desert, excluded, inflamed) did not predict outcomes. In contrast, PD-1-expressing CD8+T cells (exhausted T cells) and PD-1-expressing CD68+macrophages were both independent predictors of progression-free survival benefit from pembrolizumab. Patients with tumors simultaneously harboring PD1+T cells and PD-1+macrophages benefited the most from immune therapy. CONCLUSION We analyzed a large cohort of patients within a phase III study and found that not only PD-1+CD8 T cells but also PD-1+CD68+ macrophages are predictive. This data provides evidence for the first time for the existence of PD-1+macrophages in mesothelioma and their clinical relevance for immune checkpoint blockade.
Collapse
Affiliation(s)
- Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Panagiota Zygoura
- ETOP Statistical Center, Frontier Science Foundation - Hellas, Athens, Greece
| | - Maxim Norkin
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Stephanie Tissot
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital NHS Trust, London, UK
| | - Alessandra Curioni-Fontecedro
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Oncology, Fribourg Hospitals, Fribourg, Switzerland
| | - Mary O'Brien
- Department of Oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - Anthony Pope
- Department of Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - Riyaz Shah
- Department of Medical Oncology, Kent Oncology Centre, Maidstone, UK
| | - Patricia Fisher
- Department of Medical Oncology, Weston Park Hospital, Sheffield, UK
| | - James Spicer
- Comprehensive Cancer Center, King's College London, London, UK
| | - Amy Roy
- Department of Medical Oncology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - David Gilligan
- Department of Medical Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sylvie Rusakiewicz
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ekaterina Fortis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nesa Marti
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Roswitha Kammler
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Stephen P Finn
- Molecular Diagnostics and Histopathology, Trinity College, Dublin, Ireland
| | - Georges Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Urania Dafni
- ETOP Statistical Center, Frontier Science Foundation - Hellas, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Rolf A Stahel
- President, ETOP IBCSG Partners Foundation, Bern, Switzerland
| |
Collapse
|
11
|
Ponce S, Cedrés S, Ricordel C, Isambert N, Viteri S, Herrera-Juarez M, Martinez-Marti A, Navarro A, Lederlin M, Serres X, Zugazagoitia J, Vetrhus S, Jaderberg M, Hansen TB, Levitsky V, Paz-Ares L. ONCOS-102 plus pemetrexed and platinum chemotherapy in malignant pleural mesothelioma: a randomized phase 2 study investigating clinical outcomes and the tumor microenvironment. J Immunother Cancer 2023; 11:e007552. [PMID: 37661097 PMCID: PMC10476122 DOI: 10.1136/jitc-2023-007552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND ONCOS-102, an oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor, can alter the tumor microenvironment to an immunostimulatory state. Combining ONCOS-102 with standard-of-care chemotherapy for malignant pleural mesothelioma (MPM) may improve treatment outcomes. METHODS In this open-label, randomized study, patients with unresectable MPM received intratumoral ONCOS-102 (3×1011 virus particles on days 1, 4, 8, 36, 78, and 120) and pemetrexed plus cisplatin/carboplatin (from day 22), or pemetrexed plus cisplatin/carboplatin alone. The primary endpoint was safety. Overall survival (OS), progression-free survival, objective response rate, and tumor immunologic activation (baseline and day 36 biopsies) were also assessed. RESULTS In total, 31 patients (safety lead-in: n=6, randomized: n=25) were enrolled. Anemia (15.0% and 27.3%) and neutropenia (40.0% and 45.5%) were the most frequent grade ≥3 adverse events (AEs) in the ONCOS-102 (n=20) and chemotherapy-alone (n=11) cohorts. No patients discontinued ONCOS-102 due to AEs. No statistically significant difference in efficacy endpoints was observed. There was a numerical improvement in OS (30-month OS rate 34.1% vs 0; median OS 20.3 vs 13.5 months) with ONCOS-102 versus chemotherapy alone in chemotherapy-naïve patients (n=17). By day 36, ONCOS-102 was associated with increased T-cell infiltration and immune-related gene expression that was not observed in the control cohort. Substantial immune activation in the tumor microenvironment was associated with survival at month 18 in the ONCOS-102 cohort. CONCLUSIONS ONCOS-102 plus pemetrexed and cisplatin/carboplatin was well tolerated by patients with MPM. In injected tumors, ONCOS-102 promoted a proinflammatory environment, including T-cell infiltration, which showed association with survival at month 18.
Collapse
Affiliation(s)
- Santiago Ponce
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Susana Cedrés
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Charles Ricordel
- Department of Pulmonology, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | | | - Santiago Viteri
- Department of Medical Oncology, Instituto Oncológico Rosell, Grupo Quironsalud, Hospital Universitario Dexeus, Barcelona, Spain
| | | | - Alex Martinez-Marti
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alejandro Navarro
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mathieu Lederlin
- Department of Radiology, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Xavier Serres
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jon Zugazagoitia
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
- H12O-CNIO Lung Cancer Research Unit, Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Sylvia Vetrhus
- Research and Development, Circio Holding ASA, Oslo, Norway
| | | | | | | | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
- H12O-CNIO Lung Cancer Research Unit, Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Fiorilla I, Martinotti S, Todesco AM, Bonsignore G, Cavaletto M, Patrone M, Ranzato E, Audrito V. Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma. Cells 2023; 12:2048. [PMID: 37626858 PMCID: PMC10453755 DOI: 10.3390/cells12162048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.
Collapse
Affiliation(s)
- Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, 13100 Vercelli, Italy;
| | - Mauro Patrone
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| |
Collapse
|
13
|
Dietz MV, Quintelier KLA, van Kooten JP, de Boer NL, Vink M, Brandt-Kerkhof ARM, Verhoef C, Saeys Y, Aerts JGJV, Willemsen M, Van Gassen S, Madsen EVE. Adjuvant dendritic cell-based immunotherapy after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with malignant peritoneal mesothelioma: a phase II clinical trial. J Immunother Cancer 2023; 11:e007070. [PMID: 37536940 PMCID: PMC10401259 DOI: 10.1136/jitc-2023-007070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Malignant peritoneal mesothelioma (MPM) is an aggressive malignancy with a poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival outcomes, but recurrence rates remain high. Dendritic cell-based immunotherapy (DCBI) showed promising results in patients with pleural mesothelioma. The primary aim of this trial was to determine feasibility of adjuvant DCBI after CRS-HIPEC. METHODS This open-label, single-center, phase II clinical trial, performed in the Erasmus MC Cancer Institute Rotterdam, the Netherlands, included patients with epithelioid MPM. 4-6 weeks before CRS-HIPEC leukapheresis was performed. 8-10 weeks after surgery, DCBI was administered three times biweekly. Feasibility was defined as administration of at least three adjuvant vaccinations in 75% of patients. Comprehensive immune cell profiling was performed on peripheral blood samples prior to and during treatment. RESULTS All patients who received CRS-HIPEC (n=16) were successfully treated with adjuvant DCBI. No severe toxicity related to DCBI was observed. Median progression-free survival (PFS) was 12 months (IQR 5-23) and median overall survival was not reached. DCBI was associated with increased proliferation of circulating natural killer cells and CD4+ T-helper (Th) cells. Co-stimulatory molecules, including ICOS, HLA-DR, and CD28 were upregulated predominantly on memory or proliferating Th-cells and minimally on CD8+ cytotoxic T-lymphocytes (CTLs) after treatment. However, an increase in CD8+ terminally differentiated effector memory (Temra) cells positively correlated with PFS, whereas co-expression of ICOS and Ki67 on CTLs trended towards a positive correlation. CONCLUSIONS Adjuvant DCBI after CRS-HIPEC in patients with MPM was feasible and safe, and showed promising survival outcomes. DCBI had an immune modulatory effect on lymphoid cells and induced memory T-cell activation. Moreover, an increase of CD8+ Temra cells was more pronounced in patients with longer PFS. These data provide rationale for future combination treatment strategies. TRIAL REGISTRATION NUMBER NTR7060; Dutch Trial Register (NTR).
