1
|
Nie L, Ma J, Yu Y, Tao Y, Song Z, Li J. Exosomes as carriers to stimulate an anti-cancer immune response in immunotherapy and as predictive markers. Biochem Pharmacol 2024; 232:116699. [PMID: 39647605 DOI: 10.1016/j.bcp.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
During this era of rapid advancements in cancer immunotherapy, the application of cell-released small vesicles that activate the immune system is of considerable interest. Exosomes are cell-derived nanovesicles that show great promise for the immunological treatment of cancer because of their immunogenicity and molecular transfer capacity. Recent technological advancements have enabled the identification of functional functions that exosome cargoes perform in controlling immune responses. Exosomes are originated specifically from immune cells and tumor cells and they show unique composition patterns directly related to the immunotherapy against cancer. Exosomes can also deliver their cargo to particular cells, which can affect the phenotypic and immune-regulatory functions of those cells. Exosomes can influence the course of cancer and have therapeutic benefits by taking part in several cellular processes; as a result, they have the dual properties of activating and restraining cancer. Exosomes have tremendous potential for cancer immunotherapy; they may develop into the most powerful cancer vaccines and carriers of targeted antigens and drugs. Comprehending the potential applications of exosomes in immune therapy is significant for regulating cancer progression. This review offers an analysis of the function of exosomes in immunotherapy, specifically as carriers that function as diagnostic indicators for immunological activation and trigger an anti-cancer immune response. Moreover, it summarizes the fundamental mechanism and possible therapeutic applications of exosome-based immunotherapy for human cancer.
Collapse
Affiliation(s)
- Lili Nie
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Liu J, Qin J, Liang L, Zhang X, Gao J, Hao Y, Zhao P. Novel insights into the regulation of exosomal PD-L1 in cancer: From generation to clinical application. Eur J Pharmacol 2024; 979:176831. [PMID: 39047964 DOI: 10.1016/j.ejphar.2024.176831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death 1 (PD-1), leading to T cell exhaustion and promoting tumor cell survival, ultimately mediating immunosuppression. While FDA-approved monoclonal antibodies targeting the PD-1/PD-L1 interaction have shown success in cancer treatment, some patients experience limited and short-lived therapeutic outcomes. Recent studies have identified PD-L1 expression not only on tumor cell surfaces but also on exosomes, with secretion pathways including both conventional and unconventional endocytosis routes, presenting a unique therapeutic opportunity. Emerging evidence suggests that exosomal PD-L1 contributes to systemic immunosuppression, potentially counteracting the effects of anti-PD-1 checkpoint therapies. However, the significance of exosomal PD-L1 in clinical cancer patients unresponsive to anti-PD-1/PD-L1 immunotherapy, as well as the factors regulating its generation, remain unclear. Moreover, the mechanisms underlying PD-L1 expression on exosomes and its regulation in cancer are yet to be fully elucidated. This review primarily focuses on the mechanisms modulating exosomal PD-L1 generation in cancer, while also outlining its involvement in immunosuppression, tumor proliferation, and response to cancer immunotherapy. Additionally, we explore the potential of exosomal PD-L1 as a cancer biomarker and therapeutic target, aiming to provide a comprehensive overview of this emerging field and its implications for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jie Liu
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China; Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Junxia Qin
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Lili Liang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xinzhong Zhang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Jie Gao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Youwei Hao
- Department of Cardiology, Taiyuan People's Hospital, Taiyuan, 030000, China
| | - Peng Zhao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
3
|
Zhang Y, Li J, Li J, Wang J. Dysregulation of systemic immunity and its clinical application in gastric cancer. Front Immunol 2024; 15:1450128. [PMID: 39301031 PMCID: PMC11410619 DOI: 10.3389/fimmu.2024.1450128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Immunotherapy has profoundly changed the treatment of gastric cancer, but only a minority of patients benefit from immunotherapy. Therefore, numerous studies have been devoted to clarifying the mechanisms underlying resistance to immunotherapy or developing biomarkers for patient stratification. However, previous studies have focused mainly on the tumor microenvironment. Systemic immune perturbations have long been observed in patients with gastric cancer, and the involvement of the peripheral immune system in effective anticancer responses has attracted much attention in recent years. Therefore, understanding the distinct types of systemic immune organization in gastric cancer will aid personalized treatment designed to pair with traditional therapies to alleviate their detrimental effects on systemic immunity or to directly activate the anticancer response of systemic immunity. Herein, this review aims to comprehensively summarize systemic immunity in gastric cancer, including perturbations in systemic immunity induced by cancer and traditional therapies, and the potential clinical applications of systemic immunity in the detection, prediction, prognosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Junfeng Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jisheng Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
4
|
Kalluri R. The biology and function of extracellular vesicles in immune response and immunity. Immunity 2024; 57:1752-1768. [PMID: 39142276 PMCID: PMC11401063 DOI: 10.1016/j.immuni.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/02/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Yang S, Wei S, Wei F. Extracellular vesicles mediated gastric cancer immune response: tumor cell death or immune escape? Cell Death Dis 2024; 15:377. [PMID: 38816455 PMCID: PMC11139918 DOI: 10.1038/s41419-024-06758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Gastric cancer (GC) is a major global health issue, being the fifth most prevalent cancer and the third highest contributor to cancer-related deaths. Although treatment strategies for GC have diversified, the prognosis for advanced GC remains poor. Hence, there is a critical need to explore new directions for GC treatment to enhance diagnosis, treatment, and patient prognosis. Extracellular vesicles (EVs) have emerged as key players in tumor development and progression. Different sources of EVs carry different molecules, resulting in distinct biological functions. For instance, tumor-derived EVs can promote tumor cell proliferation, alter the tumor microenvironment and immune response, while EVs derived from immune cells carry molecules that regulate immune function and possess tumor-killing capabilities. Numerous studies have demonstrated the crucial role of EVs in the development, immune escape, and immune microenvironment remodeling in GC. In this review, we discuss the role of GC-derived EVs in immune microenvironment remodeling and EVs derived from immune cells in GC development. Furthermore, we provide an overview of the potential uses of EVs in immunotherapy for GC.
