1
|
Du JY, Zhang CT, Li T, Li YP. Targeting hypoxia and angiogenesis in hepatocellular carcinoma: New insights and therapeutic strategies. World J Hepatol 2024; 16:1371-1376. [DOI: 10.4254/wjh.v16.i12.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
In this manuscript we comment on the article by Yang et al published recently, focusing on how hepatic angiopoietin-2 (Ang-2) transcription promote the progression of hepatocellular carcinoma (HCC). HCC is one of the most common and lethal malignancies worldwide, especially in regions with high hepatitis B virus infection rates. Ang-2 is a key mediator of angiogenesis and plays a significant role in the progression of chronic liver diseases towards HCC, particularly in the hypoxic microenvironment. This paper reviews the dynamic expression of Ang-2 in hepatocarcinogenesis and its regulation by hypoxia-inducible factor-1α. Furthermore, we discuss Ang-2’s potential as an early monitoring biomarker for metastasis, and the therapeutic prospects of silencing hypoxia-inducible factor-1α to downregulate Ang-2 and suppress epithelial-mesenchymal transition in HCC treatment.
Collapse
Affiliation(s)
- Jia-Yi Du
- Laboratory of Epidemiology and Public Health, Yale University School of Public Health, New Haven, CT 06510, United States
| | - Chu-Ting Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| |
Collapse
|
2
|
Basile L, Cannarella R, Magni P, Condorelli RA, Calogero AE, La Vignera S. Role of gliflozins on hepatocellular carcinoma progression: a systematic synthesis of preclinical and clinical evidence. Expert Opin Drug Saf 2024:1-14. [PMID: 39714931 DOI: 10.1080/14740338.2024.2447057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION The risk of HCC is twice as high in diabetic patients compared to non-diabetic ones, suggesting that diabetes advances carcinogenesis in the liver through a variety of mechanisms. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been shown to improve liver outcomes, emerging as promising agents to treat hepatocellular carcinoma (HCC) in patients with type 2 diabetes mellitus (T2DM). METHODS We searched PubMed and Scopus databases for articles presenting an association between SGLT2is and HCC to explore the putative mechanisms of action underlying the anti-proliferative activity of SGLT2is. RESULTS A total of 24 articles were selected for inclusion, of which 14 were preclinical and 10 were clinical. Preclinical studies were mainly focused on canagliflozin, used alone or in combination with other drugs. CONCLUSIONS Overall, canagliflozin had a negative effect on HCC cell proliferation by interfering with glucose-dependent and independent metabolic pathways, negatively impacting angiogenesis, and inducing apoptosis in in-vitro cell models. In-vivo, a protective effect on hepatic steatosis and fibrosis and HCC development has been reported. Human studies showed a lower risk of developing HCC in patients on SGLT2is. However, this is supported by retrospective cohort studies. Clinical trials are needed to confirm the causal relationship between SGLT2i administration and HCC development.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Saeed Issa B, Adhab AH, Salih Mahdi M, Kyada A, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Saadoun Abd N, Kariem M. Decoding the complex web: Cellular and molecular interactions in the lung tumor microenvironment. J Drug Target 2024:1-44. [PMID: 39707828 DOI: 10.1080/1061186x.2024.2445772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The lung tumor microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumor progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumor cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signaling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot-360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Muthena Kariem
- Department of medical analysis, Medical laboratory technique college, The Islamic University, Najaf, Iraq
- Department of medical analysis, Medical laboratory technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of medical analysis, Medical laboratory technique college, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Quilaqueo-Millaqueo N, Brown-Brown DA, Vidal-Vidal JA, Niechi I. NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion. Biol Res 2024; 57:98. [PMID: 39696702 DOI: 10.1186/s40659-024-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
NADPH oxidases (NOX) are membrane-bound proteins involved in the localized generation of reactive oxygen species (ROS) at the cellular surface. In cancer, these highly reactive molecules primarily originate in mitochondria and via NOX, playing a crucial role in regulating fundamental cellular processes such as cell survival, angiogenesis, migration, invasion, and metastasis. The NOX protein family comprises seven members (NOX1-5 and DUOX1-2), each sharing a catalytic domain and an intracellular dehydrogenase site. NOX-derived ROS promote invadopodia formation, aberrant tyrosine kinase activation, and upregulation of matrix metalloproteinases (MMPs). Specifically, NOX5 modulates adhesion, motility, and proteolytic activation, while NOX1 likely contributes to invadopodia formation and adhesive capacity. NOX2 and NOX4 are implicated in regulating the invasive phenotype, expression of MMPs and EMT markers. DUOX1-2 participate in epithelial-mesenchymal transition (EMT), crucial for invasive phenotype development. Soluble molecules such as TGF-β and EGF modulate NOX protein activation, enhancing cell invasion through localized ROS production. This review focuses on elucidating the specific role of NOX proteins in regulating signaling pathways promoting cancer cell spread, particularly EMT, invadopodia formation and invasive capacity.
Collapse
Affiliation(s)
- Nelson Quilaqueo-Millaqueo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Jetzabel A Vidal-Vidal
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.
| |
Collapse
|
5
|
Kandasamy T, Sarkar S, Ghosh SS. Harnessing Drug Repurposing to Combat Breast Cancer by Targeting Altered Metabolism and Epithelial-to-Mesenchymal Transition Pathways. ACS Pharmacol Transl Sci 2024; 7:3780-3794. [PMID: 39698277 PMCID: PMC11650739 DOI: 10.1021/acsptsci.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer remains one of the most prevalent and challenging cancers to treat due to its complexity and heterogenicity. Cellular processes such as metabolic reprogramming and epithelial-to-mesenchymal transition (EMT) contribute to the complexity of breast cancer by driving uncontrolled cell division, metastasis, and resistance to therapies. Strategically targeting these intricate pathways can effectively impede breast cancer progression, thereby revealing significant potential for therapeutic interventions. Among various emerging therapeutic approaches, drug repurposing offers a promising avenue for enhancing clinical outcomes. In recent years, high-throughput screening, QSAR, and network pharmacology have been widely employed to identify promising repurposed drugs. As an outcome, several drugs, such as Metformin, Itraconazole, Pimozide, and Disulfiram, were repurposed to regulate metabolic and EMT pathways. Moreover, strategies such as combination therapy, targeted delivery, and personalized medicine were utilized to enhance the efficacy and specificity of the repurposed drugs. This review focuses on the potential of targeting altered metabolism and EMT in breast cancer through drug repurposing. It also highlights recent advancements in drug screening techniques, associated limitations, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Shilpi Sarkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati-39, Assam India
| |
Collapse
|
6
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
7
|
Youssef E, Zhao S, Purcell C, Olson GL, El-Deiry WS. Targeting the SMURF2-HIF1α axis: a new frontier in cancer therapy. Front Oncol 2024; 14:1484515. [PMID: 39697237 PMCID: PMC11652374 DOI: 10.3389/fonc.2024.1484515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
The SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) has emerged as a critical regulator in cancer biology, modulating the stability of Hypoxia-Inducible Factor 1-alpha (HIF1α) and influencing a network of hypoxia-driven pathways within the tumor microenvironment (TME). SMURF2 targets HIF1α for ubiquitination and subsequent proteasomal degradation, disrupting hypoxic responses that promote cancer cell survival, metabolic reprogramming, angiogenesis, and resistance to therapy. Beyond its role in HIF1α regulation, SMURF2 exerts extensive control over cellular processes central to tumor progression, including chromatin remodeling, DNA damage repair, ferroptosis, and cellular stress responses. Notably, SMURF2's ability to promote ferroptotic cell death through GSTP1 degradation offers an alternative pathway to overcome apoptosis resistance, expanding therapeutic options for refractory cancers. This review delves into the multifaceted interactions between SMURF2 and HIF1α, emphasizing how their interplay impacts metabolic adaptations like the Warburg effect, immune evasion, and therapeutic resistance. We discuss SMURF2's dual functionality as both a tumor suppressor and, in certain contexts, an oncogenic factor, underscoring its potential as a highly versatile therapeutic target. Furthermore, modulating the SMURF2-HIF1α axis presents an innovative approach to destabilize hypoxia-dependent pathways, sensitizing tumors to chemotherapy, radiotherapy, and immune-based treatments. However, the complexity of SMURF2's interactions necessitate a thorough assessment of potential off-target effects and challenges in specificity, which must be addressed to optimize its clinical application. This review concludes by proposing future directions for research into the SMURF2-HIF1α pathway, aiming to refine targeted strategies that exploit this axis and address the adaptive mechanisms of aggressive tumors, ultimately advancing the landscape of precision oncology.
