1
|
Arnone AA, Tsai YT, Cline JM, Wilson AS, Westwood B, Seger ME, Chiba A, Howard-McNatt M, Levine EA, Thomas A, Soto-Pantoja DR, Cook KL. Endocrine-targeting therapies shift the breast microbiome to reduce estrogen receptor-α breast cancer risk. Cell Rep Med 2025; 6:101880. [PMID: 39742868 DOI: 10.1016/j.xcrm.2024.101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/14/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Studies indicate that breast tissue has a distinct modifiable microbiome population. We demonstrate that endocrine-targeting therapies, such as tamoxifen, reshape the non-cancerous breast microbiome to influence tissue metabolism and reduce tumorigenesis. Using 16S sequencing, we found that tamoxifen alters β-diversity and increases Firmicutes abundance, including Lactobacillus spp., in mammary glands (MGs) of mice and non-human primates. Immunohistochemistry showed that lipoteichoic acid (LTA)-positive bacteria were elevated in tamoxifen-treated breast tissue. In B6.MMTV-PyMT mice, intra-nipple probiotic bacteria injections reduced tumorigenesis, altered metabolic gene expression, and decreased tumor proliferation. Probiotic-conditioned media selectively reduced viability in estrogen receptor-positive (ER+) breast cancer cells and altered mitochondrial metabolism in non-cancerous epithelial cells. Human tumor samples revealed that LTA-positive bacteria negatively correlated with Ki67, suggesting that endocrine therapies influence tumor-associated microbiota to regulate proliferation. Our data indicate that endocrine-targeting therapies modify the breast microbiome, corresponding with a shift in tissue metabolism to potentially reduce ER+ breast cancer risk.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Yu-Ting Tsai
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Westwood
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Meghan E Seger
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Akiko Chiba
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Durham VA Medical Center, Department of Surgery, Durham, NC 27705, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Marissa Howard-McNatt
- Department of General Surgery, Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem NC, 27157, USA
| | - Edward A Levine
- Department of General Surgery, Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem NC, 27157, USA
| | - Alexandra Thomas
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
2
|
Yu X, Yu Z, Chen X, Liu M, Yang F, Cheung KCP. Research Progress on the Relationship Between Artificial Sweeteners and Breast Cancer. Biomedicines 2024; 12:2871. [PMID: 39767777 PMCID: PMC11673533 DOI: 10.3390/biomedicines12122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Artificial sweeteners, as low-calorie sugar substitutes, have attracted much attention in recent years, especially in terms of their potential health effects. Although they add almost no calories, studies have shown that artificial sweeteners may affect metabolism by stimulating insulin secretion and changing the intestinal microbiota, increasing the risk of metabolic syndrome and type 2 diabetes. Breast cancer, as the most common cancer in the world, is related to multiple factors such as genetics and hormone levels. The results of studies on artificial sweeteners and breast cancer risk are conflicting, with some showing a positive correlation between the two and others failing to confirm it. Differences in study design, participant characteristics, and the types of sweeteners have led to this ambiguity. Although some studies have focused on mechanisms such as hormone disorders, insulin response, and changes in the intestinal microbiota, further exploration is needed to establish a causal relationship. Our review aims to comprehensively analyze the potential association between artificial sweeteners and breast cancer and its mechanisms, as well as encourage future studies to reveal its long-term health effects.
Collapse
Affiliation(s)
- Xianqiang Yu
- Qingdao Municipal Hospital, Qingdao 266005, China;
| | - Zeng Yu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Xiaoli Chen
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Meijun Liu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Feng Yang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Kenneth C. P. Cheung
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| |
Collapse
|
3
|
Neagoe CXR, Ionică M, Neagoe OC, Trifa AP. The Influence of Microbiota on Breast Cancer: A Review. Cancers (Basel) 2024; 16:3468. [PMID: 39456562 PMCID: PMC11506631 DOI: 10.3390/cancers16203468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Breast cancer remains one of the leading causes of death among women worldwide, and recent research highlights its growing connection to alterations in the microbiota. This review delves into the intricate relationship between microbiotas and breast cancer, exploring its presence in healthy breast tissue, its changes during cancer progression, and its considerable impact on both the tumor microenvironment (TME) and the tumor immune microenvironment (TIME). We extensively analyze how the microbiota influences cancer growth, invasion, metastasis, resistance to drugs, and the evasion of the immune system, with a special focus on its effects on the TIME. Furthermore, we investigate distinct microbial profiles associated with the four primary molecular subtypes of breast cancer, examining how the microbiota in tumor tissues compares with that in adjacent normal tissues. Emerging studies suggest that microbiotas could serve as valuable diagnostic and prognostic biomarkers, as well as targets for therapy. This review emphasizes the urgent need for further research to improve strategies for breast cancer prevention, diagnosis, and treatment. By offering a detailed examination of the microbiota's critical role in breast cancer, this review aims to foster the development of novel microbiota-based approaches for managing the disease.
Collapse
Affiliation(s)
- Cara-Xenia-Rafaela Neagoe
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Mihaela Ionică
- Second Clinic of General Surgery and Surgical Oncology, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
- Second Discipline of Surgical Semiology, First Department of Surgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Breast Surgery Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300079 Timișoara, Romania
| | - Octavian Constantin Neagoe
- Second Clinic of General Surgery and Surgical Oncology, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
- Second Discipline of Surgical Semiology, First Department of Surgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Breast Surgery Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300079 Timișoara, Romania
| | - Adrian Pavel Trifa
- The Discipline of Genetics, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Genetics, Clinical Hospital of Infectious Diseases and Pneumophthisiology “Dr. Victor Babes” Timisoara, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
4
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
5
|
Mohamed HT, El-Shinawi M, Mohamed MM. Editorial: Inflammatory tumor microenvironment: role of cytokines and virokines in breast cancer progression and metastasis. Front Cell Dev Biol 2024; 12:1414734. [PMID: 38903531 PMCID: PMC11188433 DOI: 10.3389/fcell.2024.1414734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
6
|
MacFawn I, Farris J, Pifer P, Margaryan NV, Akhter H, Wang L, Dziadowicz S, Denvir J, Hu G, Frisch SM. Grainyhead-like-2, an epithelial master programmer, promotes interferon induction and suppresses breast cancer recurrence. Mol Immunol 2024; 170:156-169. [PMID: 38692097 PMCID: PMC11106721 DOI: 10.1016/j.molimm.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.
Collapse
Affiliation(s)
- Ian MacFawn
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Joshua Farris
- Wake Forest University, Department of Radiation Oncology, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Phillip Pifer
- Department of Radiation Oncology, WVU Cancer Institute, 1 Medical Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- WVU Cancer Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - James Denvir
- Byrd Biotechnology Center, Marshall University, One John Marshall Drive, Huntington, WV 25701, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA.
| | - Steven M Frisch
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, Box 9142, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
7
|
Feng K, Ren F, Shang Q, Wang X, Wang X. Association between oral microbiome and breast cancer in the east Asian population: A Mendelian randomization and case-control study. Thorac Cancer 2024; 15:974-986. [PMID: 38485288 PMCID: PMC11045337 DOI: 10.1111/1759-7714.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The causal relationship between breast cancer (BC) and the oral microbiome remains unclear. In this case-control study, using two-sample Mendelian randomization (MR), we thoroughly explored the relationship between the oral microbiome and BC in the East Asian population. METHODS Genetic summary data related to oral microbiota and BC were collected from genome-wide association studies involving participants of East Asian descent. MR estimates were generated by conducting various analyses. Sequencing data from a case-control study were used to verify the validity of these findings. RESULTS MR analysis revealed that 30 tongue and 37 salivary bacterial species were significantly associated with BC. Interestingly, in both tongue and salivary microbiomes, we observed the causal effect of six genera, namely, Aggregatibacter, Streptococcus, Prevotella, Haemophilus, Lachnospiraceae, Oribacterium, and Solobacterium, on BC. Our case-control study findings suggest differences in specific bacteria between patients with BC and healthy controls. Moreover, sequencing data confirmed the MR analysis results, demonstrating that compared with the healthy control group, the BC group had a higher relative abundance of Pasteurellaceae and Streptococcaceae but a lower relative abundance of Bacteroidaceae. CONCLUSIONS Our MR analysis suggests that the oral microbiome exerts a causative effect on BC risk, supported by the sequencing data of a case-control study. In the future, studies should be undertaken to comprehensively understand the complex interaction mechanisms between the oral microbiota and BC.