Collapse
Affiliation(s)
- Michelle V Dietz
- Department of Surgical oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Katrien L A Quintelier
- Data Mining and Modeling for Biomedicine Group, VIB-UGent Center for Inflammation Research Elewaut Unit Molecular Immunology and Inflammatory Unit, Gent, Oost-Vlaanderen, Belgium
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - Job P van Kooten
- Department of Surgical oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadine L de Boer
- Department of Surgical oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Madelief Vink
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | | | - Cornelis Verhoef
- Department of Surgical oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine Group, VIB-UGent Center for Inflammation Research Elewaut Unit Molecular Immunology and Inflammatory Unit, Gent, Oost-Vlaanderen, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Marcella Willemsen
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine Group, VIB-UGent Center for Inflammation Research Elewaut Unit Molecular Immunology and Inflammatory Unit, Gent, Oost-Vlaanderen, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - Eva V E Madsen
- Department of Surgical oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Tada A, Minami T, Kitai H, Higashiguchi Y, Tokuda M, Higashiyama T, Negi Y, Horio D, Nakajima Y, Otsuki T, Mikami K, Takahashi R, Nakamura A, Kitajima K, Ohmuraya M, Kuribayashi K, Kijima T. Combination therapy with anti-programmed cell death 1 antibody plus angiokinase inhibitor exerts synergistic antitumor effect against malignant mesothelioma via tumor microenvironment modulation. Lung Cancer 2023; 180:107219. [PMID: 37146474 DOI: 10.1016/j.lungcan.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related fatal malignant neoplasm. Although there has been no reliable chemotherapeutic regimen other than combination therapy of cisplatin and pemetrexed for two decades, combination of ipilimumab plus nivolumab brought about a better outcome in patients with MPM. Thus, cancer immunotherapy using immune checkpoint inhibitor (ICI) is expected to play a central role in the treatment of MPM. To maximize the antitumor effect of ICI, we evaluated whether nintedanib, an antiangiogenic agent, could augment the antitumor effect of anti-programmed cell death 1 (PD-1) antibody (Ab). Although nintedanib could not inhibit the proliferation of mesothelioma cells in vitro, it significantly suppressed the growth of mesothelioma allografts in mice. Moreover, combination therapy with anti-PD-1 Ab plus nintedanib reduced tumor burden more dramatically compared with nintedanib monotherapy via inducing remarkable necrosis in MPM allografts. Nintedanib did not promote the infiltration of CD8+ T cells within the tumor when used alone or in combination with anti-PD-1 Ab but it independently decreased the infiltration of tumor-associated macrophages (TAMs). Moreover, immunohistochemical analysis and ex vivo study using bone marrow-derived macrophages (BMDMs) showed that nintedanib could polarize TAMs from M2 to M1 phenotype. These results indicated that nintedanib had a potential to suppress protumor activity of TAMs both numerically and functionally. On the other hand, ex vivo study revealed that nintedanib upregulated the expression of PD-1 and PD-ligand 1 (PD-L1) in BMDMs and mesothelioma cells, respectively, and exhibited the impairment of phagocytic activity of BMDMs against mesothelioma cells. Co-administration of anti-PD-1 Ab may reactivate phagocytic activity of BMDMs by disrupting nintedanib-induced immunosuppressive signal via binding between PD-1 on BMDMs and PD-L1 on mesothelioma cells. Collectively, combination therapy of anti-PD-1 Ab plus nintedanib enhances the antitumor activity compared with respective monotherapy and can become a novel therapeutic option for patients with MPM.
Collapse
Affiliation(s)
- Akio Tada
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| | - Hidemi Kitai
- Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoko Higashiguchi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Mayuko Tokuda
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Tomoki Higashiyama
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoshiki Negi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Daisuke Horio
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yasuhiro Nakajima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Taiichiro Otsuki
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Koji Mikami
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ryo Takahashi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Akifumi Nakamura
- Department of Thoracic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, Nishinomiya, Japan
| | - Kozo Kuribayashi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
15
|
Di Mauro G, Frontini F, Torreggiani E, Iaquinta MR, Caselli A, Mazziotta C, Esposito V, Mazzoni E, Libener R, Grosso F, Maconi A, Martini F, Bononi I, Tognon M. Epigenetic investigation into circulating microRNA 197-3p in sera from patients affected by malignant pleural mesothelioma and workers ex-exposed to asbestos. Sci Rep 2023; 13:6501. [PMID: 37081052 PMCID: PMC10119131 DOI: 10.1038/s41598-023-33116-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
The epigenetic role of microRNAs is established at both physiological and pathological levels. Dysregulated miRNAs and their targets appear to be a promising approach for innovative anticancer therapies. In our previous study, circulating miR-197-3p tested dysregulated in workers ex-exposed to asbestos (WEA). Herein, an epigenetic investigation on this circulating miRNA was carried out in sera from malignant pleural mesothelioma (MPM) patients. MiR-197-3p was quantified in MPM (n = 75) sera and comparatively analyzed to WEA (n = 75) and healthy subject (n = 75) sera, using ddPCR and RT-qPCR techniques. Clinicopathological characteristics, occupational, non-occupational information and overall survival (OS) were evaluated in correlation studies. MiR-197-3p levels, analyzed by ddPCR, were significantly higher in MPM than in WEA cohort, with a mean copies/µl of 981.7 and 525.01, respectively. Consistently, RT-qPCR showed higher miR-197-3p levels in sera from MPM with a mean copies/µl of 603.7, compared to WEA with 336.1 copies/µl. OS data were significantly associated with histologic subtype and pleurectomy. Circulating miR-197-3p is proposed as a new potential biomarker for an early diagnosis of the MPM onset. Indeed, miR-197-3p epigenetic investigations along with chest X-ray, computed tomography scan and spirometry could provide relevant information useful to reach an early and effective diagnosis for MPM.
Collapse
Affiliation(s)
- Giulia Di Mauro
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Francesca Frontini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Andrea Caselli
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Valentina Esposito
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Libener
- Research Training and Innovation Infrastructure - Department of Integrated Research and Innovation Activities (DAIRI), AO SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Federica Grosso
- Mesothelioma Unit, AO SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Antonio Maconi
- Research Training and Innovation Infrastructure - Department of Integrated Research and Innovation Activities (DAIRI), AO SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Fernanda Martini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Ilaria Bononi
- Department of Translational Medicine and for Romagna, University of Ferrara, 70, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - Mauro Tognon
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
16
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|
17
|
Inaguma S, Ueki A, Lasota J, Komura M, Sheema AN, Czapiewski P, Langfort R, Rys J, Szpor J, Waloszczyk P, Okoń K, Biernat W, Schrump DS, Hassan R, Miettinen M, Takahashi S. CD70 and PD-L1 (CD274) co-expression predicts poor clinical outcomes in patients with pleural mesothelioma. J Pathol Clin Res 2023; 9:195-207. [PMID: 36754859 PMCID: PMC10073927 DOI: 10.1002/cjp2.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Diffuse pleural mesothelioma (PM) is a highly aggressive tumour typically associated with short survival. Recently, the effectiveness of first-line immune checkpoint inhibitors in patients with unresectable PM was reported. CD70-CD27 signalling plays a co-stimulatory role in promoting T cell expansion and differentiation through the nuclear factor κB (NF-κB) pathway. Conversely, the PD-L1 (CD274)-PD-1 (PDCD1) pathway is crucial for the modulation of immune responses in normal conditions. Nevertheless, pathological activation of both the CD70-CD27 and PD-L1-PD-1 pathways by aberrantly expressed CD70 and PD-L1 participates in the immune evasion of tumour cells. In this study, 171 well-characterised PMs including epithelioid (n = 144), biphasic (n = 15), and sarcomatoid (n = 12) histotypes were evaluated immunohistochemically for CD70, PD-L1, and immune cell markers such as CD3, CD4, CD8, CD56, PD-1, FOXP3, CD68, and CD163. Eight percent (14/171) of mesotheliomas simultaneously expressed CD70 and PD-L1 on the tumour cell membrane. PMs co-expressing CD70 and PD-L1 contained significantly higher numbers of CD8+ (p = 0.0016), FOXP3+ (p = 0.00075), and CD163+ (p = 0.0011) immune cells within their microenvironments. Overall survival was significantly decreased in the cohort of patients with PM co-expressing CD70 and PD-L1 (p < 0.0001). In vitro experiments revealed that PD-L1 and CD70 additively enhanced the motility and invasiveness of PM cells. In contrast, PM cell proliferation was suppressed by PD-L1. PD-L1 enhanced mesenchymal phenotypes such as N-cadherin up-regulation. Collectively, these findings suggest that CD70 and PD-L1 both enhance the malignant phenotypes of PM and diminish anti-tumour immune responses. Based on our observations, combination therapy targeting these signalling pathways might be useful in patients with PM.
