1
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
2
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
3
|
Xie L, Cai Z, Lu H, Meng F, Zhang X, Luo K, Su X, Lei Y, Xu J, Lou J, Wang H, Du Z, Wang Y, Li Y, Ren T, Xu J, Sun X, Tang X, Guo W. Distinct genomic features between osteosarcomas firstly metastasing to bone and to lung. Heliyon 2023; 9:e15527. [PMID: 37205995 PMCID: PMC10189180 DOI: 10.1016/j.heliyon.2023.e15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Background Osteosarcoma initially metastasing to bone only shows distinct biological features compared to osteosarcoma that firstly metastasizes to the lung, which suggests us underlying different genomic pathogenetic mechanism. Methods We analyzed whole-exome sequencing (WES) data for 38 osteosarcoma with paired samples in different relapse patterns. We also sought to redefine disease subclassifications for osteosarcoma based on genetic alterations and correlate these genetic profiles with clinical treatment courses to elucidate potential evolving cladograms. Results We investigated WES of 12/38 patients with high-grade osteosarcoma (31.6%) with initial bone metastasis (group A) and 26/38 (68.4%) with initial pulmonary metastasis (group B), of whom 15/38 (39.5%) had paired samples of primary lesions and metastatic lesions. We found that osteosarcoma in group A mainly carries single-nucleotide variations displaying higher tumor mutation burden and neoantigen load and more tertiary lymphoid structures, while those in group B mainly exhibits structural variants. High conservation of reported genetic sequencing over time in their evolving cladograms. Conclusions Osteosarcoma with mainly single-nucleotide variations other than structural variants might exhibit biological behavior predisposing toward bone metastases as well as better immunogenicity in tumor microenvironment.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhenyu Cai
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. A3 Datun Road, Chaoyang District, Beijing 100101, China
| | - Fanfei Meng
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xin Zhang
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Kun Luo
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xiaoxing Su
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Yan Lei
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Han Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yunfan Wang
- Pathology Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, China
| | - Yuan Li
- Radiology Department & Nuclear Medicine Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| |
Collapse
|
4
|
Prouteau A, Mottier S, Primot A, Cadieu E, Bachelot L, Botherel N, Cabillic F, Houel A, Cornevin L, Kergal C, Corre S, Abadie J, Hitte C, Gilot D, Lindblad-Toh K, André C, Derrien T, Hedan B. Canine Oral Melanoma Genomic and Transcriptomic Study Defines Two Molecular Subgroups with Different Therapeutical Targets. Cancers (Basel) 2022; 14:cancers14020276. [PMID: 35053440 PMCID: PMC8774001 DOI: 10.3390/cancers14020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In humans, mucosal melanoma (MM) is a rare and aggressive cancer. The canine model is frequently and spontaneously affected by MM, thus facilitating the collection of samples and the study of its genetic bases. Thanks to an integrative genomic and transcriptomic analysis of 32 canine MM samples, we identified two molecular subgroups of MM with a different microenvironment and structural variant (SV) content. We demonstrated that SVs are associated with recurrently amplified regions, and identified new candidate oncogenes (TRPM7, GABPB1, and SPPL2A) for MM. Our findings suggest the existence of two MM molecular subgroups that could benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine. Abstract Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Anais Prouteau
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Stephanie Mottier
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Aline Primot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Edouard Cadieu
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laura Bachelot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Nadine Botherel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Florian Cabillic
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Armel Houel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laurence Cornevin
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Camille Kergal
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Sébastien Corre
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Jérôme Abadie
- Laboniris, Department of Biology, Pathology and Food Sciences, Oniris, 44300 Nantes, France;
| | - Christophe Hitte
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - David Gilot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Catherine André
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Thomas Derrien
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| | - Benoit Hedan
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| |
Collapse
|
5
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
7
|
Li Q, Kim YS, An JH, Kwon JA, Han SH, Song WJ, Youn HY. Anti-tumor effects of rivoceranib against canine melanoma and mammary gland tumour in vitro and in vivo mouse xenograft models. BMC Vet Res 2021; 17:338. [PMID: 34702279 PMCID: PMC8546947 DOI: 10.1186/s12917-021-03026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rivoceranib, a novel tyrosine kinase inhibitor, exhibits anti-tumour effects by selectively blocking vascular endothelial growth factor receptor-2 (VEGFR2) in cancer cells. Recently, the therapeutic effects of rivoceranib on solid tumours have been elucidated in human patients. However, the anti-tumour effects of rivoceranib against canine cancer remain unclear. Here, we investigated the anti-tumour effects of rivoceranib using in vitro and in vivo mouse xenograft models. METHODS We performed cell proliferation, cell cycle, and migration assays to determine the effects of rivoceranib on canine solid tumour cell lines in vitro. Furthermore, apoptosis and angiogenesis in tumour tissues were examined using a TUNEL assay and immunohistochemistry methods with an anti-cluster of differentiation-31 antibody, respectively. Additionally, the expression levels of cyclin-D1 and VEGFR2 activity were determined using western blot analysis. RESULTS Rivoceranib treatment showed anti-proliferative effects and mediated cell cycle arrest in the canine melanoma cell line (LMeC) and the mammary gland tumour (MGT) cell line (CHMp). In animal experiments, rivoceranib decreased the average volume of LMeC cells compared to that following control treatment, and similar results were observed in CHMp cells. Histologically, rivoceranib induced apoptosis and exerted an anti-angiogenic effect in tumour tissues. It also downregulated the expression of cyclin-D1 and inhibited VEGFR2 activity. CONCLUSION Our results show that rivoceranib inhibits proliferation and migration of tumour cells. These findings support the potential application of rivoceranib as a novel chemotherapeutic strategy for canine melanoma and MGTs.