Collapse
Affiliation(s)
- Kexin Feng
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Ren
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingyao Shang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiang Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res 2024; 68:e2300688. [PMID: 38342595 DOI: 10.1002/mnfr.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like β-glucuronidases and β-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.
Collapse
Affiliation(s)
- Nikki Kumari
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, 800020, India
| | - Ankita Dua
- Department of Zoology, Shivaji College, University of Delhi, New Delhi, 110027, India
| | - Mona Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roushan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Poonam Singh
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Susan Duyar-Ayerdi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Akinyemi I Ojesina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
9
|
Mahno NE, Tay DD, Khalid NS, Yassim ASM, Alias NS, Termizi SA, Kasian J, Mokhtar NM, Ahmad HF. The Relationship Between Gut Microbiome Estrobolome and Breast Cancer: A Systematic Review of Current Evidences. Indian J Microbiol 2024; 64:1-19. [PMID: 38468730 PMCID: PMC10924874 DOI: 10.1007/s12088-023-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is the most frequent kind of cancer and the second leading cause of mortality worldwide, behind heart disease. Next-generation sequencing technologies enables for unprecedented enumeration of human resident gut microorganisms, conferring novel insights into the role of the microbiota in health and individuals with breast cancer. A growing body of research on microbial dysbiosis seems to indicate an elevated risk of health complications including cancer. Although several dysbiosis indices have been proposed, their underlying methodology, as well as the cohorts and conditions of breast cancer patients are significantly different. To date, these indices have not yet been thoroughly reviewed especially when it comes to researching the estrogen-gut microbiota axis. Instead of providing a thorough rating of the most effective diversity measurements, the current work aims to be used to assess the relevance of each study's findings across the demographic data, different subtypes, and stages of breast cancer, and tie them to the estrobolome, which controls the amount of oestrogen that circulates through humans. This review will cover 11 studies which will go into a detailed discussion for the microbiome results of the mentioned studies, leaving to the user the final choice of the most suited indices as well as highlight the observed bacteria found to be related to the estrobolome in hopes of giving the reader a better understanding for the biological cross-talk between gut microbiome and breast cancer progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01135-z.
Collapse
Affiliation(s)
- Noor Ezmas Mahno
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Darren Dean Tay
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
| | - Nurul Syazwani Khalid
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Aini Syahida Mat Yassim
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Nor Syuhada Alias
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Sahrol Azmi Termizi
- Division of Disease Control, Ministry of Health Malaysia, 62590 Putrajaya, Malaysia
| | - Junaini Kasian
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Riseberg E, Wu Y, Lam WC, Eliassen AH, Wang M, Zhang X, Willett WC, Smith-Warner SA. Lifetime dairy product consumption and breast cancer risk: a prospective cohort study by tumor subtypes. Am J Clin Nutr 2024; 119:302-313. [PMID: 38042408 PMCID: PMC10884601 DOI: 10.1016/j.ajcnut.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Previous literature on dairy products and risk of breast cancer is inconsistent, and the relationship may depend on the life-period of dietary assessment. OBJECTIVE We examined dairy consumption from adolescence through later adulthood and incidence of breast cancer by menopausal status and tumor molecular subtypes in the Nurses' Health Study (NHS), a prospective cohort study. METHODS We analyzed data from 63,847 females in the NHS collected from 1980 to 2018. Average intake of dairy products during adulthood was assessed by validated semiquantitative food frequency questionnaires throughout follow-up. Participants recalled adolescent dietary intake in 1986. Multivariable Cox proportional hazards models were used to estimate hazard ratios (HRs) relating dairy product consumption to breast cancer risk overall, by menopausal status, and by subtypes. RESULTS We documented 5733 incident cases of invasive breast cancer during 32 y of follow-up (n = 5298 postmenopausal). Lifetime, adolescent, adulthood, and postmenopausal total dairy and milk intakes were not associated with overall breast cancer risk (nonsignificant HRs comparing highest with lowest quintile range = 0.97-1.08), although there was a suggestive positive association between adolescent milk intake and breast cancer risk (HR: 1.09; 95% CI: 1.00, 1.18). Higher lifetime and premenopausal cheese intakes were associated with modestly lower risks of breast cancer (comparing highest with lowest quintile, HR for lifetime cheese intake: 0.90; 95% CI: 0.82, 0.98; HR for premenopausal cheese intake: 0.89; 95% CI: 0.79, 1.00). Results varied by tumor subtype and some evidence for heterogeneity was observed for an association between premenopausal milk intake and breast cancer (HR for estrogen receptor [ER]-positive: 0.84; 95% CI: 0.72, 0.99; ER-negative: 1.36; 95% CI: 1.00, 1.84; P heterogeneity = 0.04). CONCLUSIONS These findings suggest that overall dairy consumption was not associated with risk of breast cancer. However, heterogeneity was observed for type of dairy food, period of life, and tumor subtypes.
Collapse
Affiliation(s)
- Emily Riseberg
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - You Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Institute for Hospital Management, School of Medicine, Tsinghua University, Beijing, China; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
| | - Wai Ching Lam
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - A Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
11
|
Zeber-Lubecka N, Kulecka M, Jagiełło-Gruszfeld A, Dąbrowska M, Kluska A, Piątkowska M, Bagińska K, Głowienka M, Surynt P, Tenderenda M, Mikula M, Ostrowski J. Breast cancer but not the menopausal status is associated with small changes of the gut microbiota. Front Oncol 2024; 14:1279132. [PMID: 38327745 PMCID: PMC10848918 DOI: 10.3389/fonc.2024.1279132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Background Possible relationships between gut dysbiosis and breast cancer (BC) development and progression have been previously reported. However, the results of these metagenomics studies are inconsistent. Our study involved 88 patients diagnosed with breast cancer and 86 cancer-free control women. Participants were divided into groups based on their menopausal status. Fecal samples were collected from 47 and 41 pre- and postmenopausal newly diagnosed breast cancer patients and 51 and 35 pre- and postmenopausal controls, respectively. In this study, we performed shotgun metagenomic analyses to compare the gut microbial community between pre- and postmenopausal BC patients and the corresponding controls. Results Firstly, we identified 12, 64, 158, and 455 bacterial taxa on the taxonomy level of phyla, families, genera, and species, respectively. Insignificant differences of the Shannon index and β-diversity were found at the genus and species levels between pre- and postmenopausal controls; the differences concerned only the Chao index at the species level. No differences in α-diversity indexes were found between pre- and postmenopausal BC patients, although β-diversity differed these subgroups at the genus and species levels. Consistently, only the abundance of single taxa differed between pre- and postmenopausal controls and cases, while the abundances of 14 and 23 taxa differed or tended to differ between premenopausal cases and controls, and between postmenopausal cases and controls, respectively. There were similar differences in the distribution of enterotypes. Of 460 bacterial MetaCyc pathways discovered, no pathways differentiated pre- and postmenopausal controls or BC patients, while two and one pathways differentiated cases from controls in the pre- and postmenopausal subgroups, respectively. Conclusion While our findings did not reveal an association of changes in the overall microbiota composition and selected taxa with the menopausal status in cases and controls, they confirmed differences of the gut microbiota between pre- and postmenopausal BC patients and the corresponding controls. However, these differences were less extensive than those described previously.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Bagińska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Głowienka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Surynt
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
12
|
Budu O, Mioc A, Soica C, Caruntu F, Milan A, Oprean C, Lighezan D, Rotunjanu S, Ivan V, Banciu C. Lactiplantibacillus plantarum Induces Apoptosis in Melanoma and Breast Cancer Cells. Microorganisms 2024; 12:182. [PMID: 38258008 PMCID: PMC10819835 DOI: 10.3390/microorganisms12010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the notable advancements witnessed in the past decade in medical and health research domain, cancer remains a prominent global cause of mortality. Moreover, the conventional treatments employed to combat this disease have been found to considerably compromise the quality of life experienced by patients due to its severe side effects. Recent in vitro studies revealed encouraging findings on the potential beneficial effects of probiotics as adjuvants of anticancer therapy, and even as possible agents for the prevention and treatment of various types of malignancies. From this standpoint, the primary objective of this work was to investigate the anticancer properties of Lactiplantibacillus plantarum (LP) and elucidate its underlying mechanism of action. In order to investigate this matter, several doses of LP (ranging from 105 to 1010 CFU/mL) were examined in relation to melanoma cancer cell lines (A375) and breast cancer cell line (MCF-7). The cell viability findings, which were substantiated by morphological investigations and annexin V/PI assay, indicated that LP exerted inhibitory effects on cellular activity and triggered apoptosis. Additionally, upon further investigation into its mechanism, it was observed through the apoptosis assay and Western blot analysis that the administration of LP resulted in an elevation of pro-apoptotic BAX protein levels and an upregulation of cleaved poly-ADP-ribose polymerase (PARP) protein expression. Conversely, the levels of anti-apoptotic Bcl-2 protein were found to decrease in the A375 and MCF-7 cell lines. These findings provide insight into the pro-apoptotic mechanism of action of LP in these specific cell lines.