Collapse
Affiliation(s)
- Shuo Yang
- Department of the Seventh General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000̥, Liaoning Province, PR China
| | - Shibo Wei
- Department of the Seventh General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000̥, Liaoning Province, PR China.
| | - Fang Wei
- Department of the Seventh General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000̥, Liaoning Province, PR China.
| |
Collapse
|
6
|
Zhang W, Ou M, Yang P, Ning M. The role of extracellular vesicle immune checkpoints in cancer. Clin Exp Immunol 2024; 216:230-239. [PMID: 38518192 PMCID: PMC11097917 DOI: 10.1093/cei/uxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024] Open
Abstract
Immune checkpoints (ICPs) play a crucial role in regulating the immune response. In the tumor, malignant cells can hijack the immunosuppressive effects of inhibitory ICPs to promote tumor progression. Extracellular vesicles (EVs) are produced by a variety of cells and contain bioactive molecules on their surface or within their lumen. The expression of ICPs has also been detected in EVs. In vitro and in vivo studies have shown that extracellular vesicle immune checkpoints (EV ICPs) have immunomodulatory effects and are involved in tumor immunity. EV ICPs isolated from the peripheral blood of cancer patients are closely associated with the tumor progression and the prognosis of cancer patients. Blocking inhibitory ICPs has been recognized as an effective strategy in cancer treatment. However, the efficacy of immune checkpoint inhibitors (ICIs) in cancer treatment is hindered by the emergence of therapeutic resistance, which limits their widespread use. Researchers have demonstrated that EV ICPs are correlated with clinical response to ICIs therapy and were involved in therapeutic resistance. Therefore, it is essential to investigate the immunomodulatory effects, underlying mechanisms, and clinical significance of EV ICPs in cancer. This review aims to comprehensively explore these aspects. We have provided a comprehensive description of the cellular origins, immunomodulatory effects, and clinical significance of EV ICPs in cancer, based on relevant studies.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu, China
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Lu MM, Yang Y. Exosomal PD-L1 in cancer and other fields: recent advances and perspectives. Front Immunol 2024; 15:1395332. [PMID: 38726017 PMCID: PMC11079227 DOI: 10.3389/fimmu.2024.1395332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.
Collapse
Affiliation(s)
- Man-Man Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Li J, Lu S, Chen F, Zhu H. Unveiling the hidden role of extracellular vesicles in brain metastases: a comprehensive review. Front Immunol 2024; 15:1388574. [PMID: 38726015 PMCID: PMC11079170 DOI: 10.3389/fimmu.2024.1388574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Background Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Rajanathadurai J, Sindya J, Madar IH, Perumal E. Exosomal immune checkpoint protein (PD-L1): Hidden player in PD-1/PD-L1 blockade immunotherapy resistance in oral cancer. Oral Oncol 2024; 151:106748. [PMID: 38471246 DOI: 10.1016/j.oraloncology.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Jeevitha Rajanathadurai
- Cancer Genomics Laboratory, Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jospin Sindya
- Cancer Genomics Laboratory, Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Inamul Hasan Madar
- Multiomics and Precision Medicine Laboratory, Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Elumalai Perumal
- Cancer Genomics Laboratory, Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India.
| |
Collapse
|
10
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
11
|
Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22:9. [PMID: 38167133 PMCID: PMC10763406 DOI: 10.1186/s12964-023-01370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Alam MR, Rahman MM, Li Z. The link between intracellular calcium signaling and exosomal PD-L1 in cancer progression and immunotherapy. Genes Dis 2024; 11:321-334. [PMID: 37588227 PMCID: PMC10425812 DOI: 10.1016/j.gendis.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are small membrane vesicles containing microRNA, RNA, DNA fragments, and proteins that are transferred from donor cells to recipient cells. Tumor cells release exosomes to reprogram the factors associated with the tumor microenvironment (TME) causing tumor metastasis and immune escape. Emerging evidence revealed that cancer cell-derived exosomes carry immune inhibitory molecule program death ligand 1 (PD-L1) that binds with receptor program death protein 1 (PD-1) and promote tumor progression by escaping immune response. Currently, some FDA-approved monoclonal antibodies are clinically used for cancer treatment by blocking PD-1/PD-L1 interaction. Despite notable treatment outcomes, some patients show poor drug response. Exosomal PD-L1 plays a vital role in lowering the treatment response, showing resistance to PD-1/PD-L1 blockage therapy through recapitulating the effect of cell surface PD-L1. To enhance therapeutic response, inhibition of exosomal PD-L1 is required. Calcium signaling is the central regulator of tumorigenesis and can regulate exosome biogenesis and secretion by modulating Rab GTPase family and membrane fusion factors. Immune checkpoints are also connected with calcium signaling and calcium channel blockers like amlodipine, nifedipine, lercanidipine, diltiazem, and verapamil were also reported to suppress cellular PD-L1 expression. Therefore, to enhance the PD-1/PD-L1 blockage therapy response, the reduction of exosomal PD-L1 secretion from cancer cells is in our therapeutic consideration. In this review, we proposed a therapeutic strategy by targeting calcium signaling to inhibit the expression of PD-L1-containing exosome levels that could reduce the anti-PD-1/PD-L1 therapy resistance and increase the patient's drug response rate.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Md Mizanur Rahman
- Department of Medicine (Nephrology), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6E2H7, Canada
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
13
|
Wang J, Li L, Xu ZP. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. SMALL METHODS 2024; 8:e2301005. [PMID: 37743260 DOI: 10.1002/smtd.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Chemotherapy is a critical modality in cancer therapy to combat malignant cell proliferation by directly attacking cancer cells and inducing immunogenic cell death, serving as a vital component of multi-modal treatment strategies for enhanced therapeutic outcomes. However, chemotherapy may inadvertently contribute to the immunosuppression of the tumor microenvironment (TME), inducing the suppression of antitumor immune responses, which can ultimately affect therapeutic efficacy. Chemo-immunotherapy, combining chemotherapy and immunotherapy in cancer treatment, has emerged as a ground-breaking approach to target and eliminate malignant tumors and revolutionize the treatment landscape, offering promising, durable responses for various malignancies. Notably, functional nanomaterials have substantially contributed to chemo-immunotherapy by co-delivering chemo-immunotherapeutic agents and modulating TME. In this review, recent advancements in chemo-immunotherapy are thus summarized to enhance treatment effectiveness, achieved by reversing the immunosuppressive TME (ITME) through the exploitation of immunotherapeutic drugs, or immunoregulatory nanomaterials. The effects of two-way immunomodulation and the causes of immunoaugmentation and suppression during chemotherapy are illustrated. The current strategies of chemo-immunotherapy to surmount the ITME and the functional materials to target and regulate the ITME are discussed and compared. The perspective on tumor immunosuppression reversal strategy is finally proposed.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
14
|
Hu R, Jahan MS, Tang L. ExoPD-L1: an assistant for tumor progression and potential diagnostic marker. Front Oncol 2023; 13:1194180. [PMID: 37736550 PMCID: PMC10509558 DOI: 10.3389/fonc.2023.1194180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
The proliferation and function of immune cells are often inhibited by the binding of programmed cell-death ligand 1 (PD-L1) to programmed cell-death 1 (PD-1). So far, many studies have shown that this combination poses significant difficulties for cancer treatment. Fortunately, PD-L1/PD-1 blocking therapy has achieved satisfactory results. Exosomes are tiny extracellular vesicle particles with a diameter of 40~160 nm, formed by cells through endocytosis. The exosomes are a natural shelter for many molecules and an important medium for information transmission. The contents of exosomes are composed of DNA, RNA, proteins and lipids etc. They are crucial to antigen presentation, tumor invasion, cell differentiation and migration. In addition to being present on the surface of tumor cells or in soluble form, PD-L1 is carried into the extracellular environment by tumor derived exosomes (TEX). At this time, the exosomes serve as a medium for communication between tumor cells and other cells or tissues and organs. In this review, we will cover the immunosuppressive role of exosomal PD-L1 (ExoPD-L1), ExoPD-L1 regulatory factors and emerging approaches for quantifying and detecting ExoPD-L1. More importantly, we will discuss how targeted ExoPD-L1 and combination therapy can be used to treat cancer more effectively.
