1
|
Qadir A, Singh N, Moe AAK, Cahoon G, Lye J, Chao M, Foroudi F, Uribe S. Potential of MRI in Assessing Treatment Response After Neoadjuvant Radiation Therapy Treatment in Breast Cancer Patients: A Scoping Review. Clin Breast Cancer 2025; 25:e1-e9.e2. [PMID: 38906720 DOI: 10.1016/j.clbc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
The objective of this scoping review is to evaluate the potential of Magnetic Resonance Imaging (MRI) and to determine which of the available MRI techniques reported in the literature are the most promising for assessing treatment response in breast cancer patients following neoadjuvant radiotherapy (NRT). Ovid Medline, Embase, CINAHL, and Cochrane databases were searched to identify relevant studies published from inception until March 13, 2023. After primary selection, 2 reviewers evaluated each study using a standardized data extraction template, guided by set inclusion and exclusion criteria. A total of 5 eligible studies were selected. The positive and negative predictive values for MRI predicting pathological complete response across the studies were 67% to 88% and 76% to 85%, respectively. MRI's potential in assessing postradiotherapy tumor sizes was greater for volume measurements than uni-dimensional longest diameter measurements; however, overestimation in surgical tumor sizes was observed. Apparent diffusion coefficient (ADC) values and Time to Enhance (TTE) was seen to increase post-NRT, with a notable difference between responders and nonresponders at 6 months, indicating a potential role in assessing treatment response. In conclusion, this review highlights tumor volume measurements, ADC, and TTE as promising MRI metrics for assessing treatment response post-NRT in breast cancer. However, further research with larger cohorts is needed to confirm their utility. If MRI can accurately identify responders from nonresponders to NRT, it could enable a more personalized and tailored treatment approach, potentially minimizing radiation therapy related toxicity and enhancing cosmetic outcomes.
Collapse
Affiliation(s)
- Ayyaz Qadir
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Aung Aung Kywe Moe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Glenn Cahoon
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Jessica Lye
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Michael Chao
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Farshad Foroudi
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Kim K, Jung KO, Oh S, Kim YH, Lee SY, Hong S, Cho SH, Kim H, Rhee S, Cheon GJ, Kang KW, Chung JK, Youn H. Radiation-induced exosomal miR-21 enhances tumor proliferation and invasiveness in breast cancer: implications for poor prognosis in radiotherapy patients. Exp Hematol Oncol 2024; 13:120. [PMID: 39695874 DOI: 10.1186/s40164-024-00585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Radiotherapy is widely used as an effective non-surgical strategy to control malignant tumors. However, recurrence is one of common causes of treatment failure even after the effective radiotherapy. In this study, we focused on the effects of radiation-induced exosomal miR-21 on the tumor microenvironment to investigate the causes of recurrence. Analysis of the TCGA database revealed that breast cancer patients with high levels of miR-21 have significantly reduced overall survival when treated with radiotherapy compared to those who did not receive radiotherapy, indicating a high hazard ratio for miR-21 in patients undergoing this treatment. Additionally, exosomal miR-21 is found to be highly expressed in the serum of breast adenocarcinoma patients. To explore how miR-21 induces poor prognosis in irradiated breast cancer, we irradiated 4T1 cell line with low or high doses of radiation, and examined the impact of secreted exosomal miR-21 on breast cancer cell and tumor microenvironment. After 10 Gy irradiation, 4T1 cells secreted 2.20 ± 0.10 times more exosomes and exhibited a 1.85 ± 0.01-fold increase in exosomal miR-21 levels. Treatment with exosomes from 10 Gy-irradiated cancer cells led to enhanced tumor cell proliferation, wound healing, and migration. The survival rate of 10 Gy-irradiated tumor cells incubated with 10 Gy-derived exosomes increased by 2.83-fold. Moreover, the growth of subcutaneous tumors treated with 10 Gy exosomes (n = 13) was significantly faster compared to tumors treated with 0 Gy exosomes (n = 10, P < 0.05). In summary, our study revealed high-dose irradiation-induced exosomes were found to enhance tumor proliferation and invasiveness via the transfer of exosomal miR-21. Based on these findings, we suggest that radiation-induced exosomal miR-21 may contribute to a poorer prognosis of breast cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Sera Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Hwa Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Su Han Cho
- Department of Biology, Kyung Hee University, Seoul, Korea
- K-BioX, Palo Alto, CA, USA
| | - Hyejin Kim
- Woodang Network, Kangwondaehak-gil, Gangwon-do, Korea
- K-BioX, Palo Alto, CA, USA
| | - Siyeon Rhee
- K-BioX, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Imaging Center, Seoul National University Hospital, #207-4, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea.