Collapse
Affiliation(s)
- Emile Youssef
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Medical & Pharmacovigilance, Kapadi, Inc., Raleigh, NC, United States
| | - Shuai Zhao
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Connor Purcell
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Gary L. Olson
- Medicinal Chemistry & Drug Discovery, Provid Pharmaceuticals, Inc., Monmouth Junction, NJ, United States
| | - Wafik S. El-Deiry
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| |
Collapse
|
8
|
Tzeng WS, Teng WL, Huang PH, Yen FL, Shiue YL. Anti-cancer activity and cellular uptake of 7,3',4'- and 7,8,4'-trihydroxyisoflavone in HepG2 cells under hypoxic conditions. J Enzyme Inhib Med Chem 2024; 39:2288806. [PMID: 38153119 PMCID: PMC10763887 DOI: 10.1080/14756366.2023.2288806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Transarterial chemoembolisation (TACE) is used for unresectable hepatocellular carcinoma (HCC) treatment, but TACE-induced hypoxia leads to poor prognosis. The anti-cancer effects of soybean isoflavones daidzein derivatives 7,3',4'-trihydroxyisoflavone (734THIF) and 7,8,4'-trihydroxyisoflavone (784THIF) were evaluated under hypoxic microenvironments. Molecular docking of these isomers with cyclooxygenase-2 (COX-2) and vascular endothelial growth factor receptor 2 (VEGFR2) was assessed. About 40 μM of 734THIF and 784THIF have the best effect on inhibiting the proliferation of HepG2 cells under hypoxic conditions. At a concentration of 40 μM, 784THIF significantly inhibits COX-2 expression in pre-hypoxia conditions compared to 734THIF, with an inhibition rate of 67.73%. Additionally, 40 μM 784THIF downregulates the expression of hypoxic, inflammatory, and metastatic-related proteins, regulates oxidative stress, and inhibits the expression of anti-apoptotic proteins. The uptake by HepG2 confirmed higher 784THIF level and slower degradation characteristics under post- or pre-hypoxic conditions. In conclusion, our results showed that 784THIF had better anti-cancer effects and cellular uptake than 734THIF.
Collapse
Affiliation(s)
- Wen-Sheng Tzeng
- Department of Radiology, Pingtung Christian Hospital, Pingtung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Lin Teng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pao-Hsien Huang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Lin Yen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Withnell E, Secrier M. SpottedPy quantifies relationships between spatial transcriptomic hotspots and uncovers environmental cues of epithelial-mesenchymal plasticity in breast cancer. Genome Biol 2024; 25:289. [PMID: 39529126 PMCID: PMC11552145 DOI: 10.1186/s13059-024-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics is revolutionizing the exploration of intratissue heterogeneity in cancer, yet capturing cellular niches and their spatial relationships remains challenging. We introduce SpottedPy, a Python package designed to identify tumor hotspots and map spatial interactions within the cancer ecosystem. Using SpottedPy, we examine epithelial-mesenchymal plasticity in breast cancer and highlight stable niches associated with angiogenic and hypoxic regions, shielded by CAFs and macrophages. Hybrid and mesenchymal hotspot distribution follows transformation gradients reflecting progressive immunosuppression. Our method offers flexibility to explore spatial relationships at different scales, from immediate neighbors to broader tissue modules, providing new insights into tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Eloise Withnell
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
VON Fournier A, Wilhelm C, Tirtey C, Stöth M, Kasemo TE, Hackenberg S, Scherzad A. Impact of Hypoxia and the Levels of Transcription Factor HIF-1α and JMJD1A on Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancer Genomics Proteomics 2024; 21:591-607. [PMID: 39467631 PMCID: PMC11534036 DOI: 10.21873/cgp.20476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND/AIM This study aimed to assess the impact of hypoxia on epithelial-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC), focusing on the involvement of transcription factors hypoxia inducible factor 1 (HIF-1α) and Jumonji Domain-Containing Protein 1A (JMJD1A). MATERIALS AND METHODS FaDu and Cal33 cell lines were subjected to hypoxic and normoxic conditions. Cell proliferation was quantified electronically, while PCR and western blot analyses were used to measure mRNA and protein levels of HIF-1α, JMJD1A, and EMT markers. EMT was further characterized through immunofluorescence, migration, and invasion assays. RESULTS Hypoxic conditions significantly reduced cell proliferation after 48 hours in both cell lines. HIF-1α mRNA levels increased initially during short-term hypoxia but declined thereafter, while JMJD1A mRNA levels showed a sustained increase with prolonged hypoxia. Western blot analysis revealed contrasting trends in protein levels. EMT marker expression varied markedly over time at both the mRNA and protein levels, suggesting EMT induction in hypoxia within 24 hours. Immunofluorescence, migration, and invasion assays supported these findings. CONCLUSION The study provides evidence of hypoxia-induced EMT in HNSCC, although conflicting results suggest a complex interplay among molecular regulators involved in this process.
Collapse
Affiliation(s)
- Armin VON Fournier
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christian Wilhelm
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Clara Tirtey
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Manuel Stöth
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Dong L, Hu S, Li X, Pei S, Jin L, Zhang L, Chen X, Min A, Yin M. SPP1 + TAM Regulates the Metastatic Colonization of CXCR4 + Metastasis-Associated Tumor Cells by Remodeling the Lymph Node Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400524. [PMID: 39236316 PMCID: PMC11600252 DOI: 10.1002/advs.202400524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Indexed: 09/07/2024]
Abstract
Lymph node metastasis, the initial step in distant metastasis, represents a primary contributor to mortality in patients diagnosed with oral squamous cell carcinoma (OSCC). However, the underlying mechanisms of lymph node metastasis in OSCC remain incompletely understood. Here, the transcriptomes of 56 383 single cells derived from paired tissues of six OSCC patients are analyzed. This study founds that CXCR4+ epithelial cells, identified as highly malignant disseminated tumor cells (DTCs), exhibited a propensity for lymph node metastasis. Importantly, a distinct subset of tumor-associated macrophages (TAMs) characterized by exclusive expression of phosphoprotein 1 (SPP1) is discovered. These TAMs may remodel the metastatic lymph node microenvironment by potentially activating fibroblasts and promoting T cell exhaustion through SPP1-CD44 and CD155-CD226 ligand-receptor interactions, thereby facilitating colonization and proliferation of disseminated tumor cells. The research advanced the mechanistic understanding of metastatic tumor microenvironment (TME) and provided a foundation for the development of personalized treatments for OSCC patients with metastasis.