Collapse
Affiliation(s)
- Oana Budu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Andreea Milan
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300736 Timisoara, Romania
| | - Daniel Lighezan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Slavita Rotunjanu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Viviana Ivan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Christian Banciu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| |
Collapse
|
13
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
14
|
Mahoney D. The Role of the Human Microbiome in Epithelial Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:97-105. [PMID: 38805126 DOI: 10.1007/978-3-031-58311-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ovarian cancer is the fifth-leading cause of cancer deaths among women due to the absence of available screening methods to identify early disease. Thus, prevention and early disease detection investigations are of high priority, surrounding a critical window of opportunity to better understand important pathogenic mechanisms of disease progression. Microorganisms modulate molecular interactions in humans that can influence states of health and disease, including ovarian cancer. While the mechanisms of infectious microbial invasion that trigger the immune-inflammatory axis are well studied in cancer research, the complex interactions that promote the transition of noninfectious healthy microbes to pathobiont expansion are less understood. As traditional research has focused on the influences of infectious pathogens on ovarian cancer development and progression, the impact of noninfectious microbes has gained scientific attention. The objective of this chapter is to summarize current evidence on the role of microbiota in epithelial ovarian cancer throughout disease.
Collapse
Affiliation(s)
- Diane Mahoney
- Franklin D. Gaines & Beverly J. Gaines Tipton Endowed Professor of Oncology Nursing, University of Kansas School of Nursing, Kansas City, KS, USA.
| |
Collapse
|
15
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yue Y, Zhang H, Deng P, Tan M, Chen C, Tang B, Li J, Chen F, Zhao Q, Li L, Hao R, Wang H, Luo Y, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Environmental cadmium exposure facilitates mammary tumorigenesis via reprogramming gut microbiota-mediated glutamine metabolism in MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165348. [PMID: 37429473 DOI: 10.1016/j.scitotenv.2023.165348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Cadmium (Cd) is a heavy metal that has been widely reported to be linked to the onset and progression of breast cancer (BC). However, the mechanism of Cd-induced mammary tumorigenesis remains elusive. In our study, a transgenic mouse model that spontaneously develops tumors through overexpression of wild-type Erbb2 (MMTV-Erbb2) was constructed to investigate the effects of Cd exposure on BC tumorigenesis. The results showed that oral exposure to 3.6 mg/L Cd for 23 weeks dramatically accelerated tumor appearance and growth, increased Ki67 density and enhanced focal necrosis and neovascularization in the tumor tissue of MMTV-Erbb2 mice. Notably, Cd exposure enhanced glutamine (Gln) metabolism in tumor tissue, and 6-diazo-5-oxo-l-norleucine (DON), a Gln metabolism antagonist, inhibited Cd-induced breast carcinogenesis. Then our metagenomic sequencing and mass spectrometry-based metabolomics confirmed that Cd exposure disturbed gut microbiota homeostasis, especially Helicobacter and Campylobacter abundance remodeling, which altered the gut metabolic homeostasis of Gln. Moreover, intratumoral Gln metabolism profoundly increased under Cd-elevated gut permeability. Importantly, depletion of microbiota with an antibiotic cocktail (AbX) treatment led to a significant delay in the appearance of palpable tumors, inhibition of tumor growth, decrease in tumor weight, reduction in Ki67 expression and low-grade pathology in Cd-exposed MMTV-Erbb2 mice. Also, transplantation of Cd-modulated microbiota decreased tumor latency, accelerated tumor growth, increased tumor weight, upregulated Ki67 expression and exacerbated neovascularization as well as focal necrosis in MMTV-Erbb2 mice. In summary, Cd exposure induced gut microbiota dysbiosis, elevated gut permeability and increased intratumoral Gln metabolism, leading to the promotion of mammary tumorigenesis. This study provides novel insights into environmental Cd exposure-mediated carcinogenesis.
Collapse
Affiliation(s)
- Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huadong Zhang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, The Affiliated Zhuzhou Hospital of Xiang Ya School of Medicine, Central South University, Zhuzhou 412000, Hunan, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Fengqiong Chen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Qi Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Ling Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
17
|
Altinok Dindar D, Chun B, Palma A, Cheney J, Krieger M, Kasschau K, Stagaman K, Mitri ZI, Goodyear SM, Shannon J, Karstens L, Sharpton T, Zhang Z. Association between Gut Microbiota and Breast Cancer: Diet as a Potential Modulating Factor. Nutrients 2023; 15:4628. [PMID: 37960281 PMCID: PMC10649662 DOI: 10.3390/nu15214628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) has many well-known risk factors, including age, genetics, lifestyle, and diet; however, the influence of the gut microbiome on BCa remains an emerging area of investigation. This study explores the connection between the gut microbiome, dietary habits, and BCa risk. We enrolled newly diagnosed BCa patients and age-matched cancer-free controls in a case-control study. Comprehensive patient data was collected, including dietary habits assessed through the National Cancer Institute Diet History Questionnaire (DHQ). 16S rRNA amplicon sequencing was used to analyze gut microbiome composition and assess alpha and beta diversity. Microbiome analysis revealed differences in the gut microbiome composition between cases and controls, with reduced microbial diversity in BCa patients. The abundance of three specific microbial genera-Acidaminococus, Tyzzerella, and Hungatella-was enriched in the fecal samples taken from BCa patients. These genera were associated with distinct dietary patterns, revealing significant associations between the presence of these genera in the microbiome and specific HEI2015 components, such as vegetables and dairy for Hungatella, and whole fruits for Acidaminococus. Demographic characteristics were well-balanced between groups, with a significantly higher body mass index and lower physical activity observed in cases, underscoring the role of weight management in BCa risk. Associations between significant microbial genera identified from BCa cases and dietary intakes were identified, which highlights the potential of the gut microbiome as a source of biomarkers for BCa risk assessment. This study calls attention to the complex interplay between the gut microbiome, lifestyle factors including diet, and BCa risk.
Collapse
Affiliation(s)
- Duygu Altinok Dindar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
| | - Brie Chun
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, OR 97239, USA (S.M.G.)
| | - Amy Palma
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| | - John Cheney
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
| | - Kristin Kasschau
- Department of Microbiology, Department of Statistics, Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA; (K.K.); (K.S.); (T.S.)
| | - Keaton Stagaman
- Department of Microbiology, Department of Statistics, Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA; (K.K.); (K.S.); (T.S.)
| | - Zahi I. Mitri
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada;
| | - Shaun M. Goodyear
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, OR 97239, USA (S.M.G.)
| | - Jackilen Shannon
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Thomas Sharpton
- Department of Microbiology, Department of Statistics, Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA; (K.K.); (K.S.); (T.S.)