Collapse
Affiliation(s)
- Shingo Inaguma
- Department of Pathology, Nagoya City University East Medical Center, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Asraful Nahar Sheema
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Piotr Czapiewski
- Department of Pathology, Dessau Medical Centre, Dessau-Roßlau, Germany.,Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University, Kraków, Poland
| | | | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University, Kraków, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - David S Schrump
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
18
|
Di Marzio N, Ananthanarayanan P, Guex AG, Alini M, Riganti C, Serra T. Sound-based assembly of a microcapillary network in a saturn-like tumor model for drug testing. Mater Today Bio 2022; 16:100357. [PMID: 35880098 PMCID: PMC9307464 DOI: 10.1016/j.mtbio.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022] Open
Abstract
The tumor microenvironment (TME), consisting of extracellular matrix, proteins, stromal cells, and a vascular system, is reported to have a key role in cancer progression and prognosis. Thereby, the interaction between the vascular network and tumor mass is an important feature of the TME since the anticancer agents which are delivered to the TME can trigger the vascular response and influence the therapeutic outcome of the treatment. To identify and develop new therapeutic strategies, 3D in vitro models that recapitulate the complexity of the TME are urgently needed. Among them, vascularized tumor models are a promising approach, allowing to target tumor angiogenesis and reduce tumor growth. By using sound patterning, cells can be condensed locally into highly reproducible patterns through the action of mild hydrodynamic forces. Here, we use a soundwave-driven cell assembly approach to create a ring-shaped microcapillary network in fibrin hydrogel. Then, we generate a 3D vascularized tumor model by combining a tumor heterotypic spheroid, consisting of fibroblasts and Malignant Pleural Mesothelioma (MPM) cells, with the surrounding vascular ring. Based on its shape, we name it Saturn-like vascularized Tumor Model (STM). The growth of the microcapillary network is monitored over time by fluorescence imaging. The area covered by the microcapillary network, and its continuous increase in presence of the heterotypic tumor spheroid was monitored. Interestingly, this effect is enhanced when treating the STM with the anticancer agent Cisplatin. Overall, we show the use of sound patterning as a fast and cell-friendly approach to spatially organize and condense cells, to generate a 3D in vitro platform from which simple readouts of drug tests can be extracted by image analysis, with the potential to provide a model system for tailored tumor therapy. Reproducible ring-shaped microcapillary networks were created by sound assembly. Ring microcapillary network and tumor spheroid formed the Saturn-like tumor model. ‘Radial profile’ analysis was used to monitor the ring microcapillary networks. Growth of the microcapillaries was modulated by tumor spheroid and anticancer drug. Anticancer drug upregulated pro-angiogenic related genes in the tumor spheroid.
Collapse
Affiliation(s)
- Nicola Di Marzio
- AO Research Institute Davos, 7270 Davos, Switzerland.,Department of Health Sciences, Università Del Piemonte Orientale (UPO), Novara, Italy
| | | | | | - Mauro Alini
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126, Torino, Italy.,Inter-departmental Centre "G. Scansetti" for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10126, Torino, Italy
| | - Tiziano Serra
- AO Research Institute Davos, 7270 Davos, Switzerland
| |
Collapse
|
19
|
Tedesco J, Jaradeh M, Vigneswaran WT. Malignant Pleural Mesothelioma: Current Understanding of the Immune Microenvironment and Treatments of a Rare Disease. Cancers (Basel) 2022; 14:4415. [PMID: 36139575 PMCID: PMC9496741 DOI: 10.3390/cancers14184415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant pleural mesothelioma is a rare disease with an annual incidence of around 3000 cases a year in the United States. Most cases are caused by asbestos exposure, with a latency period of up to 40 years. Pleural mesothelioma is an aggressive disease process with overall survival of roughly 6-12 months after the time of diagnosis. It is divided into three subtypes: epithelioid, mixed type, and sarcomatoid type, with the epithelioid subtype having the best overall survival. Often, the treatment is multimodality with surgery, chemotherapy, and radiation. The survival benefit is improved but remains marginal. New treatment options involving targeted immune therapies appear to offer some promise. The tumor microenvironment is the ecosystem within the tumor that interacts and influences the host immune system. Understanding this complex interaction and how the host immune system is involved in the progression of the disease process is important to define and guide potential treatment options for this devastating and rare disease.
Collapse
Affiliation(s)
| | | | - Wickii T. Vigneswaran
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Mirata S, Almonti V, Di Giuseppe D, Fornasini L, Raneri S, Vernazza S, Bersani D, Gualtieri AF, Bassi AM, Scarfì S. The Acute Toxicity of Mineral Fibres: A Systematic In Vitro Study Using Different THP-1 Macrophage Phenotypes. Int J Mol Sci 2022; 23:2840. [PMID: 35269982 PMCID: PMC8911508 DOI: 10.3390/ijms23052840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar macrophages are the first line of defence against detrimental inhaled stimuli. To date, no comparative data have been obtained on the inflammatory response induced by different carcinogenic mineral fibres in the three main macrophage phenotypes: M0 (non-activated), M1 (pro-inflammatory) and M2 (alternatively activated). To gain new insights into the different toxicity mechanisms of carcinogenic mineral fibres, the acute effects of fibrous erionite, crocidolite and chrysotile in the three phenotypes obtained by THP-1 monocyte differentiation were investigated. The three mineral fibres apparently act by different toxicity mechanisms. Crocidolite seems to exert its toxic effects mostly as a result of its biodurability, ROS and cytokine production and DNA damage. Chrysotile, due to its low biodurability, displays toxic effects related to the release of toxic metals and the production of ROS and cytokines. Other mechanisms are involved in explaining the toxicity of biodurable fibrous erionite, which induces lower ROS and toxic metal release but exhibits a cation-exchange capacity able to alter the intracellular homeostasis of important cations. Concerning the differences among the three macrophage phenotypes, similar behaviour in the production of pro-inflammatory mediators was observed. The M2 phenotype, although known as a cell type recruited to mitigate the inflammatory state, in the case of asbestos fibres and erionite, serves to support the process by supplying pro-inflammatory mediators.
Collapse
Affiliation(s)
- Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
| | - Vanessa Almonti
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (D.D.G.); (A.F.G.)
| | - Laura Fornasini
- ICCOM-CNR—Institute of Chemistry of OrganoMetallic Compounds, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (L.F.); (S.R.)
| | - Simona Raneri
- ICCOM-CNR—Institute of Chemistry of OrganoMetallic Compounds, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (L.F.); (S.R.)
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Danilo Bersani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy;
| | - Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (D.D.G.); (A.F.G.)
| | - Anna Maria Bassi
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
| |
Collapse
|
21
|
Shah R, Klotz LV, Glade J. Current Management and Future Perspective in Pleural Mesothelioma. Cancers (Basel) 2022; 14:1044. [PMID: 35205798 PMCID: PMC8869935 DOI: 10.3390/cancers14041044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Pleural mesothelioma is an aggressive malignancy arising from pleural mesothelial cell lining, predominantly associated with prior exposure to asbestos. The ban on asbestos use has led to its lower incidence in many countries, but globally the disease burden is expected to rise. Therefore, well-planned research is needed to develop more effective, tolerable and affordable drugs. The development of novel treatment has been too slow, with only two regimens of systemic therapy with robust phase 3 data approved formally to date. The treatment scenario for resectable disease remains controversial. However, recent developments in the understanding of disease and clinical trials have been encouraging, and may add better treatment options in the coming years. In this review, we discuss the current treatment options for pleural mesothelioma and shed light on some recent studies and ongoing trials.
Collapse
Affiliation(s)
- Rajiv Shah
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Laura V. Klotz
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, 69126 Heidelberg, Germany;
| | - Julia Glade
- Institute for Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| |
Collapse
|
22
|
Štrbac D, Dolžan V. Novel and Future Treatment Options in Mesothelioma: A Systematic Review. Int J Mol Sci 2022; 23:1975. [PMID: 35216091 PMCID: PMC8874564 DOI: 10.3390/ijms23041975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
Mesothelioma is a rare tumor, frequently associated with asbestos exposure, arising from pleura and peritoneum. Traditionally, diagnosis and treatment have been difficult in a clinical setting. The treatment is based on a trimodal approach involving surgery, chemotherapy, and radiotherapy. The introduction of chemotherapy improved the overall survival. However, the regimen of pemetrexed/cisplatin doublet has not been changed as a standard treatment since 2004. Novel combinations of ipilimumab and nivolumab have only been approved for clinical use in late 2020. The aim of this review was to systematically summarize findings on novel treatment options in mesothelioma. We searched available medical databases online, such as PubMed and Clinicaltrials.gov, to systematically review the literature on novel approaches in immunotherapy, vaccines, and Chimeric Antigen Receptor (CAR)-T cell therapy in mesothelioma. We manually screened 1127 articles on PubMed and 450 trials on ClinicalTrials.gov, and 24 papers and 12 clinical trials published in the last ten years were included in this review. Immunotherapy that was swiftly introduced to treat other thoracic malignancies was slow to reach desirable survival endpoints in mesothelioma, possibly due to limited patient numbers. Novel treatment approaches, such as CAR-T cell therapy, are being investigated. As the incidence of mesothelioma is still rising globally, novel treatment options based on a better understanding of the tumor microenvironment and the genetic drivers that modulate it are needed to support future precision-based therapies.