Collapse
Affiliation(s)
- Liang Dong
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shujun Hu
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Oral and Maxillofacial SurgeryCenter of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Research Center of Oral and Maxillofacail TumorXiangya HospitalCentral South UniversityChangshaHunan410008China
- Insititute of Oral Cancer and Precancerous LesionsCentral South UniversityChangshaHunan410008China
| | - Xin Li
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
| | - Shiyao Pei
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of DermatologyThird Xiangya HospitalCentral South UniversityChangsha410008China
| | - Liping Jin
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lining Zhang
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
| | - Xiang Chen
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Anjie Min
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Oral and Maxillofacial SurgeryCenter of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Research Center of Oral and Maxillofacail TumorXiangya HospitalCentral South UniversityChangshaHunan410008China
- Insititute of Oral Cancer and Precancerous LesionsCentral South UniversityChangshaHunan410008China
| | - Mingzhu Yin
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
12
|
Perez LM, Venugopal SV, Martin AS, Freedland SJ, Di Vizio D, Freeman MR. Mechanisms governing lineage plasticity and metabolic reprogramming in cancer. Trends Cancer 2024; 10:1009-1022. [PMID: 39218770 DOI: 10.1016/j.trecan.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Dynamic alterations in cellular phenotypes during cancer progression are attributed to a phenomenon known as 'lineage plasticity'. This process is associated with therapeutic resistance and involves concurrent shifts in metabolic states that facilitate adaptation to various stressors inherent in malignant growth. Certain metabolites also serve as synthetic reservoirs for chromatin modification, thus linking metabolic states with epigenetic regulation. There remains a critical need to understand the mechanisms that converge on lineage plasticity and metabolic reprogramming to prevent the emergence of lethal disease. This review attempts to offer an overview of our current understanding of the interplay between metabolic reprogramming and lineage plasticity in the context of cancer, highlighting the intersecting drivers of cancer hallmarks, with an emphasis on solid tumors.
Collapse
Affiliation(s)
- Lillian M Perez
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Smrruthi V Venugopal
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna St Martin
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
13
|
Małyszko M, Przybyłkowski A. Copper and Colorectal Cancer. Cancers (Basel) 2024; 16:3691. [PMID: 39518128 PMCID: PMC11544869 DOI: 10.3390/cancers16213691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Minerals constitute only 5% of the typical human diet but are vital for health and functionality. Copper, a trace element, is absorbed by the human gut at 30-40% from diets typical of industrialized countries. The liver produces metallothioneins, which store copper. Copper is crucial for mitochondrial respiration, pigmentation, iron transport, antioxidant defense, hormone production, and extracellular matrix biosynthesis. Copper deficiency, often caused by mutations in the ATP7A gene, results in Menkes disease, an X-linked recessive disorder. On the contrary, Wilson disease is characterized by toxic copper accumulation. Cuproptosis, a unique form of cell death regulated by copper, is a subtype of necrosis induced by enhanced mitochondrial metabolism and intracellular copper accumulation. This process can reduce the malignant potential of tumor cells by inhibiting glucose metabolism. Therapeutically, copper and its complexes have shown efficacy in malignancy treatments. The disruption of copper homeostasis and excessive cuproplasia are significant in colorectal cancer development and metastasis. Therefore, manipulating copper status presents a potential therapeutic target for colorectal cancer, using copper chelators to inhibit copper formation or copper ion carriers to promote cuproptosis. This review highlights the role of copper in human physiology and pathology, emphasizing its impact on colorectal cancer and potential therapeutic strategies. Future AI-based approaches are anticipated to accelerate the development of new compounds targeting cuproptosis and copper disruption in colorectal cancer.
Collapse
Affiliation(s)
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| |
Collapse
|
14
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
15
|
Chen JL, Peng PH, Wu HT, Chen DR, Hsieh CY, Chang JS, Lin J, Lin HY, Hsu KW. ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01004-x. [PMID: 39400679 DOI: 10.1007/s13402-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE The human AlkB homolog (ALKBH) dioxygenase superfamily plays a crucial role in gene regulation and is implicated in cancer progression. Under hypoxic conditions, hypoxia-inducible factors (HIFs) dynamically regulate methylation by controlling various dioxygenases, thereby modulating gene expression. However, the role of hypoxia-responsive AlkB dioxygenase remains unclear. METHODS The molecular events were examined using real-time PCR and Western blot analysis. Tumor cell aggressiveness was evaluated through migration, invasion, MTT, trypan blue exclusion, and colony formation assays. In vivo metastatic models and xenograft experiments were conducted to evaluate tumor progression. RESULTS Here, we examined the expression of the ALKBH superfamily under hypoxic conditions and found that ALKBH4 expression was negatively regulated by hypoxia. Knockdown of ALKBH4 enhanced the epithelial-mesenchymal transition (EMT), cell migration, invasion, and growth in vitro. The silencing of ALKBH4 enhanced metastatic ability and tumor growth in vivo. Conversely, overexpression of ALLKBH4 reversed these observations. Furthermore, overexpression of ALKBH4 significantly reversed hypoxia/HIF-1α-induced EMT, cell migration, invasion, tumor metastasis, and tumorigenicity. Notably, high expression of ALKBH4 was associated with better outcomes in head and neck cancer and breast cancer patients. Enrichment analysis also revealed that ALKBH4 was negatively enriched in hypoxia-related pathways. Clinically, a negative correlation between ALKBH4 and HIF-1α protein expression has been observed in tissues from both head and neck cancers and breast cancers. CONCLUSION These findings collectively suggest that ALKBH4 acts as a tumor suppressor and holds therapeutic potential for hypoxic tumors.
Collapse
Affiliation(s)
- Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Hua Peng
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Han-Tsang Wu
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Dar-Ren Chen
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Joseph Lin
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Huan-Yu Lin
- Cheng Ching Hospital Chung Kang Cheng Ching Hospital Branch, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Wen Hsu
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
16
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
17
|
Liu YJ, Ye QW, Li JP, Bai L, Zhang W, Wang SS, Zou X. Integrated analysis to identify biological features and molecular markers of poorly cohesive gastric carcinoma (PCC). Sci Rep 2024; 14:22596. [PMID: 39349535 PMCID: PMC11442943 DOI: 10.1038/s41598-024-73062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
As one of the two main histologic subtypes of gastric cancer (GC), diffuse-type gastric cancer (DGC) containing poorly cohesive gastric carcinoma (PCC) components has a worse prognosis and does not respond well to typical therapies. Despite the large number of studies revealing the complex pathogenic network of DGC, the molecular heterogeneity of DGC is still not fully understood. We obtained single-cell RNA-seq data and bulk data from the tumor immune single cell hub, the public gene expression omnibus, and the cancer genome atlas databases. A series of bioinformatics analyses were performed using R software. Immunofluorescence staining, hematoxylin and eosin staining, western blot, and functional experiments were used for experimental validation. Caudin-3, -4 and -7 were lowly expressed in DGC and their expression levels were further reduced in PCC. The PCC components were mainly located in the deeper layers of the DGC and had a high level of hypoxic Wnt/β-catenin signaling and stemness. We further identified Insulin Like Growth Factor Binding Protein 7 (IGFBP7) as a marker for PCC components in the deep layer. IGFBP7 is stimulated by hypoxia and promotes cancer cell invasiveness and reduced claudin expression. In addition, programmed death-1 ligand (PD-L1) was specifically expressed in the deep layer, reflecting deep layer-specific immunosuppression. The PCC components are predominantly situated in the deeper layers of DGC. Initial molecular characterization of these PCC components revealed distinct features, including low expression of claudin-3, -4, and -7, high expression of IGFBP7, and the presence of PD-L1. These molecular traits may partially account for the pronounced tumor heterogeneity observed in GC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jie-Pin Li
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Le Bai