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
18
|
Yaghjyan L, Mai V, Darville LNF, Cline J, Wang X, Ukhanova M, Tagliamonte MS, Martinez YC, Rich SN, Koomen JM, Egan KM. Associations of gut microbiome with endogenous estrogen levels in healthy postmenopausal women. Cancer Causes Control 2023; 34:873-881. [PMID: 37286847 DOI: 10.1007/s10552-023-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The gut microbiome is a potentially important contributor to endogenous estrogen levels after menopause. In healthy postmenopausal women, we examined associations of fecal microbiome composition with levels of urinary estrogens, their metabolites, and relevant metabolic pathway ratios implicated in breast cancer risk. METHODS Eligible postmenopausal women (n = 164) had a body mass index (BMI) ≤ 35 kg/m2 and no history of hormone use (previous 6 months) or cancer/metabolic disorders. Estrogens were quantified in spot urine samples with liquid chromatography-high resolution mass spectrometry (corrected for creatinine). Bacterial DNA was isolated from fecal samples and the V1-V2 hypervariable regions of 16S rRNA were sequenced on the Illumina MiSeq platform. We examined associations of gut microbiome's indices of within-sample (alpha) diversity (i.e., Shannon, Chao1, and Inverse Simpson), phylogenetic diversity, and the ratio of the two main phyla (Firmicutes and Bacteroidetes; F/B ratio) with individual estrogens and metabolic ratios, adjusted for age and BMI. RESULTS In this sample of 164 healthy postmenopausal women, the mean age was 62.9 years (range 47.0-86.0). We found significant inverse associations of observed species with 4-pathway:total estrogens (p = 0.04) and 4-pathway:2-pathway (p = 0.01). Shannon index was positively associated with 2-catechols: methylated 2-catechols (p = 0.04). Chao1 was inversely associated with E1:total estrogens (p = 0.04), and 4-pathway:2-pathway (p = 0.02) and positively associated with 2-pathway:parent estrogens (p = 0.01). Phylogenetic diversity was inversely associated with 4-pathway:total estrogens (p = 0.02), 4-pathway:parent estrogens (p = 0.03), 4-pathway:2-pathway (p = 0.01), and 4-pathway:16-pathway (p = 0.03) and positively associated with 2-pathway:parent estrogens (p = 0.01). F/B ratio was not associated with any of the estrogen measures. CONCLUSION Microbial diversity was associated with several estrogen metabolism ratios implicated in breast cancer risk. Further studies are warranted to confirm these findings in a larger and more representative sample of postmenopausal women, particularly with enrichment of minority participants.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | | | | | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Massimiliano S Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Shannan N Rich
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
| | | | | |
Collapse
|
19
|
Kim L, Coman M, Pusztai L, Park TS. Neoadjuvant Immunotherapy in Early, Triple-Negative Breast Cancers: Catching Up with the Rest. Ann Surg Oncol 2023; 30:6441-6449. [PMID: 37349612 DOI: 10.1245/s10434-023-13714-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Despite breast cancer being long thought to be "immunologically cold," within early, triple-negative breast cancer (TNBC), there has been exciting advances with the use of immune checkpoint modulation combined with neoadjuvant chemotherapy. We review the major trials that have investigated combination immunochemotherapy in the neoadjuvant setting, reviewing both the pathological complete response rates and the maturing data regarding event-free and overall survival. Strategies to deescalate adjuvant therapy in patients with preserving excellent clinical outcome, as well as exploration of combinatorial adjuvant therapies to improve outcome in those with extensive residual are the next-generation challenges. In addition to refinement of existing biomarkers, such as PD-L1, TILs, and tumor mutational burden (TMB), exploration of topics like the microbiome as both a biomarker and a therapeutic has shown promise in other cancer types, which motivates investigating these in breast cancer.
Collapse
Affiliation(s)
- Leah Kim
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Coman
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lajos Pusztai
- Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| | - Tristen S Park
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb Pathog 2023; 183:106324. [PMID: 37633504 DOI: 10.1016/j.micpath.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.
Collapse
Affiliation(s)
- Yimtar L Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, Tamil Nadu, India
| | - Santhiyagu Prakash
- Marine Biotechnology Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, (OMR Campus), Tamilnadu Dr. J. Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai - 603 103, Tamil Nadu, India.
| |
Collapse
|
21
|
Walker JN, Hanson BM, Hunter T, Simar SR, Duran Ramirez JM, Obernuefemann CLP, Parikh RP, Tenenbaum MM, Margenthaler JA, Hultgren SJ, Myckatyn TM. A prospective randomized clinical trial to assess antibiotic pocket irrigation on tissue expander breast reconstruction. Microbiol Spectr 2023; 11:e0143023. [PMID: 37754546 PMCID: PMC10581127 DOI: 10.1128/spectrum.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial infection is the most common complication following staged post-mastectomy breast reconstruction initiated with a tissue expander (TE). To limit bacterial infection, antibiotic irrigation of the surgical site is commonly performed despite little high-quality data to support this practice. We performed a prospective randomized control trial to compare the impact of saline irrigation alone to a triple antibiotic irrigation regimen (1 g cefazolin, 80 mg gentamicin, and 50,000 units of bacitracin in 500 mL of saline) for breast implant surgery. The microbiome in breasts with cancer (n = 16) was compared to those without (n = 16), as all patients (n = 16) had unilateral cancers but bilateral mastectomies (n = 32). Biologic and prosthetic specimens procured both at the time of mastectomy and during TE removal months later were analyzed for longitudinal comparison. Outcomes included clinical infection, bacterial abundance, and relative microbiome composition. No patient in either group suffered a reconstructive failure or developed an infection. Triple antibiotic irrigation administered at the time of immediate TE reconstruction did not reduce bacterial abundance or impact microbial diversity relative to saline irrigation at the time of planned exchange. Implanted prosthetic material adopted the microbial composition of the surrounding host tissue. In cancer-naïve breasts, relative to saline, antibiotic irrigation increased bacterial abundance on periprosthetic capsules (P = 0.03) and acellular dermal matrices (P = 0.04) and altered the microbiota on both. These data show that, relative to saline only, the use of triple antibiotic irrigation in TE breast reconstruction does impact the bacterial abundance and diversity of certain biomaterials from cancer-naïve breasts. IMPORTANCE The lifetime risk of breast cancer is ~13% in women and is treated with a mastectomy in ~50% of cases. The majority are reconstructed, usually starting with a tissue expander to help restore the volume for a subsequent permanent breast implant or the women's own tissues. The biopsychosocial benefits of breast reconstruction, though, can be tempered by a high complication rate of at least 7% but over 30% in some women. Bacterial infection is the most common complication, and can lead to treatment delays, patient physical and emotional distress and escalating health care cost. To limit this risk, plastic surgeons have tried a variety of strategies to limit bacterial infection including irrigating the pocket created after removing the breast implant with antibiotic solutions, but good-quality data are scarce. Herein, we study the value of antibiotics in pocket irrigation using a robust randomized clinical trial design and molecular microbiology approaches.
Collapse
Affiliation(s)
- Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Tayler Hunter
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Shelby R. Simar
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rajiv P. Parikh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A. Margenthaler
- Division of Surgical Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
22
|
Hoskinson C, Jiang RY, Stiemsma LT. Elucidating the roles of the mammary and gut microbiomes in breast cancer development. Front Oncol 2023; 13:1198259. [PMID: 37664075 PMCID: PMC10470065 DOI: 10.3389/fonc.2023.1198259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The mammary microbiome is a newly characterized bacterial niche that might offer biological insight into the development of breast cancer. Together with in-depth analysis of the gut microbiome in breast cancer, current evidence using next-generation sequencing and metabolic profiling suggests compositional and functional shifts in microbial consortia are associated with breast cancer. In this review, we discuss the fundamental studies that have progressed this important area of research, focusing on the roles of both the mammary tissue microbiome and the gut microbiome. From the literature, we identified the following major conclusions, (I) There are unique breast and gut microbial signatures (both compositional and functional) that are associated with breast cancer, (II) breast and gut microbiome compositional and breast functional dysbiosis represent potential early events of breast tumor development, (III) specific breast and gut microbes confer host immune responses that can combat breast tumor development and progression, and (IV) chemotherapies alter the microbiome and thus maintenance of a eubiotic microbiome may be key in breast cancer treatment. As the field expectantly advances, it is necessary for the role of the microbiome to continue to be elucidated using multi-omic approaches and translational animal models in order to improve predictive, preventive, and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | - Leah T. Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
23
|
AlMalki RH, Jaber MA, Al-Ansari MM, Sumaily KM, Al-Alwan M, Sabi EM, Malkawi AK, Abdel Rahman AM. Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue. Metabolites 2023; 13:938. [PMID: 37623881 PMCID: PMC10456566 DOI: 10.3390/metabo13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
According to studies, the microbiome may contribute to the emergence and spread of breast cancer. E. coli is one of the Enterobacteriaceae family recently found to be present as part of the breast tissue microbiota. In this study, we focused on the effect of E. coli secretome free of cells on MCF-7 metabolism. Liquid chromatography-mass spectrometry (LC-MS) metabolomics was used to study the E. coli secretome and its role in MCF-7 intra- and extracellular metabolites. A comparison was made between secretome-exposed cells and unexposed controls. Our analysis revealed significant alterations in 31 intracellular and 55 extracellular metabolites following secretome exposure. Several metabolic pathways, including lactate, aminoacyl-tRNA biosynthesis, purine metabolism, and energy metabolism, were found to be dysregulated upon E. coli secretome exposure. E. coli can alter the breast cancer cells' metabolism through its secretome which disrupts key metabolic pathways of MCF-7 cells. These microbial metabolites from the secretome hold promise as biomarkers of drug resistance or innovative approaches for cancer treatment, either as standalone therapies or in combination with other medicines.