Collapse
Affiliation(s)
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
24
|
Lapidot M, Saladi SV, Salgia R, Sattler M. Novel Therapeutic Targets and Immune Dysfunction in Malignant Pleural Mesothelioma. Front Pharmacol 2022; 12:806570. [PMID: 35069219 PMCID: PMC8776703 DOI: 10.3389/fphar.2021.806570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in the treatment of malignant pleural mesothelioma (MPM) have been disappointing, despite the apparent need for new therapeutic options for this rare and devastating cancer. Drug resistance is common and surgical intervention has brought benefits only to a subset of patients. MPM is a heterogenous disease with a surprisingly low mutation rate and recent sequencing efforts have confirmed alterations in a limited number of tumor suppressors that do not provide apparent insights into the molecular mechanisms that drive this malignancy. There is increasing evidence that epigenetic regulation leads to immune evasion and transformation in MPM. Further, the low efficacy of immune checkpoint inhibitors is consistent with a suppression of genes involved in the anti-tumor immune response. We review three promising emerging therapeutic targets (STAT3, KDM4A, heparanase) and highlight their potential effects on the immune response.
Collapse
Affiliation(s)
- Moshe Lapidot
- Department of Thoracic Surgery, Galilee Medical Center, Nahariya, Israel
| | - Srinivas Vinod Saladi
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, United States
| | - Martin Sattler
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
25
|
Lofiego MF, Cannito S, Fazio C, Piazzini F, Cutaia O, Solmonese L, Marzani F, Chiarucci C, Di Giacomo AM, Calabrò L, Coral S, Maio M, Covre A. Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy. EPIGENOMES 2021; 5:epigenomes5040027. [PMID: 34968251 PMCID: PMC8715476 DOI: 10.3390/epigenomes5040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe prognosis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM patients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluorimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related functional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes.
Collapse
Affiliation(s)
- Maria Fortunata Lofiego
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Sara Cannito
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Carolina Fazio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Francesca Piazzini
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Laura Solmonese
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Francesco Marzani
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Sandra Coral
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| | | |
Collapse
|
26
|
Cersosimo F, Barbarino M, Lonardi S, Vermi W, Giordano A, Bellan C, Giurisato E. Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13225664. [PMID: 34830817 PMCID: PMC8616064 DOI: 10.3390/cancers13225664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +39-057-723-2125
| |
Collapse
|
27
|
Banerji S, Meyers DE, Harlos C, Dawe DE. The Role of Immunotherapy in the Treatment of Malignant Pleural Mesothelioma. Curr Oncol 2021; 28:4542-4551. [PMID: 34898559 PMCID: PMC8628656 DOI: 10.3390/curroncol28060385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma is a rare and aggressive malignancy arising from mesothelial cells that line the serous membranes of the body. Cytotoxic chemotherapy has been a mainstay of therapy, resulting in a modest improvement in overall survival, but toxicity limits the eligible patient population. Few targeted agents beyond bevacizumab have demonstrated superior efficacy compared to placebos. With an improved understanding of the relationship between the immune system and cancer progression, immunotherapies are playing a greater role in the treatment of many cancers. Several early- and late-phase trials in malignant pleural mesothelioma, including assessments of the first-line efficacy of combination ipilimumab/nivolumab treatment, have now demonstrated promising results for both immune checkpoint inhibition and cell-based therapies. These immune therapies are likely to play a central role in the treatment of this disease going forward.
Collapse
Affiliation(s)
- Shantanu Banerji
- CancerCare Manitoba Research Institute, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Daniel E. Meyers
- Department of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada;
| | - Craig Harlos
- CancerCare Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - David E. Dawe
- CancerCare Manitoba Research Institute, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
28
|
Harber J, Kamata T, Pritchard C, Fennell D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J Immunother Cancer 2021; 9:e003032. [PMID: 34518291 PMCID: PMC8438820 DOI: 10.1136/jitc-2021-003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable cancer with a dismal prognosis and few effective treatment options. Nonetheless, recent positive phase III trial results for immune checkpoint blockade (ICB) in MPM herald a new dawn in the fight to advance effective treatments for this cancer. Tumor mutation burden (TMB) has been widely reported to predict ICB in other cancers, but MPM is considered a low-TMB tumor. Similarly, tumor programmed death-ligand 1 (PD-L1) expression has not been proven predictive in phase III clinical trials in MPM. Consequently, the precise mechanisms that determine response to immunotherapy in this cancer remain unknown. The present review therefore aimed to synthesize our current understanding of the tumor immune microenvironment in MPM and reflects on how specific cellular features might impact immunotherapy responses or lead to resistance. This approach will inform stratified approaches to therapy and advance immunotherapy combinations in MPM to improve clinical outcomes further.
Collapse
Affiliation(s)
- James Harber
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Tamihiro Kamata
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Catrin Pritchard
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dean Fennell
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
29
|
Maio M, Lahn M, Di Giacomo AM, Covre A, Calabrò L, Ibrahim R, Fox B. A vision of immuno-oncology: the Siena think tank of the Italian network for tumor biotherapy (NIBIT) foundation. J Exp Clin Cancer Res 2021; 40:240. [PMID: 34301276 PMCID: PMC8298945 DOI: 10.1186/s13046-021-02023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The yearly Think Tank Meeting of the Italian Network for Tumor Biotherapy (NIBIT) Foundation, brings together in Siena, Tuscany (Italy), experts in immuno-oncology to review the learnings from current immunotherapy treatments, and to propose new pre-clinical and clinical investigations in selected research areas. MAIN: While immunotherapies in non-small cell lung cancer and melanoma led to practice changing therapies, the same therapies had only modest benefit for patients with other malignancies, such as mesothelioma and glioblastoma. One way to improve on current immunotherapies is to alter the sequence of each combination agent. Matching the immunotherapy to the host's immune response may thus improve the activity of the current treatments. A second approach is to combine current immunotherapies with novel agents targeting complementary mechanisms. Identifying the appropriate novel agents may require different approaches than the traditional laboratory-based discovery work. For example, artificial intelligence-based research may help focusing the search for innovative and most promising combination partners. CONCLUSION Novel immunotherapies are needed in cancer patients with resistance to or relapse after current immunotherapeutic drugs. Such new treatments may include targeted agents or monoclonal antibodies to overcome the immune-suppressive tumor microenvironment. The mode of combining the novel treatments, including vaccines, needs to be matched to the patient's immune status for achieving the maximum benefit. In this scenario, specific attention should be also paid nowadays to the immune intersection between COVID-19 and cancer.
Collapse
Affiliation(s)
- Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy.
- Italian Network for Tumor Bio-Immunotherapy Foundation Onlus, Siena, Italy.
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, Geneva, Switzerland
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
- Italian Network for Tumor Bio-Immunotherapy Foundation Onlus, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, San Francisco, 94012, USA
| | - Bernard Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, 4805 NE Glisan St. Suite 2N35, Portland, OR, 97213, USA
| |
Collapse
|
30
|
Activation of DNA Damage Tolerance Pathways May Improve Immunotherapy of Mesothelioma. Cancers (Basel) 2021; 13:cancers13133211. [PMID: 34199066 PMCID: PMC8269013 DOI: 10.3390/cancers13133211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy based on two checkpoint inhibitors (ICI), programmed cell death 1 (PD-1, Nivolumab) and cytotoxic T-lymphocyte 4 (CTLA-4, Ipilimumab), has provided a significant improvement in overall survival for malignant mesothelioma (MM). Despite this major breakthrough, the median overall survival of patients treated with the two ICIs only reached 18.1 months vs. 14 months in standard chemotherapy. With an objective response rate of 40%, only a subset of patients benefits from immunotherapy. A critical step in the success of immunotherapy is the presentation of tumor-derived peptides by the major histocompatibility complex I (MHC-I) of tumor cells. These neoantigens are potentially immunogenic and trigger immune responses orchestrated by cytotoxic cells. In MM, tumor development is nevertheless characterized by a low mutation rate despite major structural chromosomal rearrangements driving oncogenesis (BAP1, NF2, CDKN2AB). In this opinion, we propose to investigate an approach based on the mechanisms of the DNA damage tolerance (DDT) pathways to increase the frequency of non-synonymous mutations. The idea is to transiently activate the error-prone DDT in order to generate neoantigens while preserving a fully competent antitumor immune response.