| |
Collapse
|
3
|
Zhang H, Mu R. Refining heart disease prediction accuracy using hybrid machine learning techniques with novel metaheuristic algorithms. Int J Cardiol 2024; 416:132506. [PMID: 39218253 DOI: 10.1016/j.ijcard.2024.132506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Early diagnosis of heart disease is crucial, as it's one of the leading causes of death globally. Machine learning algorithms can be a powerful tool in achieving this goal. Therefore, this article aims to increase the accuracy of predicting heart disease using machine learning algorithms. Five classification models are explored: eXtreme Gradient Boosting (XGBC), Random Forest Classifier (RFC), Decision Tree Classifier (DTC), K-Nearest Neighbors Classifier (KNNC), and Logistic Regression Classifier (LRC). Additionally, four optimizers are evaluated: Slime mold Optimization Algorithm, Forest Optimization Algorithm, Pathfinder algorithm, and Giant Armadillo Optimization. To ensure robust model selection, a feature selection technique utilizing k-fold cross-validation is employed. This method identifies the most relevant features from the data, potentially improving model performance. The top three performing models are then coupled with the optimization algorithms to potentially enhance their generalizability and accuracy in predicting heart failure. In the final stage, the shortlisted models (XGBC, RFC, and DTC) were assessed using performance metrics like accuracy, precision, recall, F1-score, and Matthews Correlation Coefficient (MCC). This rigorous evaluation identified the XGGA hybrid model as the top performer, demonstrating its effectiveness in predicting heart failure. XGGA achieved impressive metrics, with an accuracy, precision, recall, and F1-score of 0.972 in the training phase, underscoring its robustness. Notably, the model's predictions deviated by less than 5.5 % for patients classified as alive and by less than 1.2 % for those classified as deceased compared to the actual outcomes, reflecting minimal error and high predictive reliability. In contrast, the DTC base model was the least effective, with an accuracy of 0.840 and a precision of 0.847. Overall, the optimization using the GAO algorithm significantly enhanced the performance of the models, highlighting the benefits of this approach.
Collapse
Affiliation(s)
- Haifeng Zhang
- The first people's Hospital of Baiyin, Baiyin, Gansu 730900, China
| | - Rui Mu
- The second people's Hospital of Baiyin, Baiyin, Gansu 730900, China.
| |
Collapse
|
4
|
Kemin L, Rutie Y. A critical review of the progress in prevention and treatment of radiation-induced skin damage. Front Oncol 2024; 14:1395778. [PMID: 39664182 PMCID: PMC11631922 DOI: 10.3389/fonc.2024.1395778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Radiation therapy was initially used in dermatology to treat various skin diseases, including acne vulgaris, keloids, plantar warts, tinea capitis and hirsutism. Although it is no longer used in the treatment of many of these diseases, radiation therapy still plays a crucial role in the treatment of keloids, skin cancer and solid organ malignancies. In the past 20 years, the widespread use of intensity-modulated radiation therapy has significantly increased in the management of tumor growth in multiple cancer sites and reduced the incidence of complications in normal organs. However, the occurrence and severity of radiation-induced organ complications still significantly affects the quality of life of patients and remains a research hotspot. Skin tissue is the largest area in the human body, serving as both a barrier and a defender. In patients undergoing radiation therapy, skin is often the first tissue that gets damaged. Especially, when the tumor involves the skin or is close to the skin (i.e., skin cancer, head and neck cancer, breast cancer, vulvar cancer), the treatment targets the superficial tissues, and may have inherent adverse effects on the skin. With the increasing incidence of cancer and the widespread use of radiation therapy in cancer treatment, the radiation-induced skin damage has become a serious problem. In this pursuit, the present study provides a review of the progress in the prevention and treatment of radiation-induced skin damage, thereby providing a reference for the prevention and treatment of radiation-induced skin damage.