Collapse
Affiliation(s)
- Reem H. AlMalki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Malak A. Jaber
- Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Khalid M. Sumaily
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.M.S.); (E.M.S.)
| | - Monther Al-Alwan
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Essa M. Sabi
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.M.S.); (E.M.S.)
| | - Abeer K. Malkawi
- Department of Chemistry and Biochemistry, Université Du Québec à Montréal, Montréal, QC H3C 3P8, Canada;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| |
Collapse
|
24
|
Frankel LR, Addanki S, Ardeljan A, Takab K, Rashid OM. Hemophilus influenzae Infection's Association With Decreased Risk of Breast Cancer. World J Oncol 2023; 14:255-265. [PMID: 37560345 PMCID: PMC10409556 DOI: 10.14740/wjon1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Background Hemophilus influenzae (H. influenzae) is a common cause of widespread bacterial infections and has been associated with the stabilization of the microbiome. The microbiome, through modulating systemic inflammation with possible upregulation of the NLRP3 inflammasome, may potentiate the development of breast cancer (BC). The purpose of this study was to therefore evaluate the correlation between previous H. influenzae infection and the incidence of BC. Methods A large national database was used to collect International Classification of Disease Ninth and Tenth Codes to evaluate the incidence of BC between January 2010 and December 2019 in patients with and without H. influenzae history. A retrospective cohort study was performed where these groups of individuals were matched by age range, Charlson Comorbidity Index (CCI), and antibiotic treatment exposure. Significance and relative risk were obtained using standard statistical procedures. Results A total of 13,599 patients were matched by age range and CCI in both the experimental and control groups. BC incidence was 259 (1.905%) in the H. influenzae group compared to 686 (5.044%) in the control group (P < 2.2 × 10-16; odds ratio (OR) = 0.604, 95% confidence interval (CI): 0.553 - 0.660). Matching by antibiotic treatment exposure resulted in two groups of 3,189 patients, in which BC incidence was 98 (3.073 %) in the H. influenzae group compared to 171 (5.362%) in the control group (P < 2.2 × 10-16; OR = 0.584, 95% CI: 0.515 - 0.661). Conclusion The study shows a statistically significant correlation between H. influenzae and a reduced incidence of BC. These results warrant further research regarding H. influenzae's role in upregulating the NLRP3 inflammasome and its potential role in BC prevention and treatment.
Collapse
Affiliation(s)
- Lexi R. Frankel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Sunaina Addanki
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Amalia Ardeljan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
| | - Kazuaki Takab
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
| | - Omar M. Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
- University of Miami, Leonard Miami School of Medicine, Miami, FL, USA
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgical Oncology, Broward Health, Fort Lauderdale, FL, USA
- TopLine MD Alliance, Fort Lauderdale, FL, USA
- Department of Surgical Oncology Memorial Health, Pembroke Pines, FL, USA
- Department of Surgical Oncology, Delray Medical Center, Delray, FL, USA
| |
Collapse
|
25
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
26
|
German R, Marino N, Hemmerich C, Podicheti R, Rusch DB, Stiemsma LT, Gao H, Xuei X, Rockey P, Storniolo AM. Exploring breast tissue microbial composition and the association with breast cancer risk factors. Breast Cancer Res 2023; 25:82. [PMID: 37430354 DOI: 10.1186/s13058-023-01677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Microbial dysbiosis has emerged as an important element in the development and progression of various cancers, including breast cancer. However, the microbial composition of the breast from healthy individuals, even relative to risk of developing breast cancer, remains unclear. Here, we performed a comprehensive analysis of the microbiota of the normal breast tissue, which was analyzed in relation to the microbial composition of the tumor and adjacent normal tissue. METHODS The study cohorts included 403 cancer-free women (who donated normal breast tissue cores) and 76 breast cancer patients (who donated tumor and/or adjacent normal tissue samples). Microbiome profiling was obtained by sequencing the nine hypervariable regions of the 16S rRNA gene (V1V2, V2V3, V3V4, V4V5, V5V7, and V7V9). Transcriptome analysis was also performed on 190 normal breast tissue samples. Breast cancer risk score was assessed using the Tyrer-Cuzick risk model. RESULTS The V1V2 amplicon sequencing resulted more suitable for the analysis of the normal breast microbiome and identified Lactobacillaceae (Firmicutes phylum), Acetobacterraceae, and Xanthomonadaceae (both Proteobacteria phylum) as the most abundant families in the normal breast. However, Ralstonia (Proteobacteria phylum) was more abundant in both breast tumors and histologically normal tissues adjacent to malignant tumors. We also conducted a correlation analysis between the microbiome and known breast cancer risk factors. Abundances of the bacterial taxa Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp. were associated with age (p < 0.0001), racial background (p < 0.0001), and parity (p < 0.0001). Finally, transcriptome analysis of normal breast tissues showed an enrichment in metabolism- and immune-related genes in the tissues with abundant Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp., whereas the presence of Ralstonia in the normal tissue was linked to dysregulation of genes involved in the carbohydrate metabolic pathway. CONCLUSIONS This study defines the microbial features of normal breast tissue, thus providing a basis to understand cancer-related dysbiosis. Moreover, the findings reveal that lifestyle factors can significantly affect the normal breast microbial composition.
Collapse
Affiliation(s)
- Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA.
| | - Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA.
- Hematology/Oncology Division, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut St, R3-C238, Indianapolis, IN, 46202, USA.
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Leah T Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, 90263, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pam Rockey
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA
| | - Anna Maria Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA
- Hematology/Oncology Division, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut St, R3-C238, Indianapolis, IN, 46202, USA
| |
Collapse
|
27
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
28
|
Wu H, Van Der Pol WJ, Dubois LG, Morrow CD, Tollefsbol TO. Dietary Supplementation of Inulin Contributes to the Prevention of Estrogen Receptor-Negative Mammary Cancer by Alteration of Gut Microbial Communities and Epigenetic Regulations. Int J Mol Sci 2023; 24:9015. [PMID: 37240357 PMCID: PMC10218871 DOI: 10.3390/ijms24109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-kB, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, College of Arts and Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - William J. Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura G. Dubois
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27701, USA
| | - Casey D. Morrow
- Department of Cell, Departmental & Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, College of Arts and Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center of Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
30
|
Filippone A, Rossi C, Rossi MM, Di Micco A, Maggiore C, Forcina L, Natale M, Costantini L, Merendino N, Di Leone A, Franceschini G, Masetti R, Magno S. Endocrine Disruptors in Food, Estrobolome and Breast Cancer. J Clin Med 2023; 12:jcm12093158. [PMID: 37176599 PMCID: PMC10178963 DOI: 10.3390/jcm12093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota is now recognized as one of the major players in human health and diseases, including cancer. Regarding breast cancer (BC), a clear link between microbiota and oncogenesis still needs to be confirmed. Yet, part of the bacterial gene mass inside the gut, constituting the so called "estrobolome", influences sexual hormonal balance and, since the increased exposure to estrogens is associated with an increased risk, may impact on the onset, progression, and treatment of hormonal dependent cancers (which account for more than 70% of all BCs). The hormonal dependent BCs are also affected by environmental and dietary endocrine disruptors and phytoestrogens which interact with microbiota in a bidirectional way: on the one side disruptors can alter the composition and functions of the estrobolome, ad on the other the gut microbiota influences the metabolism of endocrine active food components. This review highlights the current evidence about the complex interplay between endocrine disruptors, phytoestrogens, microbiome, and BC, within the frames of a new "oncobiotic" perspective.
Collapse
Affiliation(s)
- Alessio Filippone
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Maddalena Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Annalisa Di Micco
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Maggiore
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luana Forcina
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Natale
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Alba Di Leone
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Franceschini
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Masetti
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
31
|
Viswanathan S, Parida S, Lingipilli BT, Krishnan R, Podipireddy DR, Muniraj N. Role of Gut Microbiota in Breast Cancer and Drug Resistance. Pathogens 2023; 12:pathogens12030468. [PMID: 36986390 PMCID: PMC10058520 DOI: 10.3390/pathogens12030468] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. The cause of cancer is multifactorial. An early diagnosis and the appropriate treatment of cancer can improve the chances of survival. Recent studies have shown that breast cancer is influenced by the microbiota. Different microbial signatures have been identified in the breast microbiota, which have different patterns depending on the stage and biological subgroups. The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. In this review article, we discuss the impact of the microbiota on breast cancer, with a primary focus on the gut microbiota’s regulation of the breast cancer microenvironment. Ultimately, updates on how immunotherapy can affect the breast cancer-based microbiome and further clinical trials on the breast and microbiome axis may be an important piece of the puzzle in better predicting breast cancer risk and prognosis.