Collapse
|
31
|
Désage AL, Karpathiou G, Peoc’h M, Froudarakis ME. The Immune Microenvironment of Malignant Pleural Mesothelioma: A Literature Review. Cancers (Basel) 2021; 13:3205. [PMID: 34206956 PMCID: PMC8269097 DOI: 10.3390/cancers13133205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumour with a poor prognosis, associated with asbestos exposure. Nowadays, treatment is based on chemotherapy with a median overall survival of less than two years. This review highlights the main characteristics of the immune microenvironment in MPM with special emphasis on recent biological advances. The MPM microenvironment is highly infiltrated by tumour-associated macrophages, mainly M2-macrophages. In line with infiltration by M2-macrophages, which contribute to immune suppression, other effectors of innate immune response are deficient in MPM, such as dendritic cells or natural killer cells. On the other hand, tumour infiltrating lymphocytes (TILs) are also found in MPM, but CD4+ and CD8+ TILs might have decreased cytotoxic effects through T-regulators and high expression of immune checkpoints. Taken together, the immune microenvironment is particularly heterogeneous and can be considered as mainly immunotolerant or immunosuppressive. Therefore, identifying molecular vulnerabilities is particularly relevant to the improvement of patient outcomes and the assessment of promising treatment approaches.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Georgia Karpathiou
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Michel Peoc’h
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Marios E. Froudarakis
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
32
|
Detection of circulating immunosuppressive cytokines in malignant pleural mesothelioma patients for prognostic stratification. Cytokine 2021; 146:155622. [PMID: 34153874 DOI: 10.1016/j.cyto.2021.155622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND No data on circulating biomarkers for the prognostic stratification of Malignant Pleural Mesothelioma (MPM) patients are available. We prospectively explored the prognostic role of circulating monocyte and cytokine levels and their dynamic change during chemotherapy. PATIENTS AND METHODS MPM patients receiving a first line treatment based on a platinum compound plus pemetrexed were eligible. Blood samples were collected at the baseline and at the end of induction chemotherapy. CCL-2, IL-10 and TGF-β levels in plasma were quantified by Enzyme-Linked Immunosorbent Assay (ELISA); white blood cells, monocytes and platelets were evaluated by blood count test. RESULTS Thirty-one patients were included in the study. Median overall survival (OS) was 12.13 months versus 9.6 months in patients with lower and higher monocytes count, respectively (p value = 0.02). We further stratified patients according to a combined score based on the association of IL-10, TGF-β levels and monocytes count. High combined score was associated with shorter OS and PFS in univariate and multivariate analysis. Chemotherapy induced an increase in monocytes, IL-10, but not TGF-β levels. CONCLUSION The prognostic value of circulating levels of multiple immunosuppressive cytokines and inflammatory cells should be confirmed in a wider validation set of MPM patients.
Collapse
|
33
|
Orsi M, Palmai-Pallag M, Yakoub Y, Ibouraadaten S, De Beukelaer M, Bouzin C, Bearzatto B, Ambroise J, Gala JL, Brusa D, Lison D, Huaux F. Monocytic Ontogeny of Regenerated Macrophages Characterizes the Mesotheliomagenic Responses to Carbon Nanotubes. Front Immunol 2021; 12:666107. [PMID: 34194430 PMCID: PMC8236701 DOI: 10.3389/fimmu.2021.666107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages are not only derived from circulating blood monocytes or embryonic precursors but also expand by proliferation. The origin determines macrophage fate and functions in steady state and pathological conditions. Macrophages predominantly infiltrate fibre-induced mesothelioma tumors and contribute to cancer development. Here, we revealed their ontogeny by comparing the response to needle-like mesotheliomagenic carbon nanotubes (CNT-7) with tangled-like non-mesotheliomagenic CNT-T. In a rat peritoneal cavity model of mesothelioma, both CNT induced a rapid macrophage disappearance reaction (MDR) of MHCIIlow resident macrophages generating an empty niche available for macrophage repopulation. Macrophage depletion after mesotheliomagenic CNT-7 was followed by a substantial inflammatory reaction, and macrophage replenishment completed after 7 days. Thirty days after non-mesotheliomagenic CNT-T, macrophage repopulation was still incomplete and accompanied by a limited inflammatory reaction. Cell depletion experiments, flow cytometry and RNA-seq analysis demonstrated that, after mesotheliomagenic CNT-7 exposure, resident macrophages were mainly replaced by an influx of monocytes, which differentiated locally into MHCIIhigh inflammatory macrophages. In contrast, the low inflammatory response induced by CNT-T was associated by the accumulation of self-renewing MHCIIlow macrophages that initially derive from monocytes. In conclusion, the mesotheliomagenic response to CNT specifically relies on macrophage niche recolonization by monocyte-derived inflammatory macrophages. In contrast, the apparent homeostasis after non-mesotheliomagenic CNT treatment involves a macrophage regeneration by proliferation. Macrophage depletion and repopulation are thus decisive events characterizing the carcinogenic activity of particles and fibres.
Collapse
Affiliation(s)
- Micaela Orsi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Michèle De Beukelaer
- Imaging Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
34
|
Vymetalova K, Tomasov P, Polasek R. Malignant mesothelioma associated with localized myocardial fibrosis: a case report. BMC Cardiovasc Disord 2021; 21:282. [PMID: 34098884 PMCID: PMC8186214 DOI: 10.1186/s12872-021-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Left ventricular dysfunction is a common reason for patients' referral to cardiology departments for examination. Cardiac involvement is one of the possible yet rare presentations of malignant mesothelioma. We present a case of a patient in whom a routine cardiac examination and imaging revealed malignant mesothelioma. We discuss a possible association between a malignant tumor and myocardial scarring and how the oncologic treatment is influenced by concomitant heart failure. This article aims to raise awareness of the importance of multidisciplinary cooperation and thinking beyond the daily routine of our specialty to ensure the quality care of our patients. It also forced us to think about the possible causes of the association between malignant mesothelioma and myocardial fibrosis.
Collapse
Affiliation(s)
- Kristyna Vymetalova
- Department of Cardiology, Liberec Regional Hospital, Husova 357/10, 460 63, Liberec, Czech Republic.
| | - Pavol Tomasov
- Department of Cardiology, Liberec Regional Hospital, Husova 357/10, 460 63, Liberec, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Rostislav Polasek
- Department of Cardiology, Liberec Regional Hospital, Husova 357/10, 460 63, Liberec, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
35
|
Disselhorst MJ, de Vries R, Quispel-Janssen J, Wolf-Lansdorf M, Sterk PJ, Baas P. Nose in malignant mesothelioma-Prediction of response to immune checkpoint inhibitor treatment. Eur J Cancer 2021; 152:60-67. [PMID: 34087572 DOI: 10.1016/j.ejca.2021.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Recent clinical trials with immune checkpoint inhibitors (ICIs) have shown that a subgroup of patients with malignant pleural mesothelioma (MPM) could benefit from these agents. However, there are no accurate biomarkers to predict who will respond. The aim of this study was to assess the accuracy of exhaled breath analysis using electronic technology (eNose) for discriminating between responders to ICI and non-responders. METHODS This proof-of-concept prospective observational study was part of an intervention study (INITIATE) in patients with recurrent MPM who were treated with nivolumab (anti-PD-1) plus ipilimumab (anti-CTLA-4). At baseline and after six weeks of treatment, breath profiles were collected by an eNose. Modified Response Evaluation Criteria in Solid Tumors were used to assess efficacy at 6-month follow-up. For data processing and statistics, we used independent t-test analyses followed by linear discriminant and receiver-operating characteristic (ROC) analysis. RESULTS Exhaled breath data of 31 MPM patients who received nivolumab plus ipilimumab were available at baseline. There were 16 with and 15 without a response after 6 months of treatment. At baseline, breath profiles significantly differed between responders and non-responders, with a cross validation value of 71%. The ROC-AUC after internal cross-validation was 0.90 (confidence interval: 0.80-1.00). CONCLUSION An eNose is able to discriminate at baseline between responders and non-responders to nivolumab plus ipilimumab in MPM, thereby potentially identifying a subgroup of patients that will benefit from ICI treatment.