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Department of Respiratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wei Zhang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuang-Shuang Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
18
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
19
|
Zhao X, Ren T, Li S, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. A new perspective on the therapeutic potential of tumor metastasis: targeting the metabolic interactions between TAMs and tumor cells. Int J Biol Sci 2024; 20:5109-5126. [PMID: 39430253 PMCID: PMC11489172 DOI: 10.7150/ijbs.99680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Tumor-associated macrophages (TAMs) undergo metabolic reprogramming, encompassing glucose, amino acid, fatty acid metabolism, tricarboxylic acid (TCA) cycle, purine metabolism, and autophagy, within the tumor microenvironment (TME). The metabolic interdependencies between TAMs and tumor cells critically influence macrophage recruitment, differentiation, M2 polarization, and secretion of epithelial-mesenchymal transition (EMT)-related factors, thereby activating intratumoral EMT pathways and enhancing tumor cell invasion and metastasis. Tumor cell metabolic alterations, including hypoxia, metabolite secretion, aerobic metabolism, and autophagy, affect the TME's metabolic landscape, driving macrophage recruitment, differentiation, M2 polarization, and metabolic reprogramming, ultimately facilitating EMT, invasion, and metastasis. Additionally, macrophages can induce tumor cell EMT by reprogramming their aerobic glycolysis. Recent experimental and clinical studies have focused on the metabolic interactions between macrophages and tumor cells to control metastasis and inhibit tumor progression. This review highlights the regulatory role of TAM-tumor cell metabolic codependencies in EMT, offering valuable insights for TAM-targeted therapies in highly metastatic tumors. Modulating the metabolic interplay between tumors and TAMs represents a promising therapeutic strategy for treating patients with metastatic cancers.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| |
Collapse
|
20
|
Lee HH, Chuang HY, Lin K, Yeh CT, Wang YM, Chi HC, Lin KH. RNASE4 promotes malignant progression and chemoresistance in hypoxic glioblastoma via activation of AXL/AKT and NF-κB/cIAPs signaling pathways. Am J Cancer Res 2024; 14:4320-4336. [PMID: 39417186 PMCID: PMC11477813 DOI: 10.62347/udbj5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous in vitro and in vivo functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes. Functional assays corroborated the pivotal influences of RNASE4 on key tumorigenic processes such as cell proliferation, migration, invasion, stemness properties and temozolomide (TMZ) resistance. Further, Gene Set Enrichment Analysis (GSEA) illuminated the involvement of RNASE4 in modulating epithelial-mesenchymal transition (EMT) via activation of AXL, AKT and NF-κB signaling pathways. Furthermore, recombinant human RNASE4 (hRNASE4)-mediated NF-κB activation through IκBα phosphorylation and degradation could result in the upregulation of inhibitors of apoptosis proteins (IAPs), such as cIAP1, cIAP2, and SURVIVIN. Notably, treating RNASE4-induced TMZ-resistant cells with the SURVIVIN inhibitor YM-155 significantly restored cellular sensitivity to TMZ therapy. Herein, this study positions RNASE4 as a potent prognostic biomarker and therapeutic target, offering new insights into molecular pathogenesis of GBM and new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Dizziness and Balance Disorder Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
- Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
| | - Hao-Yu Chuang
- School of Medicine, China Medical UniversityTaichung 40447, Taiwan
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, China Medical University Beigang HospitalBeigang Township, Yunlin 65152, Taiwan
| | - Kent Lin
- Northern Clinical School, Faculty of Medicine and Health, The University of SydneyNSW 2006, Australia
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
| | - Yi-Min Wang
- Department of Neurosurgery, An Nan Hospital, China Medical UniversityTainan 709204, Taiwan
| | - Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404333, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 40447, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 330, Taiwan
| |
Collapse
|
21
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Steven D Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Callum T McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Ravi K Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
22
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
23
|
Dao A, Chen S, Pan L, Ren Q, Wang X, Wu H, Gong Q, Chen Z, Ji S, Ru J, Zhu H, Liang C, Zhang P, Xia H, Huang H. A 700 nm LED Light Activated Ru(II) Complex Destroys Tumor Cytoskeleton via Photosensitization and Photocatalysis. Adv Healthc Mater 2024; 13:e2400956. [PMID: 38635863 DOI: 10.1002/adhm.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.
Collapse
Affiliation(s)
- Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Shiyan Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Pan
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haorui Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Zeduan Chen
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - HaoTu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| |
Collapse
|
24
|
Taghizadeh-Hesary F, Ghadyani M, Kashanchi F, Behnam B. Exploring TSGA10 Function: A Crosstalk or Controlling Mechanism in the Signaling Pathway of Carcinogenesis? Cancers (Basel) 2024; 16:3044. [PMID: 39272902 PMCID: PMC11393850 DOI: 10.3390/cancers16173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer-specific antigens have been a significant area of focus in cancer treatment since their discovery in the mid-twentieth century. Cancer germline antigens are a class of antigens specifically overexpressed in germline tissues and cancer cells. Among these, TSGA10 (testis-specific gene antigen 10) is of great interest because of its crucial impact on cancer progression. Early studies explored TSGA10 expression in a variety of cancer types. More recent studies revealed that TSGA10 can suppress tumor progression by blocking cancer cell metabolism, angiogenesis, and metastasis. An open question regarding the TSGA10 is why cancer cells must express a protein that prevents their progression. To answer this question, we conducted a comprehensive review to engage the TSGA10 in the context of the current understanding of "malignant transformation". This review demonstrated that TSGA10 expression level in cancer cells depends on the cancer stage across malignant transformation. In addition, we evaluated how TSGA10 expression can prevent the "cancer hallmarks". Given this information, TSGA10 can be of great interest in developing effective targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Mobina Ghadyani
- Chester Medical School, University of Chester, Chester CH2 1BR, UK
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Babak Behnam
- Avicenna Biotech Research, Germantown, MD 20871, USA
| |
Collapse
|
25
|
Zielinska Z, Oldak L, Guszcz T, Hermanowicz A, Gorodkiewicz E. SPRi Biosensor for Simultaneous Determination of HIF-1α, Angiopoietin-2, and Interleukin-1β in Blood Plasma. SENSORS (BASEL, SWITZERLAND) 2024; 24:5481. [PMID: 39275392 PMCID: PMC11397757 DOI: 10.3390/s24175481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
A new analytical method, based on SPRi biosensors, has been developed for the simultaneous determination of the pro-angiogenic factors HIF-1α, angiopoietin-2 (ANG-2), and interleukin-1β (IL-1β) in biological fluids. These proteins take part in the process of angiogenesis, i.e., the creation of new blood vessels, which is a key stage of cancer development and metastasis. A separate validation process was carried out for each individual compound, indicating that the method can also be used to study one selected protein. Low values of the limit of detection (LOD) and quantification (LOQ) indicate that the developed method enables the determination of very low concentrations, in the order of pg/mL. The LOD values obtained for HIF-1α, ANG-2, and IL-1β were 0.09, 0.01, and 0.01 pg/mL, respectively. The LOQ values were 0.27, 0.039, and 0.02 pg/mL, and the response ranges of the biosensor were 5.00-100.00, 1.00-20.00, and 1.00-15.00 pg/mL. Moreover, determining the appropriate validation parameters confirmed that the design offers high precision, accuracy, and sensitivity. To prove the usefulness of the biosensor in practice, determinations were made in plasma samples from a control group and from a study group consisting of patients with diagnosed bladder cancer. The preliminary results obtained indicate that this biosensor can be used for broader analyses of bladder cancer. Each of the potential biomarkers, HIF-1α, ANG-2, and IL-1β, produced higher concentrations in the study group than in the control group. These are preliminary studies that serve to develop hypotheses, and their confirmation requires the analysis of a larger number of samples. However, the constructed biosensor is characterized by its ease and speed of measurement, and the method does not require special preparation of samples. SPRi biosensors can be used as a sensitive and highly selective method for determining potential blood biomarkers, which in the future may become part of the routine diagnosis of cancers.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Bioanalysis Laboratory, Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (L.O.); (E.G.)