Collapse
Affiliation(s)
- Rong Hu
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Md Shoykot Jahan
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lijun Tang
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
15
|
da Silva MC, Fabiano LC, da Costa Salomão KC, de Freitas PLZ, Neves CQ, Borges SC, de Souza Carvalho MDG, Breithaupt-Faloppa AC, de Thomaz AA, Dos Santos AM, Buttow NC. A Rodent Model of Human-Dose-Equivalent 5-Fluorouracil: Toxicity in the Liver, Kidneys, and Lungs. Antioxidants (Basel) 2023; 12:antiox12051005. [PMID: 37237871 DOI: 10.3390/antiox12051005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapy drug widely used to treat a range of cancer types, despite the recurrence of adverse reactions. Therefore, information on its side effects when administered at a clinically recommended dose is relevant. On this basis, we examined the effects of the 5-FU clinical treatment on the integrity of the liver, kidneys, and lungs of rats. For this purpose, 14 male Wistar rats were divided into treated and control groups and 5-FU was administered at 15 mg/kg (4 consecutive days), 6 mg/kg (4 alternate days), and 15 mg/kg on the 14th day. On the 15th day, blood, liver, kidney, and lung samples were collected for histological, oxidative stress, and inflammatory evaluations. We observed a reduction in the antioxidant markers and an increase in lipid hydroperoxides (LOOH) in the liver of treated animals. We also detected elevated levels of inflammatory markers, histological lesions, apoptotic cells, and aspartate aminotransferase. Clinical treatment with 5-FU did not promote inflammatory or oxidative alterations in the kidney samples; however, histological and biochemical changes were observed, including increased serum urea and uric acid. 5-FU reduces endogenous antioxidant defenses and increases LOOH levels in the lungs, suggesting oxidative stress. Inflammation and histopathological alterations were also detected. The clinical protocol of 5-FU promotes toxicity in the liver, kidneys, and lungs of healthy rats, resulting in different levels of histological and biochemical alterations. These results will be useful in the search for new adjuvants to attenuate the adverse effects of 5-FU in such organs.
Collapse
Affiliation(s)
- Mariana Conceição da Silva
- Biological Physics and Cell Signaling Laboratory, Institute of Biology, Department of Structural and Functional Biology, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Lilian Catarim Fabiano
- Department of Morphological Science, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Camila Quaglio Neves
- Department of Morphological Science, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | - Maria das Graças de Souza Carvalho
- Biological Physics and Cell Signaling Laboratory, Institute of Biology, Department of Structural and Functional Biology, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-904, SP, Brasil
| | - André Alexandre de Thomaz
- Quantum Electronic Department, Institute of Physics Gleb Wataghin, State University of Campinas, Campinas 13083-872, SP, Brazil
| | - Aline Mara Dos Santos
- Biological Physics and Cell Signaling Laboratory, Institute of Biology, Department of Structural and Functional Biology, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Science, State University of Maringá, Maringá 87020-900, PR, Brazil
| |
Collapse
|
16
|
Exosomal PD-L1 confers chemoresistance and promotes tumorigenic properties in esophageal cancer cells via upregulating STAT3/miR-21. Gene Ther 2023; 30:88-100. [PMID: 35440807 DOI: 10.1038/s41434-022-00331-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Chemotherapy resistance remains a major obstacle in the treatment of esophageal cancer. Previous researches have shown that an increase in exosomal PD-L1 expression was positively associated with a more advanced clinical stage, a poorer prognosis as well as drug resistance in patients with esophageal squamous cell carcinoma (ESCC). To explore the role of exosomal PD-L1 in ESCC, we performed bioinformatics analysis as well as several in vitro/in vivo functional experiments in a parental sensitive cell line EC-9706 and its derivative, a paclitaxel-resistant subline EC-9706R, and found that the exosomal PD-L1 from EC-9706R was higher than that from EC-9706. Moreover, exosomes from EC-9706R significantly increased invasion, migration and chemoresistance of EC-9706. Anti-PD-L1 treatment in combination with chemotherapy also led to reduced tumor burden in vivo. Inhibition of the release of exosomes by GW4869 or inhibition of STAT3 phosphorylation by stattic could effectively reverse the resistance to paclitaxel mediated by exosomal PD-L1. Furthermore, we found that PD-L1, miR-21, and multidrug resistance (MDR1) gene are involved in the process of exosomal transfer. Moreover, PD-L1 could enhance miR-21 expression by increasing the enrichment of STAT3 on miR-21 promoter. Our results suggested that exosomal PD-L1 may contribute to drug resistance to paclitaxel by regulating the STAT3/miR-21/PTEN/Akt axis and promote tumorigenic phenotype. This study provides a novel potential therapeutic approach to reverse chemoresistance and tumor progression through exosomal PD-L1 in ESCC patients.
Collapse
|
17
|
Yuan C, Yuan J, Xiao H, Li H, Jiang Y, Zhai R, Zhai J, Xing H, Huang J. Genomic analysis of matrix metalloproteinases affecting the prognosis and immunogenic profile of gastric cancer. Front Genet 2023; 14:1128088. [PMID: 37144126 PMCID: PMC10151559 DOI: 10.3389/fgene.2023.1128088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
This study systematically and comprehensively analyzed the characteristics of matrix metalloproteinases (MMPs) in gastric cancer (GC) and revealed the relationship between MMPs and prognoses, clinicopathological features, tumor microenvironment, gene mutations, and drug therapy response in patients with GC. Based on the mRNA expression profiles of 45 MMP-related genes in GC, we established a model that classified GC patients into three groups based on cluster analysis of the mRNA expression profiles. The 3 groups of GC patients showed significantly different prognoses as well as tumor microenvironmental characteristics. Next, we used Boruta's algorithm and PCA method to establish an MMP scoring system and found that lower MMP scores were associated with better prognoses, lower clinical stages, better immune cell infiltration, lower degrees of immune dysfunction and rejection, and more genetic mutations. Whereas a high MMP score was the opposite. These observations were further validated with data from other datasets, showing the robustness of our MMP scoring system. Overall, MMP could be involved in the tumor microenvironment (TME), clinical features, and prognosis of GC. An in-depth study of MMP patterns can better understand the indispensable role of MMP in the development of GC and reasonably assess the survival prognosis, clinicopathological features, and drug efficacy of different patients, thus providing clinicians with a broader vision of GC progression and treatment.