Collapse
Affiliation(s)
| | - Rianne de Vries
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands; Breathomix BV, Leiden, the Netherlands
| | | | | | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Paul Baas
- Department of Thoracic Oncology, NKI-AvL, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Napoli F, Listì A, Zambelli V, Witel G, Bironzo P, Papotti M, Volante M, Scagliotti G, Righi L. Pathological Characterization of Tumor Immune Microenvironment (TIME) in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2564. [PMID: 34073720 PMCID: PMC8197227 DOI: 10.3390/cancers13112564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly aggressive disease that arises from pleural mesothelial cells, characterized by a median survival of approximately 13-15 months after diagnosis. The primary cause of this disease is asbestos exposure and the main issues associated with it are late diagnosis and lack of effective therapies. Asbestos-induced cellular damage is associated with the generation of an inflammatory microenvironment that influences and supports tumor growth, possibly in association with patients' genetic predisposition and tumor genomic profile. The chronic inflammatory response to asbestos fibers leads to a unique tumor immune microenvironment (TIME) composed of a heterogeneous mixture of stromal, endothelial, and immune cells, and relative composition and interaction among them is suggested to bear prognostic and therapeutic implications. TIME in MPM is known to be constituted by immunosuppressive cells, such as type 2 tumor-associated macrophages and T regulatory lymphocytes, plus the expression of several immunosuppressive factors, such as tumor-associated PD-L1. Several studies in recent years have contributed to achieve a greater understanding of the pathogenetic mechanisms in tumor development and pathobiology of TIME, that opens the way to new therapeutic strategies. The study of TIME is fundamental in identifying appropriate prognostic and predictive tissue biomarkers. In the present review, we summarize the current knowledge about the pathological characterization of TIME in MPM.
Collapse
Affiliation(s)
- Francesca Napoli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Angela Listì
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Vanessa Zambelli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Gianluca Witel
- Department of Medical Sciences, University of Turin, City of Health and Science, 10126 Torino, Italy;
| | - Paolo Bironzo
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Mauro Papotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Pathology Unit, City of Health and Science, 10126 Torino, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Luisella Righi
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| |
Collapse
|
37
|
Dozin B, Carbotti G, Roncella S, Ferro P, Dessanti P, Canessa PA, Ferrini S, Fabbi M. Assessment of interferon-γ in pleural fluid as a prognostic factor of survival in malignant pleural mesothelioma. Cancer Immunol Immunother 2021; 70:3349-3355. [PMID: 34003301 DOI: 10.1007/s00262-021-02965-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/09/2021] [Indexed: 12/31/2022]
Abstract
BACKGOUND Literature reports suggest that the host immune system may control Malignant Pleural Mesothelioma (MPM) growth, although its activity is limited by regulatory mechanisms. In this retrospective study, we analyzed the levels of pro-inflammatory (IL-1, IL-6, TNF), immune-regulatory (IL-10) and Th1/CTL-related cytokines (IL-12p70, IFN-γ) in the pleural exudate and their relationship with overall survival (OS) in MPM. METHODS Cytokines were quantified by multiplexed immunoassay. Concentrations were dichotomized with respect to the median value. Correlation between cytokine level and OS was assessed using univariate (Kaplan-Meier curves) and multivariate (Cox regression) analyses. RESULTS Regarding outcome, tumor histology, therapies undergone and IFN-γ were independent prognostic factors of OS in a 72 MPM training cohort. Notably, high concentrations of IFN-γ halved death probability (HR of high vs low IFN-γ concentration = 0.491, 95%CI 0.3-0.8, p = 0.007). Also in patients with epithelioid histology and those receiving at least one line of therapy, high IFN-γ level was an independent factor predictive of OS (HR of high vs low IFN-γ concentration were 0.497, p = 0.007 and 0.324, p = 0.006, respectively). However, these data were not confirmed in a 77 MPM validation cohort, possibly due to the low IFN-γ levels encountered in this population, and the heterogeneous distribution of disease stages between the training and the validation cohorts. None of the other cytokines showed any effect on survival. CONCLUSIONS High level of IFN-γ in pleural effusion may be associated with better survival in MPM patients and potentially serve as a prognostic biomarker. Larger prospective studies are needed to ascertain this hypothesis.
Collapse
Affiliation(s)
- Beatrice Dozin
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Grazia Carbotti
- Biotherapies Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genoa, Italy
| | - Silvio Roncella
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale N. 5 , La Spezia, Italy
| | - Paola Ferro
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale N. 5 , La Spezia, Italy
| | - Paolo Dessanti
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale N. 5 , La Spezia, Italy
| | - Pier Aldo Canessa
- Pneumology Division, Azienda Sanitaria Locale N. 5 , La Spezia, Italy
| | - Silvano Ferrini
- Biotherapies Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genoa, Italy
| | - Marina Fabbi
- Biotherapies Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
38
|
Evaluation of the Preclinical Efficacy of Lurbinectedin in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:cancers13102332. [PMID: 34066159 PMCID: PMC8151304 DOI: 10.3390/cancers13102332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The marine drug lurbinectedin revealed an unprecedented efficacy against patient-derived malignant pleural mesothelioma cells, regardless of the histological type and the BAP1 mutation status. By inducing strong DNA damages, it dramatically arrested cell cycle progression and induced apoptosis. These results may be translated into the use of lurbinectedin as an effective agent for malignant pleural mesothelioma patients. Abstract Background: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. Methods: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. Results: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. Conclusion: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.
Collapse
|
39
|
Tertiary lymphoid structures in epithelioid malignant peritoneal mesothelioma are associated with neoadjuvant chemotherapy, but not with prognosis. Virchows Arch 2021; 479:765-772. [PMID: 33855595 DOI: 10.1007/s00428-021-03099-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Epithelioid mesothelioma is the most prevalent subtype of diffuse malignant peritoneal mesothelioma. The relationship between a strong adaptive immune response and a better prognosis in malignant solid tumors is widely known. Due to the low incidence of epithelioid malignant peritoneal mesothelioma (EMPM), very little is known about their immune micro-environment. We encountered several cases of tertiary lymphoid structures in EMPM in a previous study and aimed to investigate in the same series the prevalence, clinicopathological features, and the prognostic impact associated with tertiary lymphoid structures in EMPM (TLS-EMPM). Cases of EMPM, from 1995 to 2018, were retrieved from 7 French institutions from the RENAPE Network. The predictions in terms of overall survival (OS) and progression-free survival (PFS) of TLS-EMPM were analyzed. We report 52 cases of TLS-EMPM among a series of 138 cases of EMPM. TLS-EMPM was significantly associated with neoadjuvant chemotherapy, and was not a prognostic indicator for OS (p = 0.652) and PFS (p = 0.804) in our series. TLS is a component of the host immune response to EMPM significantly associated with neoadjuvant chemotherapy, but was not a predictor of prognosis for overall and progression-free survivals in this series. These findings provide another possible etiology for tertiary lymphoid structures.
Collapse
|
40
|
Mohamed IZB, Idle M, Bates T, Yahya S. Tongue: the unusual site in malignant pleural mesothelioma. BMJ Case Rep 2021; 14:e241166. [PMID: 33846190 PMCID: PMC8048009 DOI: 10.1136/bcr-2020-241166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant mesotheliomas (MMs) are malignancies of the mesothelium, with primary deposits originating in the pleura, peritoneum, pericardium and the tunica vaginalis (ie, testicular). Metastatic spread is commonly reported to affect the liver, adrenal glands, kidney and contralateral lung (in cases of malignant pleural mesothelioma). Metastases to distant sites are uncommon. Spread to the oral cavity in particular is very rare. A total of 23 cases of metastatic spread to the oral cavity have been reported in the literature to date; of those, 9 cases have been to the tongue. Given the rarity of the site of metastasis, the management remains challenging. This case highlights a rare site of metastasis in MM, discusses treatment options available and briefly talks about technical limitations in treating a mobile structure such as the tongue. Good palliative and supportive care is crucial in managing cases where no curative treatment is possible.