| | - Tomasz Guszcz
- Department of Urology, Hospital of Ministry of Interior and Administration in Bialystok, Fabryczna 27, 15-471 Bialystok, Poland;
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (L.O.); (E.G.)
| |
Collapse
|
26
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
You MH. Mechanism of DAPK1 for Regulating Cancer Stem Cells in Thyroid Cancer. Curr Issues Mol Biol 2024; 46:7086-7096. [PMID: 39057063 PMCID: PMC11275583 DOI: 10.3390/cimb46070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase and is characteristically downregulated in metastatic cancer. Several studies showed that DAPK1 is involved in both the early and late stages of cancer. DAPK1 downregulation is elaborately controlled by epigenetic, transcriptional, posttranscriptional, and posttranslational processes. DAPK1 is known to regulate not only cancer cells but also stromal cells. Recent studies showed that DAPK1 was involved not only in tumor suppression but also in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation in colon and thyroid cancers. CSCs are major factors in determining cancer aggressiveness in cancer metastasis and treatment prognosis by influencing EMT. However, the molecular mechanism involved in the regulation of cancer cells by DAPK1 remains unclear. In particular, little is known about the existence of CSCs and how they are regulated in papillary thyroid carcinoma (PTC) among thyroid cancers. In this review, we describe the molecular mechanism of CSC regulation by DAPK1 in PTC progression.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Anatomy, Konkuk University College of Medicine, 50-1, 268 Chungwon-daero, Cungju-si 27478, Republic of Korea
| |
Collapse
|
28
|
De Paolis L, Armando F, Montemurro V, Petrizzi L, Straticò P, Mecocci S, Guarnieri C, Pezzolato M, Fruscione F, Passeri B, Marruchella G, Razzuoli E. Epithelial-mesenchymal transition in an EcPV2-positive vulvar squamous cell carcinoma of a mare. Equine Vet J 2024; 56:768-775. [PMID: 37395141 DOI: 10.1111/evj.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) has been recently associated with Equus caballus papillomavirus type 2 (EcPV2) infection. Still, few reports concerning this disease are present in the literature. OBJECTIVE To describe a case of naturally occurring EcPV2-induced VSCC, by investigating tumour ability in undergoing the epithelial-to-mesenchymal transition (EMT). STUDY DESIGN Case report. METHODS A 13-year-old Haflinger mare was referred for a rapidly growing vulvar mass. After surgical excision, the mass was submitted to histopathology and molecular analysis. Histopathological diagnosis was consistent with a VSCC. Real-time qPCR, real-time reverse transcriptase (RT)-qPCR and RNAscope were carried out to detect EcPV2 infection and to evaluate E6/E7 oncogenes expression. To highlight the EMT, immunohistochemistry (IHC) was performed. Expression of EMT-related and innate immunity-related genes was investigated through RT-qPCR. RESULTS Real-time qPCR, RT-qPCR and RNAscope confirmed EcPV2 DNA presence and expression of EcPV2 oncoproteins (E6 and E7) within the neoplastic vulvar lesion. IHC highlighted a cadherin switch together with the expression of the EMT-related transcription factor HIF1α. With RT-qPCR, significantly increased gene expression of EBI3 (45.0 ± 1.62, p < 0.01), CDH2 (2445.3 ± 0.39, p < 0.001), CXCL8 (288.7 ± 0.40, p < 0.001) and decreased gene expression of CDH1 (0.3 ± 0.57, p < 0.05), IL12A (0.04 ± 1.06, p < 0.01) and IL17 (0.2 ± 0.64, p < 0.05) were detected. MAIN LIMITATIONS Lack of ability to generalise and danger of over-interpretation. CONCLUSION The results obtained were suggestive of an EMT event occurring within the neoplastic lesion.
Collapse
Affiliation(s)
- Livia De Paolis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Histopathology and Applied Technology Laboratory, Torino, Italy
| | - Lucio Petrizzi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Straticò
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Samanta Mecocci
- Department of Veterinary Science, University of Perugia, Perugia, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Histopathology and Applied Technology Laboratory, Torino, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| |
Collapse
|
29
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Dragonetti M, Turco C, Benedetti A, Goeman F, Forcato M, Scalera S, Allegretti M, Esposito G, Fazi F, Blandino G, Donzelli S, Fontemaggi G. The lncRNAMALAT1-WTAP axis: a novel layer of EMT regulation in hypoxic triple-negative breast cancer. Cell Death Discov 2024; 10:276. [PMID: 38862471 PMCID: PMC11166650 DOI: 10.1038/s41420-024-02058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Early metastatic disease development is one characteristic that defines triple-negative breast cancer (TNBC) as the most aggressive breast cancer (BC) subtype. Numerous studies have identified long non-coding RNAs (lncRNA) as critical players in regulating tumor progression and metastasis formation. Here, we show that MALAT1, a long non-coding RNA known to promote various features of BC malignancy, such as migration and neo angiogenesis, regulates TNBC cell response to hypoxia. By profiling MALAT1-associated transcripts, we discovered that lncRNA MALAT1 interacts with the mRNA encoding WTAP protein, previously reported as a component of the N6-methyladenosine (m6A) modification writer complex. In hypoxic conditions, MALAT1 positively regulates WTAP protein expression, which influences the response to hypoxia by favoring the transcription of the master regulators HIF1α and HIF1β. Furthermore, WTAP stimulates BC cell migratory ability and the expression of N-Cadherin and Vimentin, hallmarks of epithelial-to-mesenchymal transition (EMT). In conclusion, this study highlights the functional axis comprising MALAT1 and WTAP as a novel prognostic marker of TNBC progression and as a potential target for the development of therapeutic approaches for TNBC treatment.
Collapse
Affiliation(s)
- Martina Dragonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Chiara Turco
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Frauke Goeman
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Scalera
- Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Allegretti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Gabriella Esposito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
31
|
Raykhel I, Ronkainen VP, Myllyharju J, Manninen A. HIF2α-dependent Dock4/Rac1-signaling regulates formation of adherens junctions and cell polarity in normoxia. Sci Rep 2024; 14:12153. [PMID: 38802496 PMCID: PMC11130225 DOI: 10.1038/s41598-024-62955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Hypoxia-inducible factors (HIF) 1 and 2 regulate similar but distinct sets of target genes. Although HIFs are best known for their roles in mediating the hypoxia response accumulating evidence suggests that under certain conditions HIFs, particularly HIF2, may function also under normoxic conditions. Here we report that HIF2α functions under normoxic conditions in kidney epithelial cells to regulate formation of adherens junctions. HIF2α expression was required to induce Dock4/Rac1/Pak1-signaling mediating stability and compaction of E-cadherin at nascent adherens junctions. Impaired adherens junction formation in HIF2α- or Dock4-deficient cells led to aberrant cyst morphogenesis in 3D kidney epithelial cell cultures. Taken together, we show that HIF2α functions in normoxia to regulate epithelial morphogenesis.