Collapse
Affiliation(s)
- Chaofeng Yuan
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jialin Yuan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haitao Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rongnan Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinjing Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hua Xing, ; Jiannan Huang,
| | - Jiannan Huang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hua Xing, ; Jiannan Huang,
| |
Collapse
|
18
|
Synergistic Effects of the Combinational Use of Escitalopram Oxalate and 5-Fluorouracil on the Inhibition of Gastric Cancer SNU-1 Cells. Int J Mol Sci 2022; 23:ijms232416179. [PMID: 36555820 PMCID: PMC9781210 DOI: 10.3390/ijms232416179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Owing to its high recurrence rate, gastric cancer (GC) is the leading cause of tumor-related deaths worldwide. Besides surgical treatment, chemotherapy is the most commonly used treatment against GC. However, the adverse events associated with chemotherapy use limit its effectiveness in GC treatment. In this study, we investigated the effects of using combinations of low-dose 5-fluorouracil (5-FU; 0.001 and 0.01 mM) with different concentrations of escitalopram oxalate (0.01, 0.02, 0.06, and 0.2 mM) to evaluate whether the assessed combination would have synergistic effects on SNU-1 cell survival. 5-FU (0.01 mM) + escitalopram oxalate (0.02 mM) and 5-FU (0.01 mM) + escitalopram oxalate (0.06 mM) administered over 24 h showed synergistic effects on the inhibition of SNU-1 cell proliferation. Moreover, 5-FU (0.001 mM) + escitalopram oxalate (0.02 or 0.06 mM) and 5-FU (0.01 mM) + escitalopram oxalate (0.02, 0.06, or 0.2 mM) administered over 48 h showed synergistic effects on the inhibition of SNU-1 cell proliferation. Compared with controls, SNU-1 cells treated with 5-FU (0.01 mM) + escitalopram oxalate (0.02 mM) exhibited significantly increased levels of annexin V staining, reactive oxygen species, cleaved poly (ADP-ribose) polymerase, and caspase-3 proteins. Furthermore, 5-FU (12 mg/kg) + escitalopram oxalate (12.5 mg/kg) significantly attenuated xenograft SNU-1 cell proliferation in nude mice. Our study is the first to report the synergistic effects of the combinational use of low-dose 5-FU and escitalopram oxalate on inhibiting SNU-1 cell proliferation. These findings may be indicative of an alternative option for GC treatment.
Collapse
|
19
|
Zhang Y, Yang Y, Chen Y, Lin W, Chen X, Liu J, Huang Y, Wang H, Teng L. PD-L1: Biological mechanism, function, and immunotherapy in gastric cancer. Front Immunol 2022; 13:1060497. [PMID: 36505487 PMCID: PMC9729722 DOI: 10.3389/fimmu.2022.1060497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the main causes of cancer incidence rate and mortality worldwide. As the main breakthrough direction, the application of immune checkpoint inhibitors makes patients with GC have better prognosis, where PD-L1/PD-1 inhibitors in immunotherapy have good anti-tumor immune efficacy. Further understanding of the regulatory mechanism of PD-L1 in GC may bring substantial progress to the immunotherapy. In this review, we provide information on the endogenous and exogenous regulatory mechanisms of PD-L1 and its biological functions combined with current clinical trials of PD-L1/PD-1 inhibitors in GC. The malignant biological phenotypes caused by PD-L1 and the corresponding clinical combined treatment scheme have been reported. Identifying the biomarkers of the potential efficacy of immunotherapy and specifying the clinical immunotherapy scheme in combination with molecular characteristics of patients may maximize clinical benefits and better prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
21
|
Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol 2022; 13:1016817. [PMID: 36341377 PMCID: PMC9630479 DOI: 10.3389/fimmu.2022.1016817] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor microenvironment is the general term for all non-cancer components and their metabolites in tumor tissue. These components include the extracellular matrix, fibroblasts, immune cells, and endothelial cells. In the early stages of tumors, the tumor microenvironment has a tumor suppressor function. As the tumor progresses, tumor immune tolerance is induced under the action of various factors, such that the tumor suppressor microenvironment is continuously transformed into a tumor-promoting microenvironment, which promotes tumor immune escape. Eventually, tumor cells manifest the characteristics of malignant proliferation, invasion, metastasis, and drug resistance. In recent years, stress effects of the extracellular matrix, metabolic and phenotypic changes of innate immune cells (such as neutrophils, mast cells), and adaptive immune cells in the tumor microenvironment have been revealed to mediate the emerging mechanisms of immune tolerance, providing us with a large number of emerging therapeutic targets to relieve tumor immune tolerance. Gastric cancer is one of the most common digestive tract malignancies worldwide, whose mortality rate remains high. According to latest guidelines, the first-line chemotherapy of advanced gastric cancer is the traditional platinum and fluorouracil therapy, while immunotherapy for gastric cancer is extremely limited, including only Human epidermal growth factor receptor 2 (HER-2) and programmed death ligand 1 (PD-L1) targeted drugs, whose benefits are limited. Clinical experiments confirmed that cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), vascular endothelial growth factor receptor (VEGFR) and other targeted drugs alone or in combination with other drugs have limited efficacy in patients with advanced gastric cancer, far less than in lung cancer, colon cancer, and other tumors. The failure of immunotherapy is mainly related to the induction of immune tolerance in the tumor microenvironment of gastric cancer. Therefore, solving the immune tolerance of tumors is key to the success of gastric cancer immunotherapy. In this study, we summarize the latest mechanisms of various components of the tumor microenvironment in gastric cancer for inducing immune tolerance and promoting the formation of the malignant phenotype of gastric cancer, as well as the research progress of targeting the tumor microenvironment to overcome immune tolerance in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| |
Collapse
|
22
|
Ghazvinian Z, Abdolahi S, Ahmadvand M, Emami AH, Muhammadnejad S, Asadzadeh Aghdaei H, Ai J, Zali MR, Seyhoun I, Verdi J, Baghaei K. Chemo-immune cell therapy by intratumoral injection of adoptive NK cells with capecitabine in gastric cancer xenograft model. BIOIMPACTS : BI 2022; 13:383-392. [PMID: 37736341 PMCID: PMC10509737 DOI: 10.34172/bi.2022.26386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 09/23/2023]
Abstract
Introduction Gastric cancer is one of the most commonly known malignancies and is the fifth cancer-related death globally. Whereas natural killer (NK) cells play a critical role in tumor elimination; therefore, adoptive NK cell therapy has become a promising approach in cancer cytotherapy. Hence, this study investigated the chemo-immune cell therapy in MKN-45 derived xenograft gastric cancer model. Methods Three groups of animals have received the following treatments separately: activated NK cells, capecitabine, the combination of capecitabine and activated NK cells, and one was considered as the control group. Morphometric properties of tumor samples were evaluated at the end of the study. NK cells infiltration was evaluated by immunohistochemistry (IHC) of hCD56. Mitotic count and treatment response was assessed by hematoxylin and eosin (H&E) staining. The proliferation ratio to apoptosis was determined by IHC assessment of Ki67 and caspase 3. Results The results indicated that the NK cell therapy could effectively decrease the mitotic count in pathology assessment, but the tumor was not completely eradicated. In combination with metronomic chemotherapy (MC) of capecitabine, NK cell therapy demonstrated a significant difference in tumor morphometric properties compared to the control group. The proliferation ratio to apoptosis was also in line with pathology data. Conclusion Although NK cell therapy could effectively decrease the mitotic count in vivo, the obtained findings indicated lesser potency than MC despite ex vivo activation. In order to enhance NK cell therapy effectiveness, suppressive features of the tumor microenvironment and inhibitory immune checkpoints blockade should be considered.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Emami
- Department of Internal Medicine, School of Medicine, Imam Khomeini Hospital Complex, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Li X, Jiang Z, Wu Y, Gong W, Liao X, Li X. Case report: Conversion therapy for advanced intrahepatic cholangiocarcinoma using PD-1 inhibitor plus S-1 and nab-paclitaxel. Front Oncol 2022; 12:935817. [PMID: 35965578 PMCID: PMC9366243 DOI: 10.3389/fonc.2022.935817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant hepatobiliary tumor with a high rate of advanced disease at initial presentation. Conversion into resectable iCCA is important for improving the prognosis. Immunotherapy-based regimens are being increasingly used for treating advanced iCCA in recent years. However, the use of combined chemotherapy and immunotherapy for conversion has rarely been reported. The aim of this report was to present the outcomes of a 52-year-old female patient with IIIB iCCA. The patient was treated with a programmed cell death protein-1 inhibitor plus S-1 and nab-paclitaxel. The postoperative histopathological results indicated pathologic complete response after six cycles of systematic treatment. The patient is currently disease-free for one year.