Collapse
Affiliation(s)
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Bhuvana Teja Lingipilli
- Gandhi Institute of Technology and Management (GITAM), Deemed University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Ramalingam Krishnan
- Department of Biochemistry, Narayana Medical College, Nellore 524003, Andhra Pradesh, India
| | - Devendra Rao Podipireddy
- Rangaraya Medical College, Dr. YSR University of Health Sciences, Kakinada 533001, Andhra Pradesh, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-202-476-2466
| |
Collapse
|
32
|
Barrea L, Verde L, Auriemma RS, Vetrani C, Cataldi M, Frias-Toral E, Pugliese G, Camajani E, Savastano S, Colao A, Muscogiuri G. Probiotics and Prebiotics: Any Role in Menopause-Related Diseases? Curr Nutr Rep 2023; 12:83-97. [PMID: 36746877 PMCID: PMC9974675 DOI: 10.1007/s13668-023-00462-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of the menopause-related changes in microbiota and their role in the pathogenesis of menopause-related diseases. In addition, evidence on probiotic supplementation as a therapeutic strategy is discussed. RECENT FINDINGS The human microbiota is a complex community that lives in a mutualism relationship with the host. Menopause is associated with dysbiosis, and these changes in the composition of microbiota in different sites (gut, vaginal, and oral microbiota) might play a role in the pathogenesis of menopause-related diseases (i.e., osteoporosis, breast cancer, endometrial hyperplasia, periodontitis, and cardiometabolic diseases). The present review highlights the pivotal role of microbiota in postmenopausal women health, in particular it (a) may increase intestinal calcium absorption thus preventing osteoporosis, (b) is associated with reduced risk of breast cancer and type 1 endometrial hyperplasia, (c) reduces gingival inflammation and menopausal periodontitis, and (d) beneficially affects multiple cardiometabolic risk factors (i.e., obesity, inflammation, and blood glucose and lipid metabolism). However, whether oral probiotic supplementation might be used for the treatment of menopause-related dysbiosis requires further clarification.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, isola F2, 80143, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Claudia Vetrani
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Evelyn Frias-Toral
- Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, 090615, Ecuador
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
33
|
Cardeiro M, Ardeljan AD, Frankel L, Kim E, Takabe K, Rashid OM. Incidence of Breast Cancer and Enterococcus Infection: A Retrospective Analysis. World J Oncol 2023; 14:32-39. [PMID: 36895996 PMCID: PMC9990735 DOI: 10.14740/wjon1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 03/01/2023] Open
Abstract
Background Enterococci role in the microbiome remains controversial, and researches regarding enterococcal infection (EI) and its sequelae are limited. The gut microbiome has shown to play an important role in immunology and cancer. Recent data have suggested a relationship between the gut microbiome and breast cancer (BC). Methods Patients in a Health Insurance Portability and Accountability Act (HIPAA) compliant national database (2010 - 2020) were used for this retrospective study. International Classification of Disease (ICD) Ninth and Tenth Codes, Current Procedural Terminology (CPT), and National Drug Codes were used to identify BC diagnosis and EI. Patients were matched for age, sex, Charlson comorbidity index (CCI), antibiotic treatment, obesity, and region of residence. Statistical analyses were implemented to assess significance and estimate odds ratio (OR). Results EI was associated with a decreased incidence of BC (OR = 0.60, 95% confidence interval (CI): 0.57 - 0.63) and the difference was statistically significant (P < 2.2 × 10-16). Treatment for EI was controlled for in both EI and noninfected populations. Patients with a prior EI and treated with antibiotics were compared to patients with no history of EI and received antibiotics. Both populations subsequently developed BC. Results remained statistically significant (P < 2.2 × 10-16) with an OR of 0.57 (95% CI: 0.54 - 0.60). In addition to standard matching protocol, obesity was controlled for in both groups by exclusively containing obese patients, but one group with prior EI and the other without. In obese patients, a lower incidence of BC was shown in the infected group compared to the noninfected group. Results were statistically significant (P < 2.2 × 10-16) with an OR of 0.56 (95% CI: 0.53 - 0.58). Age of BC diagnosis with and without a prior EI was analyzed and demonstrated increased BC incidence with increasing age in both groups, but less in the EI group. Incidence of BC based on region was analyzed, which showed lower BC incidence across all regions in the EI group. Conclusion This study shows a statistically significant correlation between EI and decreased incidence of BC. Further exploration is needed to identify and understand not only the role of enterococcus in the microbiome, but also the protective mechanism(s) and impact of EI on BC development.
Collapse
Affiliation(s)
- Matthew Cardeiro
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Amalia D. Ardeljan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
| | - Lexi Frankel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Enoch Kim
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
| | - Omar M. Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
- University of Miami, Leonard Miami School of Medicine, Miami, FL, USA
- Massachusetts General Hospital, Boston, MA, USA
- Broward Health, Fort Lauderdale, FL, USA
- TopLine MD Alliance, Fort Lauderdale, FL, USA
- Memorial Health, Pembroke Pines, FL, USA
- Delray Medical Center, Delray, FL, USA
| |
Collapse
|
34
|
Caleça T, Ribeiro P, Vitorino M, Menezes M, Sampaio-Alves M, Mendes AD, Vicente R, Negreiros I, Faria A, Costa DA. Breast Cancer Survivors and Healthy Women: Could Gut Microbiota Make a Difference?-"BiotaCancerSurvivors": A Case-Control Study. Cancers (Basel) 2023; 15:cancers15030594. [PMID: 36765550 PMCID: PMC9913170 DOI: 10.3390/cancers15030594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In this first analysis, samples from 23 BC survivors (group 1) and 291 healthy female controls (group 2) were characterised through the V3 and V4 regions that encode the "16S rRNA" gene of each bacteria. The samples were sequenced by next-generation sequencing (NGS), and the taxonomy was identified by resorting to Kraken2 and improved with Bracken, using a curated database called 'GutHealth_DB'. The α and β-diversity analyses were used to determine the richness and evenness of the gut microbiota. A non-parametric Mann-Whitney U test was applied to assess differential abundance between both groups. The Firmicutes/Bacteroidetes (F/B) ratio was calculated using a Kruskal-Wallis chi-squared test. The α-diversity was significantly higher in group 1 (p = 0.28 × 10-12 for the Chao index and p = 1.64 × 10-12 for the ACE index). The Shannon index, a marker of richness and evenness, was not statistically different between the two groups (p = 0.72). The microbiota composition was different between the two groups: a null hypothesis was rejected for PERMANOVA (p = 9.99 × 10-5) and Anosim (p = 0.04) and was not rejected for β-dispersion (p = 0.158), using Unifrac weighted distance. The relative abundance of 14 phyla, 29 classes, 25 orders, 64 families, 116 genera, and 74 species differed significantly between both groups. The F/B ratio was significantly lower in group 1 than in group 2, p < 0.001. Our study allowed us to observe significant taxonomic disparities in the two groups by testing the differences between BC survivors and healthy controls. Additional studies are needed to clarify the involved mechanisms and explore the relationship between microbiota and BC survivorship.