Collapse
Affiliation(s)
- Iskandar Zulqarnain Bin Mohamed
- Department of Healthcare for Older People, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, Birmingham, UK
| | - Matthew Idle
- Department of Maxillofacial Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, Birmingham, UK
| | - Timothy Bates
- Department of Pathology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, Birmingham, UK
| | - Sundus Yahya
- The Cancer Centre, Oncology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Brcic L, Mathilakathu A, Walter RFH, Wessolly M, Mairinger E, Beckert H, Kreidt D, Steinborn J, Hager T, Christoph DC, Kollmeier J, Mairinger T, Wohlschlaeger J, Schmid KW, Borchert S, Mairinger FD. Digital Gene Expression Analysis of Epithelioid and Sarcomatoid Mesothelioma Reveals Differences in Immunogenicity. Cancers (Basel) 2021; 13:1761. [PMID: 33917061 PMCID: PMC8067687 DOI: 10.3390/cancers13081761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with asbestos exposure. Median survival ranges from 14 to 20 months after initial diagnosis. As of November 2020, the FDA approved a combination of immune checkpoint inhibitors after promising intermediate results. Nonetheless, responses remain unsatisfying. Adequate patient stratification to improve response rates is still lacking. This retrospective study analyzed formalin fixed paraffin embedded specimens from a cohort of 22 MPM. Twelve of those samples showed sarcomatoid, ten epithelioid differentiation. Complete follow-up, including radiological assessment of response by modRECIST and time to death, was available with reported deaths of all patients. RNA of all samples was isolated and subjected to digital gene expression pattern analysis. Our study revealed a notable difference between epithelioid and sarcomatoid mesothelioma, showing differential gene expression for 304/698 expressed genes. Whereas antigen processing and presentation to resident cytotoxic T cells as well as phagocytosis is highly affected in sarcomatoid mesothelioma, cell-cell interaction via cytokines seems to be of greater importance in epithelioid cases. Our work reveals the specific role of the immune system within the different histologic subtypes of MPM, providing a more detailed background of their immunogenic potential. This is of great interest regarding therapeutic strategies including immunotherapy in mesothelioma.
Collapse
Affiliation(s)
- Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Robert F. H. Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen—Ruhrlandklinik, 45239 Essen, Germany;
| | - Daniel Kreidt
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Daniel C. Christoph
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, 45136 Essen, Germany;
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | - Thomas Mairinger
- Department of Tissue Diagnostics, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Fabian D. Mairinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
42
|
Pezzuto F, Lunardi F, Vedovelli L, Fortarezza F, Urso L, Grosso F, Ceresoli GL, Kern I, Vlacic G, Faccioli E, Schiavon M, Gregori D, Rea F, Pasello G, Calabrese F. P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment. Front Oncol 2021; 11:653497. [PMID: 33828993 PMCID: PMC8019896 DOI: 10.3389/fonc.2021.653497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The CDKN2A gene plays a central role in the pathogenesis of malignant pleural mesothelioma (MPM). The gene encodes for two tumor suppressor proteins, p16/INK4A and p14/ARF, frequently lost in MPM tumors. The exact role of p14/ARF in MPM and overall its correlation with the immune microenvironment is unknown. We aimed to determine whether there is a relationship between p14/ARF expression, tumor morphological features, and the inflammatory tumor microenvironment. METHODS Diagnostic biopsies from 76 chemo-naive MPMs were evaluated. Pathological assessments of histotype, necrosis, inflammation, grading, and mitosis were performed. We evaluated p14/ARF, PD-L1 (tumor proportion score, TPS), and Ki-67 (percentage) by immunohistochemistry. Inflammatory cell components (CD3+, CD4+, CD8+ T lymphocytes; CD20+ B-lymphocytes; CD68+ and CD163+ macrophages) were quantified as percentages of positive cells, distinguishing between intratumoral and peritumoral areas. The expression of p14/ARF was associated with several clinical and pathological characteristics. A random forest-based machine-learning algorithm (Boruta) was implemented to identify which variables were associated with p14/ARF expression. RESULTS p14/ARF was evaluated in 68 patients who had a sufficient number of tumor cells. Strong positivity was detected in 14 patients (21%) (11 epithelioid and 3 biphasic MPMs). At univariate analysis, p14/ARF-positive epithelioid mesotheliomas showed higher nuclear grade (G3) (p = 0.023) and higher PD-L1 expression (≥50%) (p = 0.042). The percentages of CD4 and CD163 in peritumoral areas were respectively higher and lower in p14/ARF positive tumors but did not reach statistical significance with our sample size (both p = 0.066). The Boruta algorithm confirmed the predictive value of PD-L1 percentage for p14/ARF expression in all histotypes. CONCLUSIONS p14/ARF-positive epithelioid mesotheliomas may mark a more aggressive pathological phenotype (higher nuclear grade and PD-L1 expression). Considering the results regarding the tumor immune microenvironment, p14/ARF-negative tumors seem to have an immune microenvironment less sensitive to immune checkpoint inhibitors, being associated with low PD-L1 and CD4 expression, and high CD163 percentage. The association between p14/ARF-positive MPMs and PD-L1 expression suggests a possible interaction of the two pathways. Confirmation of our preliminary results could be important for patient selection and recruitment in future clinical trials with anticancer immunotherapy.
Collapse
Affiliation(s)
- Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Luca Vedovelli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Federica Grosso
- Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Mesothelioma and Rare Cancer Unit, Alessandria, Italy
| | | | - Izidor Kern
- Pathology Laboratory, University Clinic Golnik, Golnik, Slovenia
| | - Gregor Vlacic
- Pathology Laboratory, University Clinic Golnik, Golnik, Slovenia
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marco Schiavon
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Department of Oncology, Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Castelletti L, Yeo D, van Zandwijk N, Rasko JEJ. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark Res 2021; 9:11. [PMID: 33588928 PMCID: PMC7885509 DOI: 10.1186/s40364-021-00264-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.
Collapse
Affiliation(s)
- Laura Castelletti
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia
| | - Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia.,Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, Australia
| | - John E J Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia. .,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia. .,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
44
|
Biomarkers for Malignant Pleural Mesothelioma-A Novel View on Inflammation. Cancers (Basel) 2021; 13:cancers13040658. [PMID: 33562138 PMCID: PMC7916017 DOI: 10.3390/cancers13040658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive disease with limited treatment response and devastating prognosis. Exposure to asbestos and chronic inflammation are acknowledged as main risk factors. Since immune therapy evolved as a promising novel treatment modality, we want to reevaluate and summarize the role of the inflammatory system in MPM. This review focuses on local tumor associated inflammation on the one hand and systemic inflammatory markers, and their impact on MPM outcome, on the other hand. Identification of new biomarkers helps to select optimal patient tailored therapy, avoid ineffective treatment with its related side effects and consequently improves patient's outcome in this rare disease. Additionally, a better understanding of the tumor promoting and tumor suppressing inflammatory processes, influencing MPM pathogenesis and progression, might also reveal possible new targets for MPM treatment. After reviewing the currently available literature and according to our own research, it is concluded that the suppression of the specific immune system and the activation of its innate counterpart are crucial drivers of MPM aggressiveness translating to poor patient outcome.
Collapse
|
45
|
Vidergar R, Balduit A, Zacchi P, Agostinis C, Mangogna A, Belmonte B, Grandolfo M, Salton F, Biolo M, Zanconati F, Confalonieri M, Bulla R. C1q-HA Matrix Regulates the Local Synthesis of Hyaluronan in Malignant Pleural Mesothelioma by Modulating HAS3 Expression. Cancers (Basel) 2021; 13:cancers13030416. [PMID: 33499323 PMCID: PMC7865933 DOI: 10.3390/cancers13030416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor characterized by poor prognosis due to late diagnosis and the absence of efficient first-line treatments. Hyaluronic acid (HA) and the complement protein C1q represent two pivotal players in the MPM tumor microenvironment by acting in association with effects on cancer cell adhesion, migration and proliferation. The aim of the current study is to prove HA production by MPM primary cells and to understand whether HA metabolism modulation could be considered a potential target for future therapeutic approaches in MPM. Abstract Increased hyaluronic acid (HA) production is often associated with cancer progression. In malignant pleural mesothelioma (MPM), HA is found at elevated levels in pleural effusions and sera of patients, and it has been widely debated whether MPM cells are able to produce HA by themselves or through the release of growth factors stimulating other cells. Another key component of the MPM microenvironment is C1q, which can act as a pro-tumorigenic factor favoring cell adhesion, migration and proliferation. The aim of the current study was to prove that MPM primary cells are able to synthesize HA and to inquire the stimulus given by C1q–HA matrix to HA synthesis. We confirmed the presence of a HA coat and cable-like structures around MPM primary cells, as well as an intracellular pool, mainly localized in the cytoplasmic and perinuclear region. After evaluating HA synthase (HAS) enzymes’ basal expression in MPM primary cells, we found that C1q bound to HA was able to impinge upon HA homeostasis by upregulating HAS3 both at the mRNA and the protein levels. High expression of HAS3 has been correlated with a shorter life expectancy in MPM by bioinformatical analysis. These data confirmed that C1q bound to HA may exert pro-tumorigenic activity and identified HAS3 as a potential target in MPM.