Collapse
Affiliation(s)
- Xiaocheng Li
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Zhiyang Jiang
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yongjuan Wu
- Department of Interventional Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Gong
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Institute of Oncology; XiangYang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Xiaofeng Liao
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Institute of Oncology; XiangYang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Xiaogang Li
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Institute of Oncology; XiangYang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Xiaogang Li,
| |
Collapse
|
24
|
Yu ZL, Liu JY, Chen G. Small extracellular vesicle PD-L1 in cancer: the knowns and unknowns. NPJ Precis Oncol 2022; 6:42. [PMID: 35729210 PMCID: PMC9213536 DOI: 10.1038/s41698-022-00287-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
According to the conventional wisdom, programmed death protein 1 ligand (PD-L1)-mediated immunosuppression was based on the physical contact between tumor cells and T cells in the tumor microenvironment. Recent studies demonstrated that PD-L1 was also highly expressed on the surface of tumor cell-derived small extracellular vesicles (sEVs). PD-L1 on sEVs, which could also directly bind to PD-1 on T cells, has a vital function in immunosuppression and immunotherapy resistance. Due to the heterogeneity and dynamic changes of PD-L1 expression on tumor cells, developing sEV PD-L1 as a predictive biomarker for the clinical responses to immunotherapy could be an attractive option. In this review, we summarized and discussed the latest researches and advancements on sEV PD-L1, including the biogenesis and secretion mechanisms, isolation and detection strategies, as well as the biological functions of sEV PD-L1. In the meantime, we highlighted the application potential of sEV PD-L1 as diagnostic and prognostic markers in tumor, especially for predicting the clinical responses to anti-PD-1/PD-L1 immunotherapies. In particular, with the gradual deepening of the studies, challenges and problems regarding the further understanding and application of sEV PD-L1 have begun to emerge. Based on the current research status, we summarized the potential challenges and possible solutions, and prospected several key directions for future studies of sEV PD-L1. Collectively, by highlighting the important knowns and unknowns of sEV PD-L1, our present review would help to light the way forward for the field of sEV PD-L1 and to avoid unnecessary blindness and detours.
Collapse
Affiliation(s)
- Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jin-Yuan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
25
|
Kaplon H. Translational Learnings in the Development of Chemo-Immunotherapy Combination to Bypass the Cold Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:835502. [PMID: 35664786 PMCID: PMC9159762 DOI: 10.3389/fonc.2022.835502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-year relative survival rate of 5%. The desmoplastic stroma found in the tumor microenvironment of PDAC is suggested to be partly responsible for the resistance to most therapeutic strategies. This review outlines the clinical results obtained with an immune checkpoint inhibitor in PDAC and discusses the rationale to use a combination of chemotherapy and immune checkpoint therapy. Moreover, essential parameters to take into account in designing an efficient combination have been highlighted.
Collapse
Affiliation(s)
- Hélène Kaplon
- Institut de Recherches Internationales Servier, Translational Medicine Department, Servier, Suresnes, France
| |
Collapse
|
26
|
Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022; 12:844260. [PMID: 35433470 PMCID: PMC9005749 DOI: 10.3389/fonc.2022.844260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment restricts the function and survival of various immune cells by up-regulating inhibitory immune checkpoints, and participates in the immune escape of tumors. The development of immunotherapies targeting immune checkpoints, such as programmed cell death receptor 1 antibody and anti-cytotoxic T lymphocyte-associated antigen 4 antibody, has provided many options for cancer treatment. The efficacy of other immune checkpoint inhibitors is also under development and research. Among them, T cell immunoreceptor with Ig and ITIM domains (TIGIT) has shown excellent clinical application prospects. Correspondingly, poliovirus receptor (PVR, CD155), one of the main ligands of TIGIT, is mainly expressed in various human malignant tumors and myeloid cells. CD155 interacts with TIGIT on natural killer cells and T cells, mediating inhibitory immunomodulatory regulation. This study summarized the mechanism of CD155/TIGIT in regulating immune cells and its role in the occurrence and development of digestive system tumors, aiming to provide a new perspective for immunotherapy of digestive cancers.