Collapse
Affiliation(s)
- I Raykhel
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - V-P Ronkainen
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - J Myllyharju
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - A Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
32
|
Waseem M, Wang BD. Combination of miR-99b-5p and Enzalutamide or Abiraterone Synergizes the Suppression of EMT-Mediated Metastasis in Prostate Cancer. Cancers (Basel) 2024; 16:1933. [PMID: 38792011 PMCID: PMC11119738 DOI: 10.3390/cancers16101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Androgen deprivation therapy (ADT) has been systemically applied as a first-line therapy for PCa patients. Despite the initial responses, the majority of patients under ADT eventually experienced tumor progression to castration-resistant prostate cancer (CRPC), further leading to tumor metastasis to distant organs. Therefore, identifying the key molecular mechanisms underlying PCa progression remains crucial for the development of novel therapies for metastatic PCa. Previously, we identified that tumor-suppressive miR-99b-5p is frequently downregulated in aggressive African American (AA) PCa and European American (EA) CRPC, leading to upregulation of mTOR, androgen receptor (AR), and HIF-1α signaling. Given the fact that mTOR and HIF-1α signaling are critical upstream pathways that trigger the activation of epithelial-mesenchymal transition (EMT), we hypothesized that miR-99b-5p may play a critical functional role in regulating EMT-mediated PCa metastasis. To test this hypothesis, a series of cell biology, biochemical, and in vitro functional assays (wound healing, transwell migration, cell/ECM adhesion, and capillary-like tube formation assays) were performed to examine the effects of miR-99b-5p mimic on regulating EMT-mediated PCa metastasis processes. Our results have demonstrated that miR-99b-5p simultaneously targets MTOR and AR signaling, leading to upregulation of E-cadherin, downregulation of Snail/N-cadherin/Vimentin, and suppression of EMT-mediated PCa metastasis. MiR-99b-5p alone and in combination with enzalutamide or abiraterone significantly inhibits the EMT-mediated metastasis of AA PCa and EA CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Tátrai E, Ranđelović I, Surguta SE, Tóvári J. Role of Hypoxia and Rac1 Inhibition in the Metastatic Cascade. Cancers (Basel) 2024; 16:1872. [PMID: 38791951 PMCID: PMC11120288 DOI: 10.3390/cancers16101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor mass formation: chronic and cyclic hypoxia. The main regulators of hypoxia are hypoxia-inducible factors, which regulate the cell survival, proliferation, motility, metabolism, pH, extracellular matrix function, inflammatory cells recruitment and angiogenesis. The metastatic process consists of different steps in which hypoxia-inducible factors can play an important role. Rac1, belonging to small G-proteins, is involved in the metastasis process as one of the key molecules of migration, especially in a hypoxic environment. The effect of hypoxia on the tumor phenotype and the signaling pathways which may interfere with tumor progression are already quite well known. Although the role of Rac1, one of the small G-proteins, in hypoxia remains unclear, predominantly, in vitro studies performed so far confirm that Rac1 inhibition may represent a viable direction for tumor therapy.
Collapse
Affiliation(s)
- Enikő Tátrai
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Sára Eszter Surguta
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
34
|
Sabaté-Ortega J, Albert-Carrasco M, Escribano-Ferrer C, Grau-Manrubia G, Fina-Planas C, López-Núñez C, Teixidor-Vilà E, Bujons-Buscarons E, Montañés-Ferrer C, Sala-González N. Case report: Uncommon gastric metastasis as a presentation of recurrent clear cell renal cell carcinoma. Front Oncol 2024; 14:1354127. [PMID: 38807761 PMCID: PMC11131944 DOI: 10.3389/fonc.2024.1354127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 05/30/2024] Open
Abstract
Renal cell carcinoma (RCC) is a kidney neoplasm that accounts for 85% of cases and has complex genetic pathways that affect its development and progression. RCC metastasis can occur in 20%-50% of patients and usually affects distant organs. Gastric metastases (GM) from RCC are rare and present as polyp-like growths in the submucosal layer, accounting for 0.2%-0.7% of cases. This case report describes an 84-year-old female with Furhman grade II ccRCC who presented with an atherothrombotic ischemic stroke and gastrointestinal bleeding nine years post-radical nephrectomy. Gastroscopy revealed a 12mm pseudopedicled gastric lesion with ulceration and bleeding, diagnosed as metastatic ccRCC. The discussion focuses on the rarity, diagnostic challenges, and prognostic elements of gastric metastasis from RCC. The median survival after detecting digestive metastasis varies widely, and the mechanisms include direct invasion and dissemination through lymphatic, transcelomic, or hematogenous routes. Prognostic markers encompass patient history, symptoms, time since RCC diagnosis, overall health, and genetic factors. Surgical removal of gastric lesions and targeted therapy are treatment options that can improve survival. This case report highlights the need for further research to enhance diagnostic and treatment strategies for this rare aspect of RCC pathophysiology.
Collapse
Affiliation(s)
- Josep Sabaté-Ortega
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Salt, Spain
| | - Marc Albert-Carrasco
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta University Hospital, Girona, Spain
| | | | - Gerard Grau-Manrubia
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta University Hospital, Girona, Spain
| | - Clàudia Fina-Planas
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Salt, Spain
| | - Carme López-Núñez
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta University Hospital, Girona, Spain
| | - Eduard Teixidor-Vilà
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Salt, Spain
| | - Elisabet Bujons-Buscarons
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Salt, Spain
| | - Clàudia Montañés-Ferrer
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Salt, Spain
| | - Núria Sala-González
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Salt, Spain
| |
Collapse
|
35
|
Armando F, Porcellato I, de Paolis L, Mecocci S, Passeri B, Ciurkiewicz M, Mechelli L, Grazia De Ciucis C, Pezzolato M, Fruscione F, Brachelente C, Montemurro V, Cappelli K, Puff C, Baumgärtner W, Ghelardi A, Razzuoli E. Vulvo-vaginal epithelial tumors in mares: A preliminary investigation on epithelial-mesenchymal transition and tumor-immune microenvironment. Vet Pathol 2024; 61:366-381. [PMID: 37909398 DOI: 10.1177/03009858231207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and β-catenin expression as well as nuclear β-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and β-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/β-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Livia de Paolis
- University of Perugia, Perugia, Italy
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | | | | | | | - Chiara Grazia De Ciucis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
- University of Pavia, Pavia, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| |
Collapse
|
36
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
37
|
Ren Z, Dharmaratne M, Liang H, Benard O, Morales-Gallego M, Suyama K, Kumar V, Fard AT, Kulkarni AS, Prystowsky M, Mar JC, Norton L, Hazan RB. Redox signalling regulates breast cancer metastasis via phenotypic and metabolic reprogramming due to p63 activation by HIF1α. Br J Cancer 2024; 130:908-924. [PMID: 38238426 PMCID: PMC10951347 DOI: 10.1038/s41416-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Redox signaling caused by knockdown (KD) of Glutathione Peroxidase 2 (GPx2) in the PyMT mammary tumour model promotes metastasis via phenotypic and metabolic reprogramming. However, the tumour cell subpopulations and transcriptional regulators governing these processes remained unknown. METHODS We used single-cell transcriptomics to decipher the tumour cell subpopulations stimulated by GPx2 KD in the PyMT mammary tumour and paired pulmonary metastases. We analyzed the EMT spectrum across the various tumour cell clusters using pseudotime trajectory analysis and elucidated the transcriptional and metabolic regulation of the hybrid EMT state. RESULTS Integration of single-cell transcriptomics between the PyMT/GPx2 KD primary tumour and paired lung metastases unraveled a basal/mesenchymal-like cluster and several luminal-like clusters spanning an EMT spectrum. Interestingly, the luminal clusters at the primary tumour gained mesenchymal gene expression, resulting in epithelial/mesenchymal subpopulations fueled by oxidative phosphorylation (OXPHOS) and glycolysis. By contrast, at distant metastasis, the basal/mesenchymal-like cluster gained luminal and mesenchymal gene expression, resulting in a hybrid subpopulation using OXPHOS, supporting adaptive plasticity. Furthermore, p63 was dramatically upregulated in all hybrid clusters, implying a role in regulating partial EMT and MET at primary and distant sites, respectively. Importantly, these effects were reversed by HIF1α loss or GPx2 gain of function, resulting in metastasis suppression. CONCLUSIONS Collectively, these results underscored a dramatic effect of redox signaling on p63 activation by HIF1α, underlying phenotypic and metabolic plasticity leading to mammary tumour metastasis.