Collapse
Affiliation(s)
- Telma Caleça
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
- Correspondence: (T.C.); (D.A.C.)
| | - Pedro Ribeiro
- Laboratory Medicine Centre Germano de Sousa, 1600-513 Lisbon, Portugal
| | - Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Maria Menezes
- Medical Oncology Department, Hospital do Espírito Santo de Évora, 7000-811 Évora, Portugal
| | - Mafalda Sampaio-Alves
- PTSurg–Portuguese Surgical Research Collaborative, 1600 Lisbon, Portugal
- Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana Duarte Mendes
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Rodrigo Vicente
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Ida Negreiros
- Hospital CUF, Breast Cancer Unit, 1998-018 Lisbon, Portugal
| | - Ana Faria
- Faculdade de Ciências Médicas, NOVA Medical School, 1169-056 Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Faculdade de Ciências Médicas, NOVA Medical School, 1150-082 Lisbon, Portugal
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo Alpuim Costa
- Hospital CUF, Breast Cancer Unit, 1998-018 Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, 1169-056 Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, 2755-009 Cascais, Portugal
- Correspondence: (T.C.); (D.A.C.)
| |
Collapse
|
35
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
36
|
Shrode RL, Knobbe JE, Cady N, Yadav M, Hoang J, Cherwin C, Curry M, Garje R, Vikas P, Sugg S, Phadke S, Filardo E, Mangalam AK. Breast cancer patients from the Midwest region of the United States have reduced levels of short-chain fatty acid-producing gut bacteria. Sci Rep 2023; 13:526. [PMID: 36631533 PMCID: PMC9834383 DOI: 10.1038/s41598-023-27436-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
As geographical location can impact the gut microbiome, it is important to study region-specific microbiome signatures of various diseases. Therefore, we profiled the gut microbiome of breast cancer (BC) patients of the Midwestern region of the United States. The bacterial component of the gut microbiome was profiled utilizing 16S ribosomal RNA sequencing. Additionally, a gene pathway analysis was performed to assess the functional capabilities of the bacterial microbiome. Alpha diversity was not significantly different between BC and healthy controls (HC), however beta diversity revealed distinct clustering between the two groups at the species and genera level. Wilcoxon Rank Sum test revealed modulation of several gut bacteria in BC specifically reduced abundance of those linked with beneficial effects such as Faecalibacterium prausnitzii. Machine learning analysis confirmed the significance of several of the modulated bacteria found by the univariate analysis. The functional analysis showed a decreased abundance of SCFA (propionate) production in BC compared to HC. In conclusion, we observed gut dysbiosis in BC with the depletion of SCFA-producing gut bacteria suggesting their role in the pathobiology of breast cancer. Mechanistic understanding of gut bacterial dysbiosis in breast cancer could lead to refined prevention and treatment.
Collapse
Affiliation(s)
- Rachel L. Shrode
- grid.214572.70000 0004 1936 8294Department of Informatics, University of Iowa, Iowa City, IA 52242 USA
| | - Jessica E. Knobbe
- grid.214572.70000 0004 1936 8294Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Nicole Cady
- grid.214572.70000 0004 1936 8294Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA ,grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Meeta Yadav
- grid.214572.70000 0004 1936 8294Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294College of Dentistry, University of Iowa, Iowa City, IA 52242 USA
| | - Jemmie Hoang
- grid.214572.70000 0004 1936 8294College of Nursing, University of Iowa, Iowa City, IA 52242 USA
| | - Catherine Cherwin
- grid.214572.70000 0004 1936 8294College of Nursing, University of Iowa, Iowa City, IA 52242 USA
| | - Melissa Curry
- grid.412584.e0000 0004 0434 9816Holden Comprehensive Cancer Center, University of Iowa Hospital and Clinics, Iowa City, IA 52242 USA
| | - Rohan Garje
- grid.214572.70000 0004 1936 8294Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Praveen Vikas
- grid.214572.70000 0004 1936 8294Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Sonia Sugg
- grid.214572.70000 0004 1936 8294Department of Surgery, University of Iowa, Iowa City, IA 52242 USA
| | - Sneha Phadke
- grid.214572.70000 0004 1936 8294Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | | | - Ashutosh K. Mangalam
- grid.214572.70000 0004 1936 8294Department of Informatics, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294College of Dentistry, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294University of Iowa, 25 S Grand Ave, 1080-ML, Iowa City, IA 52246 USA
| |
Collapse
|
37
|
Nandi D, Parida S, Sharma D. The gut microbiota in breast cancer development and treatment: The good, the bad, and the useful! Gut Microbes 2023; 15:2221452. [PMID: 37305949 PMCID: PMC10262790 DOI: 10.1080/19490976.2023.2221452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Regardless of the global progress in early diagnosis and novel therapeutic regimens, breast carcinoma poses a devastating threat, and the advances are somewhat marred by high mortality rates. Breast cancer risk prediction models based on the known risk factors are extremely useful, but a large number of breast cancers develop in women with no/low known risk. The gut microbiome exerts a profound impact on the host health and physiology and has emerged as a pivotal frontier in breast cancer pathogenesis. Progress in metagenomic analysis has enabled the identification of specific changes in the host microbial signature. In this review, we discuss the microbial and metabolomic changes associated with breast cancer initiation and metastatic progression. We summarize the bidirectional impact of various breast cancer-related therapies on gut microbiota and vice-versa. Finally, we discuss the strategies to modulate the gut microbiota toward a more favorable state that confers anticancer effects.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
38
|
Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol 2022; 12:1059825. [PMID: 36590579 PMCID: PMC9800796 DOI: 10.3389/fcimb.2022.1059825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Every year, millions of women are affected by genital tract disorders, such as bacterial vaginosis (BV), endometrial cancer, polycystic ovary syndrome (PCOS), endometriosis, and uterine fibroids (UFs). These disorders pose a significant economic burden on healthcare systems and have serious implications for health and fertility outcomes. This review explores the relationships between gut, vaginal, and uterine dysbiosis and the pathogenesis of various diseases of the female genital tract. In recent years, reproductive health clinicians and scientists have focused on the microbiome to investigate its role in the pathogenesis and prevention of such diseases. Recent studies of the gut, vaginal, and uterine microbiomes have identified patterns in bacterial composition and changes across individuals' lives associated with specific healthy and diseased states, particularly regarding the effects of the estrogen-gut microbiome axis on estrogen-driven disorders (such as endometrial cancer, endometriosis, and UFs) and disorders associated with estrogen deficiency (such as PCOS). Furthermore, this review discusses the contribution of vitamin D deficiency to gut dysbiosis and altered estrogen metabolism as well as how these changes play key roles in the pathogenesis of UFs. More research on the microbiome influences on reproductive health and fertility is vital.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority [EDA; formerly The National Organization for Drug Control and Research (NODCAR)], Cairo, Egypt
| | - Melinique Walls
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | - Nahed Ismail
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
40
|
Gaba FI, González RC, Martïnez RG. The Role of Oral Fusobacterium nucleatum in Female Breast Cancer: A Systematic Review and Meta-Analysis. Int J Dent 2022; 2022:1876275. [PMID: 36466367 PMCID: PMC9711985 DOI: 10.1155/2022/1876275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Breast cancer is the world's most prevalent malignancy, with an increasing incidence and a predisposition for postpubertal females from all cultural and ethnic backgrounds. More recently, oral Fusobacterium nucleatum species have been observed in cancerous human breast tissue, drawing attention to the role of microbes in cancer pathogenesis. OBJECTIVES Investigating oral Fusobacterium nucleatum species as potential biomarkers for female-specific breast cancer. METHODS A systematic search in The Central Register of Controlled Trials, EMBASE, EBSCO, NCBI, and MEDLINE databases was undertaken from the 1st January, 1983-31st March, 2022. Articles included were in English and based on women between the ages of 18-96 years with confirmed gingivitis/periodontal disease and breast cancer diagnoses from registered specialists. Authors extracted data independently, and a meta-analysis of risk estimations measuring associations between oral Fusobacterium nucleatum species and female-specific breast cancer was elucidated via calculated relative risks and 95% confidence intervals. RESULTS AXIS tool analysis revealed 78.70% of articles with a positive correlation between oral Fusobacterium nucleatum and female-specific breast cancer. The risk of breast cancer development increased with significant levels of oral Fusobacterium nucleatum due to gingivitis/periodontitis (relative risk = 1.78, 95% confidence interval = 1.63-1.91). Low-moderate statistical heterogeneity was found (I 2 = 41.39%; P = 0.02), and the importance of periodontal status on breast cancer pathogenesis was determined (relative risk = 1.24, 95% confidence interval = 1.01-1.30). CONCLUSIONS Oral Fusobacterium nucleatum species are a risk factor for breast cancer development, thus elevating their biomarker potentiality.