Collapse
Affiliation(s)
- Li Kemin
- The Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yin Rutie
- The Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Qadir A, Singh N, Dean J, Brown K, Tacey M, Mann B, Kron T, Cahoon G, Lau E, Scott AM, Yeo B, Loh SW, Uribe S, Moe AAK, Ireland-Jenkins K, McAuley R, McDermont L, Ooi WM, Ng S, Chao M, Foroudi F. Magnetic resonance imaging-guided single-fraction preoperative radiotherapy for early-stage breast cancer (the RICE trial): feasibility study. Pilot Feasibility Stud 2024; 10:133. [PMID: 39506820 PMCID: PMC11542258 DOI: 10.1186/s40814-024-01557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Over the past decade, the adoption of screening programs, digital mammography, and magnetic resonance imaging (MRI) has increased early-stage breast cancer diagnosis rates. Mortality rates have decreased due to early detection and improved treatments, including personalized therapies. Accelerated partial-breast irradiation (APBI) is emerging as a convenient and effective treatment for some patients, with studies exploring its preoperative use. Preoperative APBI, especially with MRI guidance, offers improved tumor targeting and potentially reduced side effects. Magnetic Resonance Imaging-Guided Single-Fraction Pre-Operative Radiotherapy for Early-Stage Breast Cancer (RICE trial) aims to assess the feasibility and efficacy of MRI-guided single-dose radiotherapy (RT) for early-stage breast cancer. METHODS The RICE study is a prospective, single-arm study evaluating single-fraction preoperative, APBI treatment for patients with early-stage breast cancer using a magnetic resonance imaging linear accelerator (MRI linac). Eligible patients enrolled in this study will have a core biopsy to confirm estrogen receptor-positive and HER2-negative sub-type. RT planning will use a planning computed tomography (CT) co-registered with a MRI with the patient in either the supine or prone position. For the diagnostic workup, [18F] fluorodeoxyglucose positron emission tomography/CT ([18F] FDG PET/CT) and [18F] fluoroestradiol positron emission tomography/CT ([18F] FES PET/CT) will be performed prior to treatment. Thirty patients will receive a single ablative RT dose of 21 Gray to the tumor. Pre-treatment and post-treatment MRI scans will be acquired at baseline and 5 weeks post-RT respectively. Breast-conserving surgery will be scheduled for 6 weeks after APBI treatment using the MRI linac. The primary study endpoint is the successful administration of a single fraction of preoperative breast RT under the guidance of an MRI linac. Secondary endpoints include evaluating the utility of MRI, [18F] FDG PET/CT, and [18F] FES PET/CT as a non-invasive method for assessing treatment response in patients undergoing single-fraction preoperative APBI. CONCLUSION The RICE trial represents a significant step in breast cancer treatment, offering insights that could lead to treatment protocols with minimized RT appointments and enhanced patient outcomes. TRIAL REGISTRATION This trial is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR). Registered 31st of May 2021. REGISTRATION NUMBER ACTRN12621000659808 .