Collapse
Affiliation(s)
- Romana Vidergar
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.V.); (P.Z.); (R.B.)
| | - Andrea Balduit
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.V.); (P.Z.); (R.B.)
- Correspondence:
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.V.); (P.Z.); (R.B.)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (C.A.); (A.M.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (C.A.); (A.M.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90133 Palermo, Italy;
| | - Micaela Grandolfo
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Francesco Salton
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (F.S.); (M.B.); (F.Z.); (M.C.)
| | - Marco Biolo
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (F.S.); (M.B.); (F.Z.); (M.C.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (F.S.); (M.B.); (F.Z.); (M.C.)
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (F.S.); (M.B.); (F.Z.); (M.C.)
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.V.); (P.Z.); (R.B.)
| |
Collapse
|
46
|
Meerang M, Kreienbühl J, Orlowski V, Müller SLC, Kirschner MB, Opitz I. Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113460. [PMID: 33233664 PMCID: PMC7699720 DOI: 10.3390/cancers12113460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.
Collapse
|
47
|
Fusco N, Vaira V, Righi I, Sajjadi E, Venetis K, Lopez G, Cattaneo M, Castellani M, Rosso L, Nosotti M, Clerici M, Ferrero S. Characterization of the immune microenvironment in malignant pleural mesothelioma reveals prognostic subgroups of patients. Lung Cancer 2020; 150:53-61. [PMID: 33065463 DOI: 10.1016/j.lungcan.2020.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare tumor with an extremely poor prognosis. Its pathogenesis is related to an immune response against asbestos fibers. The T-lymphocytes, including CD8POS and CD4POS cells, are an important part of the MPM immune microenvironment, and likely contribute to the therapy resistance observed in these tumors. Here, we sought to characterize the MPM-specific lymphocytes subpopulations within the tumor immune microenvironment to identify novel clinically relevant immunologic subtypes of tumors. Representative formalin-fixed, paraffin-embedded (FFPE) tissue blocks of 88 MPMs were included in tissue microarrays and subjected to tumor-infiltrating lymphocytes (TILs) quantification and subtyping by immunohistochemistry (IHC) with antibodies specific for CD4, CD8, and CD19. Further, PD-L1 (clone 22C3) expression was assessed by IHC as a combined positive score (CPS). Our data show that PD-L1 expression by tumor cells or the presence of a sarcomatoid component is related to increased stromal TILs presence in MPM. Survival analyses showed that low CD4POS and high CD8POS stromal TILs are associated with poor patients' survival. In MPMs with PD-L1 CPS > 1, stromal CD8HIGH was a poor prognostic factor, akin stromal CD4POS peritumoral TILs correlated with a worse prognosis. Furthermore, we demonstrated that a high CD4POS/CD8POS ratio in the tumor immune microenvironment is an independent prognostic factor for survival. Finally, we provided evidence that the characterization of the stromal immune landscape of MPM predicts responses to chemotherapy in subgroups of MPM. The results of this study provide novel insights into the clinical scenario of immune-related biomarkers in MPM.
Collapse
Affiliation(s)
- Nicola Fusco
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Italy.
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Ilaria Righi
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Ph.D. Program in Translational Medicine, University of Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; School of Pathology, University of Milan, Italy
| | - Margherita Cattaneo
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- Division of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Health Sciences, University of Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Italy
| |
Collapse
|
48
|
The Effects of Asbestos Fibers on Human T Cells. Int J Mol Sci 2020; 21:ijms21196987. [PMID: 32977478 PMCID: PMC7584019 DOI: 10.3390/ijms21196987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Asbestos exposure causes malignant tumors such as lung cancer and malignant mesothelioma. The effects of asbestos fibers on immunocompetent cells, however, have not been well studied. Asbestos physically comprises a fibrous substance, which differs from silica particles which are a particulate substance, although chemically it is a mineral silicate. Since silicosis patients previously exposed to silica particles often suffer from lung and autoimmune diseases, it is clear that silica exposure impairs immune tolerance. Similarly, asbestos may alter the immune system in asbestos-exposed individuals. Given that malignant tumors can result following exposure to asbestos, the attenuation of anti-tumor immunity in cases of asbestos exposure is an important area of investigation. We observed the effect of asbestos fibers on T lymphocytes, such as CD8+ cytotoxic T lymphocytes (CTLs), CD4+ helper T (Th), and regulatory T (Treg) cells, and showed that anti-tumor immunity was attenuated, as demonstrated in a system that stimulates fresh cells isolated from peripheral blood in vitro and a system that is continuously exposed to a cell line. In this manuscript, we introduce the experiments and results of studies on CTLs, as well as Th and Treg cells, and discuss how future changes in immunocompetent cells induced by asbestos fibers can be clinically linked.
Collapse
|
49
|
Wang B, Sun L, Yuan Z, Tao Z. Wee1 kinase inhibitor AZD1775 potentiates CD8+ T cell-dependent antitumour activity via dendritic cell activation following a single high dose of irradiation. Med Oncol 2020; 37:66. [PMID: 32696094 DOI: 10.1007/s12032-020-01390-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
Abstract
As standard treatments for cancer, DNA-damaging chemotherapeutic agents and irradiation therapy improve survival in patients with various cancers. Wee1, a kinase associated with the cell cycle, causes G2/M cell cycle arrest to allow repair of injured DNA in cancer cells, and a Wee1 inhibitor has been confirmed to lead to apoptosis in cancer cells. Recently, there has been renewed interest in exploring the immune environment which plays a significant role in tumour suppression. A Wee1 inhibitor combined with radiotherapy has been tested in lung, pancreatic, and prostate cancer and melanoma in vivo or in vitro. There is still no research evaluating the immunoregulatory effects of AZD1775 plus high-dose irradiation (IR) in vivo. T cell killing and CD8+ T cell depletion assays demonstrated that the combination of AZD1775 and IR delayed tumour growth in breast cancer mouse models. Additionally, combination treatment also suppressed the expression of PD-L1, a co-inhibitor, through the STAT3-IRF1 axis. The importance and originality of this study are that it explores the internal and external mechanisms of AZD1775 combined with a single high dose of IR and provides a rationale for applying the combination therapy described above in a clinical trial.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, No. 127, Chang Le West Road, Xi'an, 710032, China
| | - Lin Sun
- Department of Pathology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiyong Yuan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Zhen Tao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
50
|
Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Research on the toxicity of engineered carbon nanotubes (CNT) was initiated by Belgian academic chemists and toxicologists more than 15 years ago. It is now undisputed that some of these attractive nanomaterials induce serious illness such as fibrosis and cancer. The physico-chemical determinants of CNT-induced adverse effects are now elucidated and include shape, nanoscale diameter, and structural defects. Generated in vitro and in vivo data on their inflammogenic and fibrogenic activities were combined and translated in AOP (adverse outcome pathways) available for risk assessment and regulatory policies. The asbestos-like carcinogenic effect of CNT, notably their capacity to induce malignant mesothelioma (MM), remain, however, a cause of concern for public health and strongly curb the craze for CNT in industries. MM still represents a real challenge for clinicians and a highly refractory cancer to existing therapeutic strategies. By comparing mesotheliomagenic CNT (needle-like CNT-N) to non mesotheliomagenic CNT (tangled-like CNT-T), our group generated a relevant animal model that highlights immune pathways specifically associated to the carcinogenic process. Evidence indicates that only CNT-N possess the intrinsic capacity to induce a preferential, rapid, and sustained accumulation of host immunosuppressive cells that subvert immune surveillance and suppress anti-mesothelioma immunity. This new concept offers novel horizons for the clinical management of mesothelioma and represents an additional tool for predicting the mesotheliomagenic activity of newly elaborated CNT or nanoparticles.
Collapse
|