Collapse
Affiliation(s)
- Daijun Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Xin Yan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Chengdong Huo
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Guan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yang Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Liu J, Peng X, Yang S, Li X, Huang M, Wei S, Zhang S, He G, Zheng H, Fan Q, Yang L, Li H. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal 2022; 20:14. [PMID: 35090497 PMCID: PMC8796536 DOI: 10.1186/s12964-021-00816-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is the ligand for programmed death protein-1 (PD-1), is associated with immunosuppression. Signaling via PD-1/PD-L1 will transmits negative regulatory signals to T cells, inducing T-cell inhibition, reducing CD8+ T-cell proliferation, or promoting T-cell apoptosis, which effectively reduces the immune response and leads to large-scale tumor growth. Accordingly, many antibody preparations targeting PD-1 or PD-L1 have been designed to block the binding of these two proteins and restore T-cell proliferation and cytotoxicity of T cells. However, these drugs are ineffective in clinical practice. Recently, numerous of studies have shown that, in addition to the surface of tumor cells, PD-L1 is also found on the surface of extracellular vesicles secreted by these cells. Extracellular vesicle PD-L1 can also interact with PD-1 on the surface of T cells, leading to immunosuppression, and has been proposed as a potential mechanism underlying PD-1/PD-L1-targeted drug resistance. Therefore, it is important to explore the production, regulation and tumor immunosuppression of PD-L1 on the surface of tumor cells and extracellular vesicles, as well as the potential clinical application of extracellular vesicle PD-L1 as tumor biomarkers and therapeutic targets. Video Abstract
Collapse
|
28
|
Rasihashemi SZ, Rezazadeh Gavgani E, Majidazar R, Seraji P, Oladghaffari M, Kazemi T, Lotfinejad P. Tumor-derived exosomal PD-L1 in progression of cancer and immunotherapy. J Cell Physiol 2021; 237:1648-1660. [PMID: 34825383 DOI: 10.1002/jcp.30645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a gravely important health issue all over the world and has been spreading fast. In recent years immune checkpoint treatment options have been used extensively as a primary line of treatment for different cancer types. PD-1 and its ligand, PD-L1, are members of the immune-checkpoints superfamily. Anti-PD-L1 and anti-PD-1 antibodies have shown efficacy against different cancer types, but fewer than 30% of patients have shown robust therapeutic responses and, therefore, it is hypothesized that exosomal PD-L1 is the mechanism to blame for failure in primary immune checkpoint therapy. The identical membrane topology of exosomal PD-L1 with tumor cell membrane-type provides the possibility to mimic immunosuppressive effects of tumor cell membrane PD-L1. In this review, it is discussed whether exosomal PD-L1 binds to antibodies and hence resistance to immunotherapy will be developed, and targeting exosome biogenesis inhibition can provide a new strategy to overcome tumor resistance to anti-PD-L1 therapy. Diagnostic and prognostic values of exosomal PD-L1 in different cancer types are discussed. Multiple clinical studies conclude that the level of tumor-derived exosomes (TEXs) as a biomarker for diagnosis could distinguish cancer patients from healthy controls. Elevated exosomal PD-L1 levels may be predictive of advanced disease stages, cancer metastasis, lower response to anti-PD-1/PD-L1 therapy, lower overall survival rates, and poor tumor prognosis. These novel findings of TEXs serve as promising therapeutic targets for early diagnosis and prevention of cancer progression.
Collapse
Affiliation(s)
- Seyed Z Rasihashemi
- Department of Cardiothoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Seraji
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Oladghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer 2021; 21:701-717. [PMID: 34376827 DOI: 10.1038/s41568-021-00386-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized cancer treatment and substantially improved patient outcome with regard to multiple tumour types. However, most patients still do not benefit from such therapies, notably because of the absence of pre-existing T cell infiltration. DNA damage response (DDR) deficiency has recently emerged as an important determinant of tumour immunogenicity. A growing body of evidence now supports the concept that DDR-targeted therapies can increase the antitumour immune response by (1) promoting antigenicity through increased mutability and genomic instability, (2) enhancing adjuvanticity through the activation of cytosolic immunity and immunogenic cell death and (3) favouring reactogenicity through the modulation of factors that control the tumour-immune cell synapse. In this Review, we discuss the interplay between the DDR and anticancer immunity and highlight how this dynamic interaction contributes to shaping tumour immunogenicity. We also review the most innovative preclinical approaches that could be used to investigate such effects, including recently developed ex vivo systems. Finally, we highlight the therapeutic opportunities presented by the exploitation of the DDR-anticancer immunity interplay, with a focus on those in early-phase clinical development.
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Mathieu Rouanne
- Equipe Labellisée Ligue Nationale contre le Cancer, Inserm Unit U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Département d'Urologie, Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jean-Charles Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Philippe Pasero
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
30
|
Vautrot V, Bentayeb H, Causse S, Garrido C, Gobbo J. Tumor-Derived Exosomes: Hidden Players in PD-1/PD-L1 Resistance. Cancers (Basel) 2021; 13:cancers13184537. [PMID: 34572764 PMCID: PMC8467727 DOI: 10.3390/cancers13184537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immunotherapies such as anti-PD-1/PD-L1 have garnered increasing importance in cancer therapy, leading to substantial improvements in patient care and survival. However, a certain proportion of patients present tumors that resist these treatments. Exosomes, small vesicles secreted by almost every cell, including tumor cells, have proven to be key actors in this resistance. In this review, we describe the involvement of immune checkpoints and immune modulators in tumor-derived exosomes (TEXs) in the context of cancer. We will focus on the most promising proteins under scrutiny for use in combination with PD-1 blockade therapy in a clinical setting: PD-L1, CTLA-4, TIM-3, CD73/39, LAG-3, and TIGIT. Finally, we will discuss how they can change the game in immunotherapy, notably through their role in immunoresistance and how they can guide therapeutic decisions, as well as the current obstacles in the field. Abstract Recently, immunotherapy has garnered increasing importance in cancer therapy, leading to substantial improvements in patient care and survival. By blocking the immune checkpoints—protein regulators of the immune system—immunotherapy prevents immune tolerance toward tumors and reactivates the immune system, prompting it to fight cancer cell growth and diffusion. A widespread strategy for this is the blockade of the interaction between PD-L1 and PD-1. However, while patients generally respond well to immunotherapy, a certain proportion of patients present tumors that resist these treatments. This portion can be very high in some cancers and hinders cancer curability. For this reason, current efforts are focusing on combining PD-1/PD-L1 immunotherapy with the targeting of other immune checkpoints to counter resistance and achieve better results. Exosomes, small vesicles secreted by almost any cell, including tumor cells, have proven to be key actors in this resistance. The exosomes released by tumor cells spread the immune-suppressive properties of the tumor throughout the tumor microenvironment and participate in establishing metastatic niches. In this review, we will describe immune checkpoints and immune modulators whose presence in tumor-derived exosomes (TEXs) has been established. We will focus on the most promising proteins under scrutiny for use in combination with PD-1 blockade therapy in a clinical setting, such as PD-L1, CTLA-4, TIM-3, CD73/39, LAG-3, and TIGIT. We will explore the immunosuppressive impact of these exosomal proteins on a variety of immune cells. Finally, we will discuss how they can change the game in immunotherapy and guide therapeutic decisions, as well as the current limits of this approach. Depending on the viewpoint, these exosomal proteins may either provide key missing information on tumor growth and resistance mechanisms or they may be the next big challenge to overcome in improving cancer treatment.