Collapse
Affiliation(s)
- Fariah I. Gaba
- Mondzorg Scheveningen, Renbaanstraat 75, 2586 EZ, The Hague, Netherlands
| | - Raquel Carcelén González
- Faculty of Health and Science, CEU Cardenal Herrera University, Carrer Lluís Vives 1, 46115 Alfara del Patriarca, Valencia, Spain
| | - Raquel González Martïnez
- CIMEV Institute in Spain, Periodontics and Oral Surgery at the Faculty of Health and Science, CEU Cardenal Herrera University, Carrer Lluís Vives 1, 46115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
41
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|
42
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
43
|
Yuan L, Yang P, Wei G, Hu X, Chen S, Lu J, Yang L, He X, Bao G. Tumor microbiome diversity influences papillary thyroid cancer invasion. Commun Biol 2022; 5:864. [PMID: 36002642 PMCID: PMC9402670 DOI: 10.1038/s42003-022-03814-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) has a high incidence, and its proper treatment remains challenging. Therefore, identifying PTC progression markers is essential. Here, using 16S RNA sequences, we analyzed the PTC intratumor microbiome and its role in tumor progression. Substantial microbial abundance was detected in PTC from all patients. The tumor bacterial diversity in patients with advanced lesions (T3/T4) was significantly higher than that in patients with relatively mild lesions (T1/T2). Importantly, we identified signatures of eight tumor bacterial taxa highly predictive of PTC invasion status. Hence, microbial host factors-independent of the genomic composition of the tumor-may determine tumor behaviors and patient outcomes. Furthermore, the correlation between specific bacterial genus and thyroid hormones or autoimmune thyroid disease-related antibodies may indicate the potential contribution of the microbiome in the relationship between autoimmune thyroid disease or irregular thyroid function and PTC progression, intervention of which might therefore be worth exploring for advancing oncology care.
Collapse
Affiliation(s)
- Lijuan Yuan
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Ping Yang
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Gang Wei
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xi'e Hu
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Songhao Chen
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Jianguo Lu
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Lin Yang
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China.
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
44
|
Gut Metabolites and Breast Cancer: The Continuum of Dysbiosis, Breast Cancer Risk, and Potential Breast Cancer Therapy. Int J Mol Sci 2022; 23:ijms23169490. [PMID: 36012771 PMCID: PMC9409206 DOI: 10.3390/ijms23169490] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The complex association between the gut microbiome and cancer development has been an emerging field of study in recent years. The gut microbiome plays a crucial role in the overall maintenance of human health and interacts closely with the host immune system to prevent and fight infection. This review was designed to draw a comprehensive assessment and summary of recent research assessing the anticancer activity of the metabolites (produced by the gut microbiota) specifically against breast cancer. In this review, a total of 2701 articles were screened from different scientific databases (PubMed, Scopus, Embase and Web of Science) with 72 relevant articles included based on the predetermined inclusion and exclusion criteria. Metabolites produced by the gut microbial communities have been researched for their health benefits and potential anticancer activity. For instance, the short-chain fatty acid, butyrate, has been evaluated against multiple cancer types, including breast cancer, and has demonstrated anticancer potential via various molecular pathways. Similarly, nisin, a bacteriocin, has presented with a range of anticancer properties primarily against gastrointestinal cancers, with nominal evidence supporting its use against breast cancer. Comparatively, a natural purine nucleoside, inosine, though it has not been thoroughly investigated as a natural anticancer agent, has shown promise in recent studies. Additionally, recent studies demonstrated that gut microbial metabolites influence the efficacy of standard chemotherapeutics and potentially be implemented as a combination therapy. Despite the promising evidence supporting the anticancer action of gut metabolites on different cancer types, the molecular mechanisms of action of this activity are not well established, especially against breast cancer and warrant further investigation. As such, future research must prioritise determining the dose-response relationship, molecular mechanisms, and conducting animal and clinical studies to validate in vitro findings. This review also highlights the potential future directions of this field.
Collapse
|
45
|
Chang Z, Zhang Y, Fan J, Zhang L, Liu S, Liu G, Tu J. The potential effects and mechanisms of breast inflammatory lesions on the occurrence and development of breast cancer. Front Oncol 2022; 12:932743. [PMID: 35992864 PMCID: PMC9389363 DOI: 10.3389/fonc.2022.932743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer as the most common cancer in women has become the leading cause of cancer death for women. Although many inflammatory factors increase the risk of breast cancer, there are very few studies on the mechanisms by which inflammation affects the initiation and progression of breast cancer. Here, we profiled and compared the transcriptome of normal tissues, inflammatory breast tissues, benign breast tumors, and malignant breast tumors. To find key regulatory factors, a protein interaction network between characteristic modules in inflammatory lesions and ER-negative (ER−) breast cancer was constructed and inflammation-cancer interface genes were identified. We found that the transcriptional profile of inflammatory breast tissues was similar with ER− malignant tumors, featured with low ER expression levels and similar immune signaling pathway activation. Through comprehensive protein network analysis, we identified the interface genes and chemokine signaling pathway that have the potential to promote inflammatory cancer transformation. These interface genes could be used as a risk factor to provide a certain basis for the clinical early detection and treatment of breast cancer. This is the first study to explore the association between breast inflammatory lesions and breast cancer at the transcriptome level. Our inflammation data and research results provide a basis for future inflammation-cancer transformation analysis.
Collapse
Affiliation(s)
- Zhaoxia Chang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jue Fan
- Singleron Biotechnologies, Nanjing, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Juchuanli Tu, ; Guangyu Liu, ; Suling Liu,
| | - Guangyu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Juchuanli Tu, ; Guangyu Liu, ; Suling Liu,
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Juchuanli Tu, ; Guangyu Liu, ; Suling Liu,
| |
Collapse
|
46
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
47
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
48
|
Exosomes Derived from Tumor Cells Initiate Breast Cancer Cell Metastasis and Chemoresistance through a MALAT1-Dependent Mechanism. JOURNAL OF ONCOLOGY 2022; 2022:5483523. [PMID: 35813865 PMCID: PMC9262507 DOI: 10.1155/2022/5483523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background. Chemoresistance poses a great hindrance in the treatment of breast cancer (BC). Interestingly, exosome (Exo)-mediated transfer of long noncoding RNAs (lncRNAs) has been reported to regulate chemoresistance in diverse diseases. We herein investigate the potential role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) transferred by BC cell-derived Exo in chemoresistance of BC cells. Methods. BC-related lncRNAs were identified. Exosomes were isolated and verified from BC cells. The expression patterns of MALAT1 were then examined in the adriamycin (ADR)-sensitive and resistant cells and the isolated Exo, followed by the analysis of the downstream microRNA (miRNA) of MALAT1. The role and mechanism of MALAT1 transmitted by BC cell-derived Exo in BC cell metastasis and chemoresistance were assessed. Results. MALAT1 was highly expressed in BC cells and their Exo. In addition, MALAT1 delivered by BC cell-derived Exo augmented the malignant properties and chemoresistance of BC cells. Mechanistically, MALAT1 bound to miR-1-3p and limited the miR-1-3p expression, which sequentially targeted the vasodilator-stimulated phosphoprotein (VASP) protein. Moreover, silencing of VASP inhibited the activation of the RAP1 member of RAS oncogene family (Rap1) signaling pathway, which led to the attenuation of BC cell malignant properties and chemoresistance. In vivo assay further validated the tumor-promoting effect of Exo-MALAT1 via regulation of the miR-1-3p/VASP/Rap1 axis. Conclusion. Collectively, MALAT1 loaded by BC cell-derived Exo can accelerate BC cell metastasis and chemoresistance via disruption of miR-1-3p-mediated inhibition of the VASP/Rap1 signaling axis.
Collapse
|
49
|
Song X, Wei C, Li X. The Relationship Between Microbial Community and Breast Cancer. Front Cell Infect Microbiol 2022; 12:849022. [PMID: 35782150 PMCID: PMC9245449 DOI: 10.3389/fcimb.2022.849022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-related deaths in women worldwide. Recent research studies have shown that the intestinal flora is related to the occurrence and progression of BC. Notably, some evidence identifies a unique microbial community in breast tissue, a site previously thought to be sterile. In addition, breast tumors have their own specific microbial community, distinct from normal mammary gland tissue, and all of them may result from intestinal flora. Some microbial community in breast tissue may lead to the occurrence and development of BC. This review focuses on the relationship between the microbial community and breast cancer, which will lay a solid theoretical foundation for further understanding the local microenvironment of BC and developing effective targeted therapeutic drugs.
Collapse
Affiliation(s)
- Xuelian Song
- Department of The Graduate Student, Shandong First Medical University, Tai’an, China
| | - Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- *Correspondence: Xiangqi Li,
| |
Collapse
|
50
|
Parida S, Drewes JL. Unwanted passengers: Microbes hitchiking in breast cancer metastases. Cell Host Microbe 2022; 30:875-877. [PMID: 35679824 DOI: 10.1016/j.chom.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a recent Cell paper, Fu et al. bridge descriptive cancer microbiome research with mechanistic and functional insight. With savvy use of antibiotics, the authors demonstrate divergent roles of the gut and intratumoral microbiome in breast tumor growth and metastasis, providing potentially actionable tools for better breast cancer management.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia L Drewes
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|