Collapse
Affiliation(s)
- Qiang Li
- Department of Veterinary Medicine, College of Agriculture, YanBian University, YanJi, JiLin, China
| | - You-Seok Kim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,KPC Corporation, Oporo, Opo-eup, Gwangju-si, Gyeonggi-do, Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Ah Kwon
- HLB LifeScience Co., Ltd., Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sang-Hyun Han
- HLB LifeScience Co., Ltd., Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine and Research Institute of Veterinary Science, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Fonseca-Alves CE, Ferreira Ê, de Oliveira Massoco C, Strauss BE, Fávaro WJ, Durán N, Oyafuso da Cruz N, dos Santos Cunha SC, Castro JLC, Rangel MMM, Brunner CHM, Tellado M, dos Anjos DS, Fernandes SC, Barbosa de Nardi A, Biondi LR, Dagli MLZ. Current Status of Canine Melanoma Diagnosis and Therapy: Report From a Colloquium on Canine Melanoma Organized by ABROVET (Brazilian Association of Veterinary Oncology). Front Vet Sci 2021; 8:707025. [PMID: 34485435 PMCID: PMC8415562 DOI: 10.3389/fvets.2021.707025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Ênio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristina de Oliveira Massoco
- Laboratory of Pharmacology and Toxicology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Bryan Eric Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner José Fávaro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | - Denner Santos dos Anjos
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Andrigo Barbosa de Nardi
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Saellstrom S, Sadeghi A, Eriksson E, Segall T, Dimopoulou M, Korsgren O, Loskog AS, Tötterman TH, Hemminki A, Ronnberg H. Adenoviral CD40 Ligand Immunotherapy in 32 Canine Malignant Melanomas-Long-Term Follow Up. Front Vet Sci 2021; 8:695222. [PMID: 34368282 PMCID: PMC8342889 DOI: 10.3389/fvets.2021.695222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023] Open
Abstract
Malignant melanoma is a serious disease in both humans and dogs, and the high metastatic potential results in poor prognosis for many patients. Its similarities with human melanoma make spontaneous canine melanoma an excellent model for comparative studies of novel therapies and tumor biology. Gene therapy using adenoviruses encoding the immunostimulatory gene CD40L (AdCD40L) has shown promise in initial clinical trials enrolling human patients with various malignancies including melanoma. We report a study of local AdCD40L treatment in 32 cases of canine melanoma (23 oral, 5 cutaneous, 3 ungual and 1 conjunctival). Eight patients were World Health Organization (WHO) stage I, 9 were stage II, 12 stage III, and 3 stage IV. One to six intratumoral injections of AdCD40L were given every seven days, combined with cytoreductive surgery in 20 cases and only immunotherapy in 12 cases. Tumor tissue was infiltrated with T and B lymphocytes after treatment, suggesting immune stimulation. The best overall response based on result of immunotherapy included 7 complete responses, 5 partial responses, 5 stable and 2 progressive disease statuses according to the World Health Organization response criteria. Median survival was 285 days (range 20–3435 d). Our results suggest that local AdCD40L therapy is safe and could have beneficial effects in dogs, supporting further treatment development. Clinical translation to human patients is ongoing.