Collapse
Affiliation(s)
- Valentin Vautrot
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Hafidha Bentayeb
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Sébastien Causse
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Carmen Garrido
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Jessica Gobbo
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
- Centre Georges-François Leclerc, Early Phase Unit INCa CLIP², Department of Oncology, F-21079 Dijon, France
- Clinical Investigation Center CIC1432, Module Plurithématique, INSERM, F-21079 Dijon, France
- Correspondence:
| |
Collapse
|
31
|
Seibold T, Waldenmaier M, Seufferlein T, Eiseler T. Small Extracellular Vesicles and Metastasis-Blame the Messenger. Cancers (Basel) 2021; 13:cancers13174380. [PMID: 34503190 PMCID: PMC8431296 DOI: 10.3390/cancers13174380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Due to their systemic nature, metastatic lesions are a major problem for curative cancer treatment. According to a common model for metastasis, tumor cells disseminate by local invasion, survival in the blood stream and extravasation into suitable tissue environments. At secondary sites, metastatic cells adapt, proliferate and foster vascularization to satisfy nutrient and oxygen demand. In recent years, tumors were shown to extensively communicate with cells in the local microenvironment and future metastatic sites by secreting small extracellular vesicles (sEVs, exosomes). sEVs deliver bioactive cargos, e.g., proteins, and in particular, several nucleic acid classes to reprogram target cells, which in turn facilitate tumor growth, cell motility, angiogenesis, immune evasion and establishment of pre-metastatic niches. sEV-cargos also act as biomarkers for diagnosis and prognosis. This review discusses how tumor cells utilize sEVs with nucleic acid cargos to progress through metastasis, and how sEVs may be employed for prognosis and treatment. Abstract Cancer is a complex disease, driven by genetic defects and environmental cues. Systemic dissemination of cancer cells by metastasis is generally associated with poor prognosis and is responsible for more than 90% of cancer deaths. Metastasis is thought to follow a sequence of events, starting with loss of epithelial features, detachment of tumor cells, basement membrane breakdown, migration, intravasation and survival in the circulation. At suitable distant niches, tumor cells reattach, extravasate and establish themselves by proliferating and attracting vascularization to fuel metastatic growth. These processes are facilitated by extensive cross-communication of tumor cells with cells in the primary tumor microenvironment (TME) as well as at distant pre-metastatic niches. A vital part of this communication network are small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm. Tumor-derived sEVs educate recipient cells with bioactive cargos, such as proteins, and in particular, major nucleic acid classes, to drive tumor growth, cell motility, angiogenesis, immune evasion and formation of pre-metastatic niches. Circulating sEVs are also utilized as biomarker platforms for diagnosis and prognosis. This review discusses how tumor cells facilitate progression through the metastatic cascade by employing sEV-based communication and evaluates their role as biomarkers and vehicles for drug delivery.
Collapse
|
32
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
33
|
Ying H, Zhang X, Duan Y, Lao M, Xu J, Yang H, Liang T, Bai X. Non-cytomembrane PD-L1: An atypical target for cancer. Pharmacol Res 2021; 170:105741. [PMID: 34174446 DOI: 10.1016/j.phrs.2021.105741] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Programmed death ligand 1 (PD-L1) has conventionally been considered as a type I transmembrane protein that can interact with its receptor, programmed cell death 1 (PD-1), thus inducing T cell deactivation and immune escape. However, targeting the PD-1/PD-L1 axis has achieved adequate clinical responses in very few specific malignancies. Recent studies have explored the extracellularly and subcellularly located PD-L1, namely, nuclear PD-L1 (nPD-L1), cytoplasmic PD-L1 (cPD-L1), soluble PD-L1 (sPD-L1), and extracellular vesicle PD-L1 (EV PD-L1), which might shed light on the resistance to anti-PD1/PDL1 therapy. In this review, we summarize the four atypical localizations of PD-L1 with a focus on their novel functions, such as gene transcription regulation, therapeutic efficacy prediction, and resistance to various cancer therapies. Additionally, we highlight that non-cytomembrane PD-L1s are of significant cancer diagnostic value and are promising therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China.
| |
Collapse
|
34
|
Xu P, Xu X, Zhang L, Li Z, Qiang J, Yao J, Xu A. hsa_circ_0060975 is highly expressed and predicts a poor prognosis in gastric cancer. Oncol Lett 2021; 22:619. [PMID: 34257727 PMCID: PMC8243078 DOI: 10.3892/ol.2021.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and GC has a high mortality rate worldwide. Circular (circ) RNAs serve an important role in cancer. The present study aimed to investigate the expression level of hsa_circ_0060975 in gastric cancer (GC) and to determine the clinical pathological significance of hsa_circ_0060975 in patients with GC. Reverse transcription-quantitative PCR was used to detect expression level of hsa_circ_0060975 in 192 GC and adjacent non-cancerous gastric tissues, in GC cell lines (MKN-45, HGC27 and AGS) and a human gastric epithelium cell line (GES-1), as well as in plasma samples from 126 patients with GC and 92 healthy volunteers. All plasma and tissue samples of were obtained from The First Affiliated Hospital of Anhui Medical University (Hefei, China). The relationship between hsa_circ_0060975 expression and clinical pathological factors was analyzed using the χ2 test. The diagnostic value of hsa_circ_0060975 was analyzed using the receiver operating characteristic curve (ROC curve), while the Kaplan-Meier method was used to analyze the relationship of hsa_circ_0060975 expression with the survival of patients with GC as determined by log-rank tests. Univariate and multivariate Cox regression analyses were used to identify the prognostic factors, including hsa_circ_0060975 expression and clinical pathological factors. In addition, the potential function of hsa_circ_0060975 was evaluated via bioinformatics analysis. The expression level of hsa_circ_0060975 was higher in GC tissues compared with adjacent non-cancerous gastric tissues, GC cell lines compared with GES-1 and plasma samples from patients with GC compared with plasma samples from healthy volunteers. In addition, higher hsa_circ_0060975 expression was associated with histological grade, pathological stage and tumor (T) classification in GC tissues and plasma samples (P<0.05). The area under the ROC curves of hsa_circ_0060975, the combination with hsa_circ_0060975 and carcinoembryonic antigen (CEA) or CEA alone were 0.804 (sensitivity, 0.746; specificity, 0.783; P<0.001); 0.931 (sensitivity, 0.937; specificity, 0.870; P<0.001) and 0.924 (sensitivity, 0.937; sspecificity, 0.804; P<0.001) respectively. The Kaplan-Meier survival analysis revealed that the overall survival (OS) and disease-free survival (DFS) time of patients with higher hsa_circ_0060975 expression were shorter compared with those in patients with lower hsa_circ_0060975 expression. Univariate and multivariate Cox regression analyses in OS and DFS time determined that the expression level of hsa_circ_0060975, histological grade and pathological stage were independent prognostic factors for patients with GC. In addition, the bioinformatics analysis results suggested that the abnormal expression of hsa_circ_0060975 may serve an important role in tumorigenesis. Hence, hsa_circ_0060975 expression may be an independent prognostic factor for patients with GC and may be a potential marker for biological malignancy.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Lixiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhengnan Li
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jianjun Qiang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
35
|
Petersen SH, Kua LF, Nakajima S, Yong WP, Kono K. Chemoradiation induces upregulation of immunogenic cell death-related molecules together with increased expression of PD-L1 and galectin-9 in gastric cancer. Sci Rep 2021; 11:12264. [PMID: 34112882 PMCID: PMC8192931 DOI: 10.1038/s41598-021-91603-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Surgery alone or combined with chemo- and/or radiation therapy remains the primary treatment for gastric cancer (GC) to date and immunotherapeutic tools such as monoclonal antibodies are only slowly being implemented. This is partly due to the fact that the immune microenvironment in GC during chemoradiation and other treatment modalities is still poorly understood. 7 gastric cancer (GC) cell lines were tested for their response to chemoradiation using 5-FU in combination with X-ray irradiation. We conducted flow cytometric analysis to determine the cells’ ability to undergo immunogenic cell death (ICD) and their expression of the two immunosuppressive proteins programmed death-ligand 1 (PD-L1) and galectin-9 (Gal-9). We evaluated the overall immunogenicity of two cell lines (MKN7, MKN74) in co-culture experiments with human monocyte-derived dendritic cells (Mo-DCs). Chemoradiation induces distinct responses in different GC cell lines. We observe ICD in vitro in all tested GC cell lines in the form of calreticulin (CRT) translocation to the plasma membrane. As a resistance mechanism, these cells also upregulated Gal-9 and PD-L1. Mo-DC maturation experiments showed that GCs provoked the maturation of Mo-DCs after chemoradiation in vitro. The addition of α-PD-L1 blocking antibody further enhanced the immunogenicity of these cells while improving DC viability. Blocking Tim-3, as the main receptor for Gal-9, had no such effect. Our findings suggest that the benefits of chemoradiation can substantially depend on tumor subtype and these benefits can be offset by induced immune evasion in GC. Combination treatment using checkpoint inhibitors could potentially lead to enhanced immune responses and yield better patient outcomes.