Collapse
Affiliation(s)
- Zuen Ren
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Huizhi Liang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | | | - Kimita Suyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Viney Kumar
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Ameya S Kulkarni
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Rachel B Hazan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
38
|
Okumura T, Raja Xavier JP, Pasternak J, Yang Z, Hang C, Nosirov B, Singh Y, Admard J, Brucker SY, Kommoss S, Takeda S, Staebler A, Lang F, Salker MS. Rel Family Transcription Factor NFAT5 Upregulates COX2 via HIF-1α Activity in Ishikawa and HEC1a Cells. Int J Mol Sci 2024; 25:3666. [PMID: 38612478 PMCID: PMC11012216 DOI: 10.3390/ijms25073666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.
Collapse
Affiliation(s)
- Toshiyuki Okumura
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Janet P. Raja Xavier
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Jana Pasternak
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Zhiqi Yang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Cao Hang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Bakhtiyor Nosirov
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Yogesh Singh
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Sara Y. Brucker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Stefan Kommoss
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Annette Staebler
- Institute of Pathology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Florian Lang
- Institute of Physiology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Madhuri S. Salker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| |
Collapse
|
39
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
40
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
41
|
Zhao W, Kepecs B, Mahadevan NR, Segerstolpe A, Weirather JL, Besson NR, Giotti B, Soong BY, Li C, Vigneau S, Slyper M, Wakiro I, Jane-Valbuena J, Ashenberg O, Rotem A, Bueno R, Rozenblatt-Rosen O, Pfaff K, Rodig S, Hata AN, Regev A, Johnson BE, Tsankov AM. A cellular and spatial atlas of TP53 -associated tissue remodeling in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546977. [PMID: 37425718 PMCID: PMC10327017 DOI: 10.1101/2023.06.28.546977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
TP53 is the most frequently mutated gene across many cancers and is associated with shorter survival in lung adenocarcinoma (LUAD). To define how TP53 mutations affect the LUAD tumor microenvironment (TME), we constructed a multi-omic cellular and spatial tumor atlas of 23 treatment-naïve human lung tumors. We found that TP53 -mutant ( TP53 mut ) malignant cells lose alveolar identity and upregulate highly proliferative and entropic gene expression programs consistently across resectable LUAD patient tumors, genetically engineered mouse models, and cell lines harboring a wide spectrum of TP53 mutations. We further identified a multicellular tumor niche composed of SPP1 + macrophages and collagen-expressing fibroblasts that coincides with hypoxic, pro-metastatic expression programs in TP53 mut tumors. Spatially correlated angiostatic and immune checkpoint interactions, including CD274 - PDCD1 and PVR - TIGIT , are also enriched in TP53 mut LUAD tumors, which may influence response to checkpoint blockade therapy. Our methodology can be further applied to investigate mutation-specific TME changes in other cancers.
Collapse
|
42
|
Kaushik K, Kumar H, Mehta S, Palanichamy JK. Hypoxia increases the biogenesis of IGF2BP3-bound circular RNAs. Mol Biol Rep 2024; 51:288. [PMID: 38329630 DOI: 10.1007/s11033-024-09230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Insulin-like Growth Factor 2 Binding Protein 3 (IGF2BP3) promotes cancer migration and invasion by binding to several coding and non-coding RNAs. Hypoxia stimulates tumor progression by upregulating Hypoxia Inducible Factors and downstream signaling. Quaking (QKI) gene, which is upregulated in hypoxia and promotes epithelial to mesenchymal transition (EMT), induces circular RNAs. Therefore, the axis between IGF2BP3, QKI, circular RNAs and their respective host genes under hypoxia was studied. METHODS AND RESULTS Several IGF2BP3-bound circular RNAs were previously identified in HepG2. There were 13 circRNAs originating from 8 host genes bound to IGF2BP3. We confirmed their binding to IGF2BP3 in U87MG using an RNA Immunoprecipitation assay. MALAT1, an oncogenic lncRNA was also found to be associated with IGF2BP3. Three adherent cell lines expressing high levels of IGF2BP3 viz., HeLa, HepG2 and U87MG were cultured under normoxia (20%O2) and hypoxia (<0.2%O2) for 48-168 h. Expression of IGF2BP3, QKI, EMT markers, IGF2BP3-bound circRNAs and their host mRNAs expression were assessed by quantitative real-time PCR (qRT-PCR) in both normoxia and hypoxia. The hypoxia markers viz., VEGF and CA9 were upregulated in all the cell lines in hypoxia at all time points along with an increase in SNAIL. We found 6 genes, viz., PHC3, CDYL, ANKRD17, ARID1A, NEIL3 and FNDC3B with increased expression both at the mRNA and circRNA level indicating their synergistic role in tumor initiation. Overall, we found that circRNA to mRNA expression was observed to be increased for most of the genes and time points of hypoxia in all the cell lines. IGF2BP3 and QKI were also upregulated in hypoxia indicating their role in circRNA biogenesis and stability. CONCLUSION Our data implies that hypoxia augments circRNA biogenesis which might subsequently play a role in tumor progression.
Collapse
Affiliation(s)
- Kriti Kaushik
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India
| | - Hemant Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India
| | - Samriddhi Mehta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|
43
|
Pardo I, Fagundes PB, de Oliveira RS, Campregher PV. A molecular approach to triple-negative breast cancer: targeting the Notch signaling pathway. EINSTEIN-SAO PAULO 2024; 22:eRW0552. [PMID: 38324848 PMCID: PMC10948095 DOI: 10.31744/einstein_journal/2024rw0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This phenotype renders triple-negative breast cancer cells refractory to conventional therapies, resulting in poor clinical outcomes and an urgent need for novel therapeutic approaches. Recent studies have implicated dysregulation of the Notch receptor signaling pathway in the development and progression of triple-negative breast cancer. OBJECTIVE This study aimed to conduct a comprehensive literature review to identify potential therapeutic targets of the Notch pathway. Our analysis focused on the upstream and downstream components of this pathway to identify potential therapeutic targets. RESULTS Modulating the Notch signaling pathway may represent a promising therapeutic strategy to treat triple-negative breast cancer. Several potential therapeutic targets within this pathway are in the early stages of development, including upstream (such as Notch ligands) and downstream (including specific molecules involved in triple-negative breast cancer growth). These targets represent potential avenues for therapeutic intervention in triple-negative breast cancer. COMMENTS Additional research specifically addressing issues related to toxicity and improving drug delivery methods is critical for the successful translation of these potential therapeutic targets into effective treatments for patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Isabele Pardo
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Pedro Brecheret Fagundes
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Rafael Santana de Oliveira
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Paulo Vidal Campregher
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| |
Collapse
|
44
|
Cheng CW, Liu YF, Liao WL, Chen PM, Hung YT, Lee HJ, Cheng YC, Wu PE, Lu YS, Shen CY. miR-622 Increases miR-30a Expression through Inhibition of Hypoxia-Inducible Factor 1α to Improve Metastasis and Chemoresistance in Human Invasive Breast Cancer Cells. Cancers (Basel) 2024; 16:657. [PMID: 38339408 PMCID: PMC10854867 DOI: 10.3390/cancers16030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a pivotal role in the survival, metastasis, and response to treatment of solid tumors. Autophagy serves as a mechanism for tumor cells to eliminate misfolded proteins and damaged organelles, thus promoting invasiveness, metastasis, and resistance to treatment under hypoxic conditions. MicroRNA (miRNA) research underscores the significance of these non-coding molecules in regulating cancer-related protein synthesis across diverse contexts. However, there is limited reporting on miRNA-mediated gene expression studies, especially with respect to epithelial-mesenchymal transition (EMT) and autophagy in the context of hypoxic breast cancer. Our study reveals decreased levels of miRNA-622 (miR-622) and miRNA-30a (miR-30a) in invasive breast cancer cells compared to their non-invasive counterparts. Inducing miR-622 suppresses HIF-1α protein expression, subsequently activating miR-30a transcription. This cascade results in reduced invasiveness and migration of breast cancer cells by inhibiting EMT markers, such as Snail, Slug, and vimentin. Furthermore, miR-30a negatively regulates beclin 1, ATG5, and LC3-II and inhibits Akt protein phosphorylation. Consequently, this improves the sensitivity of invasive MDA-MB-231 cells to docetaxel treatment. In conclusion, our study highlights the therapeutic potential of inducing miR-622 to promote miR-30a expression and thus disrupt HIF-1α-associated EMT and autophagy pathways. This innovative strategy presents a promising approach to the treatment of aggressive breast cancer.