Collapse
Affiliation(s)
- Sara Saellstrom
- University Animal Hospital, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Arian Sadeghi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas Segall
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, Uppsala, Sweden
| | - Maria Dimopoulou
- University Animal Hospital, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelica Si Loskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas H Tötterman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Henrik Ronnberg
- Center of Clinical Comparative Oncology (C3O), Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
10
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
11
|
KIT Somatic Mutations and Immunohistochemical Expression in Canine Oral Melanoma. Animals (Basel) 2020; 10:ani10122370. [PMID: 33321993 PMCID: PMC7764140 DOI: 10.3390/ani10122370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Malignant melanomas arising from mucosal sites are very aggressive neoplastic entities which affect both humans and dogs. The family of tyrosine kinase receptors has been increasingly studied in humans for this type of neoplasm, especially the gene coding for the proto-oncogene KIT, and tyrosine kinase inhibitors are actually available as treatment. However, KIT alteration status in canine oral melanoma still lacks characterization. In this study, we investigated the mutational status and the tissue expression of KIT through DNA sequencing and immunohistochemical analysis, respectively. A homogeneous cohort of 14 canine oral melanomas has been collected, and while tissue expression of the protein was detected, no mutations were identifiable, most likely attributing the dysregulation of this oncogene to a more complex pattern of genomic aberration. Abstract Canine oral melanoma (COM) is an aggressive neoplasm with a low response to therapies, sharing similarities with human mucosal melanomas. In the latter, significant alterations of the proto-oncogene KIT have been shown, while in COMs only its exon 11 has been adequately investigated. In this study, 14 formalin-fixed, paraffin-embedded COMs were selected considering the following inclusion criteria: unequivocal diagnosis, presence of healthy tissue, and a known amplification status of the gene KIT (seven samples affected and seven non-affected by amplification). The DNA was extracted and KIT target exons 13, 17, and 18 were amplified by PCR and sequenced. Immunohistochemistry (IHC) for KIT and Ki67 was performed, and a quantitative index was calculated for each protein. PCR amplification and sequencing was successful in 97.62% of cases, and no single nucleotide polymorphism (SNP) was detected in any of the exons examined, similarly to exon 11 in other studies. The immunolabeling of KIT was positive in 84.6% of the samples with a mean value of 3.1 cells in positive cases, yet there was no correlation with aberration status. Our findings confirm the hypothesis that SNPs are not a frequent event in KIT activation in COMs, with the pathway activation relying mainly on amplification.
Collapse
|
12
|
Tan L, Tu Y, Wang K, Han B, Peng H, He C. Exploring protective effect of Glycine tabacina aqueous extract against nephrotic syndrome by network pharmacology and experimental verification. Chin Med 2020; 15:79. [PMID: 32765640 PMCID: PMC7395350 DOI: 10.1186/s13020-020-00361-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Glycine tabacina (Labill.) Benth, one of the traditional Chinese herbal medicines, has been used for treatment of nephritis, osteoporosis, rheumatism, and menopausal syndrome. The aim of this study was to illuminate the therapeutic effect and mechanism of Glycine tabacina aqueous extract (GATE) in the treatment of nephrotic syndrome (NS). Methods UHPLC-DAD-MS/MS was used to analyze the chemical profile of GATE. Adriamycin (ADR)-induced NS mouse model and network pharmacology methods were conducted to explore the protective effect and mechanism of GATE on NS treatment. Results GATE administration significantly ameliorated symptoms of proteinuria and hyperlipidemia in NS mice, as evidenced by reduced excretion of urine protein and albumin, and decreased plasma levels of total cholesterol and triglyceride. Decreased blood urea nitrogen (BUN) and creatinine levels in NS mice suggested that GATE could prevent renal function decline caused by ADR. GATE treatment also inhibited ADR-induced pathological lesions of renal tissues as indicated by periodic acid Schiff staining. Six flavonoids of GATE were identified by using UHPLC-DAD-MS/MS. Network pharmacology analysis indicated that the protection of GATE in treating NS might be associated with the regulation of oxidative stress and inflammation. In addition, the in vivo experiment validated that treatment with GATE markedly decreased reactive oxygen species production, malonaldehyde level, and increased superoxide dismutase activity both in plasma and renal tissues. TNF-α level in plasma and protein expression in kidney were significantly decreased in GATE treatment groups. Conclusions Combination of network pharmacology analysis and experimental verification revealed that GATE exerts anti-NS effect possibly through modulating oxidative stress and inflammation, suggesting the potential application of GATE or its derivatives in the prevention and treatment of NS and other related kidney diseases.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao SAR China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao SAR China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao SAR China
| | - Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao SAR China
| | - Hongquan Peng
- Renal Division, Kiang Wu Hospital, Macao, 999078 Macao SAR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao SAR China
| |
Collapse
|