Collapse
Affiliation(s)
- S H Petersen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - L F Kua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - S Nakajima
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Gastrointestinal Tract Surgery, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Progressive DOHaD Research, Faculty of Medicine, Fukushima Medical University, Fukushima, 1 Hikariga-oka, Fukushima city, Fukushima, 960-1295, Japan
| | - W P Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, 119228, Singapore
| | - K Kono
- Department of Gastrointestinal Tract Surgery, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
36
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|
37
|
Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy. J Immunol Res 2021; 2021:8839978. [PMID: 33628854 PMCID: PMC7886511 DOI: 10.1155/2021/8839978] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Inhibiting the programmed cell death ligand-1 (PD-L1)/programmed cell death receptor-1 (PD-1) signaling axis reinvigorates the antitumor immune response with remarkable clinical efficacy. Yet, low response rates limit the benefits of immunotherapy to a minority of patients. Recent studies have explored the importance of PD-L1 as a transmembrane protein in exosomes and have revealed exosomal PD-L1 as a mechanism of tumor immune escape and immunotherapy resistance. Exosomal PD-L1 suppresses T cell effector function, induces systemic immunosuppression, and transfers functional PD-L1 across the tumor microenvironment (TME). Because of its significant contribution to immune escape, exosomal PD-L1 has been proposed as a biomarker to predict immunotherapy response and to assess therapeutic efficacy. In this review, we summarize the immunological mechanisms of exosomal PD-L1, focusing on the factors that lead to exosome biogenesis and release. Next, we review the effect of exosomal PD-L1 on T cell function and its role across the TME. In addition, we discuss the latest findings on the use of exosomal PD-L1 as a biomarker for cancer immunotherapy. Throughout this review, we propose exosomal PD-L1 as a critical mediator of tumor progression and highlight the clinical implications that follow for immuno-oncology, discussing the potential to target exosomes to advance cancer treatment.
Collapse
|
38
|
Survival Benefit of Hepatic Arterial Infusion Chemotherapy over Sorafenib in the Treatment of Locally Progressed Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13040646. [PMID: 33562793 PMCID: PMC7915251 DOI: 10.3390/cancers13040646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKROUND Not all patients with hepatocellular carcinoma (HCC) benefit from treatment with molecular targeted agents such as sorafenib. We investigated whether New-FP (fine-powder cisplatin and 5-fluorouracil), a hepatic arterial infusion chemotherapy regimen, is more favorable than sorafenib as an initial treatment for locally progressed HCC. METHODS To avoid selection bias, we corrected the data from different facilities that did or did not perform New-FP therapy. In total, 1709 consecutive patients with HCC initially treated with New-FP or sorafenib; 1624 (New-FP, n = 644; sorafenib n = 980) were assessed. After propensity score matching (PSM), overall survival (OS) and prognostic factors were assessed (n = 344 each). Additionally, the patients were categorized into four groups: cohort-1 [(without macrovascular invasion (MVI) and extrahepatic spread (EHS)], cohort-2 (with MVI), cohort-3 (with EHS), and cohort-4 (with MVI and EHS) to clarify the efficacy of each treatment. RESULTS New-FP prolonged OS than sorafenib after PSM (New-FP, 12 months; sorafenib, 7.9 months; p < 0.001). Sorafenib treatment, and severe MVI and EHS were poor prognostic factors. In the subgroup analyses, the OS was significantly longer the New-FP group in cohort-2. CONCLUSIONS Local treatment using New-FP is a potentially superior initial treatment compared with sorafenib as a multidisciplinary treatment in locally progressed HCC without EHS.
Collapse
|
39
|
Dwipayana IDAP, Sutarini IDAAD. Covid-19 Vaccination Options for Immunosuppressed Cancer Patients. JURNAL BERKALA EPIDEMIOLOGI 2021. [DOI: 10.20473/jbe.v9i12021.1-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Currently, many COVID-19 vaccine candidates are being developed to end the pandemic; however, immunosuppressed cancer patients have been excluded from the participating criteria. It is important that they are able to examine their options for achieving immunity against COVID-19. Purpose: This review aims to discuss the available options that can be taken to vaccinate immunosuppressed cancer patients when no vaccine is being developed for their safety. Method: A literature study was conducted using Google Scholar, DOAJ, and GARUDA Library on November 2, 2020, focusing on articles examining vaccination guidelines for immunosuppressed cancer patients. Results: The search found 200 articles, which were curated to obtain 13 articles that satisfied all inclusion criteria. These consist of four guidelines, five reviews, and four research articles. Based on the literature, immunosuppressed cancer patients have the option to use the vaccines currently under development, with precautions set for live attenuated and potentially infectious vaccines. Vaccination timing also needs to be adjusted so as to fall at a certain time before or after the immunosuppressive condition. Moreover, a more complete COVID-19 immunity can be achieved through a synergy between individual vaccination and the construction of herd immunity. Conclusion: Most of the vaccines currently under development may be safe for cancer patients, being mindful of several considerations. Here, herd immunity can serve as a complement to individual immunity.
Collapse
|
40
|
Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J 2020; 288:10-35. [PMID: 32910536 DOI: 10.1111/febs.15558] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are nanosized extracellular vesicles of endosomal origin that enclose a multitude of functional biomolecules. Exosomes have emerged as key players of intercellular communication in physiological and pathological conditions. In cancer, depending on the context, exosomes can oppose or potentiate the development of an aggressive tumor microenvironment, thereby impacting tumor progression and clinical outcome. Increasing evidence has established exosomes as important mediators of immune regulation in cancer, as they deliver a plethora of signals that can either support or restrain immunosuppression of lymphoid and myeloid cell populations in tumors. Here, we review the current knowledge related to exosome-mediated regulation of lymphoid (T lymphocytes, B lymphocytes, and NK cells) and myeloid (macrophages, dendritic cells, monocytes, myeloid-derived suppressor cells, and neutrophils) cell populations in cancer. We also discuss the translational potential of engineered exosomes as immunomodulatory agents for cancer therapy.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|