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Wen-Ling Liao
- School of Medicine, China Medical University, Taichung 40604, Taiwan;
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40604, Taiwan
| | - Po-Ming Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
| | - Yueh-Tzu Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Yu-Chun Cheng
- Department of Internal Medicine, Cathay General Hospital, Taipei 10629, Taiwan;
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei 10022, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10022, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
- College of Public Health, China Medical University, Taichung 40604, Taiwan
| |
Collapse
|
45
|
Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, El-Huneidi W, Saleh MA, Alzoubi KH, Semreen MH, Hudaib M, Bustanji Y. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel) 2024; 17:195. [PMID: 38399410 PMCID: PMC10892333 DOI: 10.3390/ph17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.
Collapse
Affiliation(s)
- Reem A. Qannita
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ayah I. Alalami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shereen M. Aleidi
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Hudaib
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| |
Collapse
|
46
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid application dosing alters the physiology of air-liquid interface (ALI) primary human bronchial epithelial cell/lung fibroblast co-cultures and in vitro testing relevant endpoints. FRONTIERS IN TOXICOLOGY 2024; 5:1264331. [PMID: 38464699 PMCID: PMC10922929 DOI: 10.3389/ftox.2023.1264331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/14/2023] [Indexed: 03/12/2024] Open
Abstract
Differentiated primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
Affiliation(s)
- Nicholas M. Mallek
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Elizabeth M. Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States
| | - Lisa A. Dailey
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
| | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
- Exposure and Protection, RTI International, Durham, NC, United States
| |
Collapse
|
48
|
Everest‐Dass A, Nersisyan S, Maar H, Novosad V, Schröder‐Schwarz J, Freytag V, Stuke JL, Beine MC, Schiecke A, Haider M, Kriegs M, Elakad O, Bohnenberger H, Conradi L, Raygorodskaya M, Krause L, von Itzstein M, Tonevitsky A, Schumacher U, Maltseva D, Wicklein D, Lange T. Spontaneous metastasis xenograft models link CD44 isoform 4 to angiogenesis, hypoxia, EMT and mitochondria-related pathways in colorectal cancer. Mol Oncol 2024; 18:62-90. [PMID: 37849446 PMCID: PMC10766209 DOI: 10.1002/1878-0261.13535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.
Collapse
Affiliation(s)
- Arun Everest‐Dass
- Institute for GlycomicsGriffith University, Gold Coast CampusAustralia
| | - Stepan Nersisyan
- Faculty of Biology and BiotechnologyHSE UniversityMoscowRussia
- Institute of Molecular BiologyThe National Academy of Sciences of the Republic of ArmeniaYerevanArmenia
- Armenian Bioinformatics Institute (ABI)YerevanArmenia
- Present address:
Computational Medicine CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Hanna Maar
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Victor Novosad
- Faculty of Biology and BiotechnologyHSE UniversityMoscowRussia
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | | | - Vera Freytag
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Johanna L. Stuke
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Mia C. Beine
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Alina Schiecke
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Marie‐Therese Haider
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Malte Kriegs
- Department of Radiobiology and Radiation OncologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Omar Elakad
- Institute of PathologyUniversity Medical Center GöttingenGermany
| | | | - Lena‐Christin Conradi
- Clinic for General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | | | - Linda Krause
- Institute of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Mark von Itzstein
- Institute for GlycomicsGriffith University, Gold Coast CampusAustralia
| | - Alexander Tonevitsky
- Faculty of Biology and BiotechnologyHSE UniversityMoscowRussia
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Art Photonics GmbHBerlinGermany
| | - Udo Schumacher
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
- Medical School BerlinGermany
| | - Diana Maltseva
- Faculty of Biology and BiotechnologyHSE UniversityMoscowRussia
| | - Daniel Wicklein
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
- Department of Anatomy and Cell BiologyUniversity of MarburgGermany
| | - Tobias Lange
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfGermany
- Institute of Anatomy IJena University HospitalGermany
- Comprehensive Cancer Center Central Germany (CCCG)Jena and LeipzigGermany
| |
Collapse
|
49
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
50
|
Wang T, Chen P, Li T, Li J, Zhao D, Meng F, Zhao Y, Zheng Z, Liu X. A Five-gene Signature based on MicroRNA for Predicting Prognosis and Immunotherapy in Stomach Adenocarcinoma. Curr Med Chem 2024; 31:2378-2399. [PMID: 38310388 DOI: 10.2174/0109298673281631231127051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/05/2024]
Abstract
AIMS We aimed to classify molecular subtypes and establish a prognostic gene signature based on miRNAs for the prognostic prediction and therapeutic response in Stomach adenocarcinoma (STAD). BACKGROUND STAD is a common diagnosed gastrointestinal malignancy and its heterogeneity is a big challenge that influences prognosis and precision therapies. Present study was designed to classify molecular subtypes and construct a prognostic gene signature based on miRNAs for the prognostic prediction and therapeutic response in STAD. OBJECTIVE The objective of this study is to investigate the molecular subtypes and prognostic model for STAD. METHODS A STAD specific miRNA-messenger RNA (mRNA) competing endogenous RNA (ceRNA) network was generated using the RNA-Seq and miRNA expression profiles from The Cancer Genome Atlas (TCGA) database, in which miRNA-related mRNAs were screened. Molecular subtypes were then determined using miRNA-related genes. Through univariate Cox analysis and multivariate regression analysis, a prognostic model was established in GSE84437 Train dataset and validated in GSE84437 Test, TCGA, GSE84437 and GSE66229 datasets. Immunotherapy datasets were employed for assessing the performance of the risk model. Finally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to validate the expression of hub genes used for the risk score signature. RESULTS We constructed a ceRNA network containing 84 miRNAs and 907 mRNAs and determined two molecular subtypes based on 26 genes from the intersection of TCGASTAD and GSE84437 datasets. Subtype S2 had poor prognosis, lower tumor mutational burden, higher immune score and lower response to immunotherapy. Subtype S1 was more sensitive to Sorafenib, Pyrimethamine, Salubrinal, Gemcitabine, Vinorelbine and AKT inhibitor VIII. Next, a five-gene signature was generated and its robustness was validated in Test and external datasets. This risk model also had a good prediction performance in immunotherapy datasets. CONCLUSION This study promotes the underlying mechanisms of miRNA-based genes in STAD and offers directions for classification. A five-gene signature accurately predicts the prognosis and helps therapeutic options.
Collapse
Affiliation(s)
- Tianwei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 13000, China
| | - Piji Chen
- Department of Clinical Laboratory, Yantian People's Hospital of Southern University of Science and Technology, Shenzhen, 518083, China
| | - Tingting Li
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
| | - Jianong Li
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
| | - Dong Zhao
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
| | - Fanfei Meng
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, 518035, China
| | - Yujie Zhao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis, YuceBio Technology Co., Ltd, Shenzhen, 518035, China
| | - Zhendong Zheng
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
- People's Hospital of Huzhu Tu Autonomous County, Haidong, Qinghai Province, 810500, China
| | - Xuefei Liu
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
- People's Hospital of Huzhu Tu Autonomous County, Haidong, Qinghai Province, 810500, China
| |
Collapse
|