Collapse
Affiliation(s)
- Ayyaz Qadir
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Jenna Dean
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Kerryn Brown
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Mark Tacey
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Bruce Mann
- Royal Women's Hospital, Parkville, VIC, Australia
- Melbourne University, Parkville, VIC, Australia
| | - Tomas Kron
- Melbourne University, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Glenn Cahoon
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Eddie Lau
- Melbourne University, Parkville, VIC, Australia
- Austin Health, Heidelberg, VIC, Australia
- Department of Molecular Imaging, Austin Health and University of Melbourne, Victoria, Australia
| | - Andrew M Scott
- School of Cancer Medicine, Olivia Newton John Cancer Research Instituteand, Latrobe University , Melbourne, VIC, Australia
- Department of Molecular Imaging, Austin Health and University of Melbourne, Victoria, Australia
| | - Belinda Yeo
- School of Cancer Medicine, Olivia Newton John Cancer Research Instituteand, Latrobe University , Melbourne, VIC, Australia
- Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Su-Wen Loh
- Breast Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Aung Aung Kywe Moe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Kerryn Ireland-Jenkins
- Melbourne University, Parkville, VIC, Australia
- Anatomical Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Rosly McAuley
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Leah McDermont
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Wei Ming Ooi
- Breast Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Suat Ng
- Breast Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Michael Chao
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia
| | - Farshad Foroudi
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.
- Department of Radiation Oncology, Newton-John Cancer Wellness and Research Centre, 145 Studley Road, PO Box 5555, Heidelberg , Austin HealthVictoria, Olivia, 3084, Australia.
- School of Cancer Medicine, Olivia Newton John Cancer Research Instituteand, Latrobe University , Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
7
|
Bahreyni Toosi MT, Azimian H, Salek R, Tabatabaei SA, Forghani MN, Dolat E. Evaluation of Relationship between Intrinsic Radiosensitivity (Survival Fraction at 2 Gy) and Gamma-H2AX Test and Apoptosis of Lymphocytes in Breast Cancer Patients. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:17. [PMID: 39100740 PMCID: PMC11296569 DOI: 10.4103/jmss.jmss_40_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
Background Radiotherapy is one of the routine treatment strategies for breast cancer (BC) patients. Different responses of the patient to radiation due to different intrinsic radiosensitivity (RS) were induced to the researcher try to introduce a standard assay for the prediction of RS. Clonogenic assay is recognized as a gold standard method in this subject but because of some of its disadvantages, it is needed for alternative assays. In this study, two assays were evaluated for this reason in ten BC patients with different RSs. Methods The peripheral blood of 10 volunteers with BC was obtained, and the peripheral blood mononuclear cells were extracted. After exposed with 2 Gy, survival fraction at 2 Gy (SF2) was calculated by clonogenic assay. γ-H2AX assay was performed for all patients, and apoptosis assay was evaluated for three represented categorized patients. Results RS of patients showed SF2 and categorized in three groups (high, medium, and low RS). Double-strand breaks (DSBs) were decreased in high radiosensitive patients, but the residual DSBs were clearly higher than other two groups. It is shown that the repair system in these patients is lower active than others. Apoptosis frequency in patient 4 is highly active which could induce the enhancement of her RS. Conclusion γ-H2AX and apoptosis assays could predict the intrinsic RS, but evaluation of them separately is not sufficient for this aim. It is necessary to consider all the parameters together and consideration of the combination of assays could fit a better prediction of intrinsic RS.
Collapse
Affiliation(s)
| | - Hossein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roham Salek
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Yang Q, Zhou X, Fang J, Lin A, Zhang H, Cheng Q, Liu Z, Luo P, Zhang J. Development and validation of a radiosensitivity model to evaluate radiotherapy benefits in pan-cancer. Cancer Sci 2024; 115:1820-1833. [PMID: 38571294 PMCID: PMC11145160 DOI: 10.1111/cas.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Radiotherapy, one of the most fundamental cancer treatments, is confronted with the dilemma of treatment failure due to radioresistance. To predict the radiosensitivity and improve tumor treatment efficiency in pan-cancer, we developed a model called Radiation Intrinsic Sensitivity Evaluation (RISE). The RISE model was built using cell line-based mRNA sequencing data from five tumor types with varying radiation sensitivity. Through four cell-derived datasets, two public tissue-derived cohorts, and one local cohort of 42 nasopharyngeal carcinoma patients, we demonstrated that RISE could effectively predict the level of radiation sensitivity (area under the ROC curve [AUC] from 0.666 to 1 across different datasets). After the verification by the colony formation assay and flow cytometric analysis of apoptosis, our four well-established radioresistant cell models successfully proved higher RISE values in radioresistant cells by RT-qPCR experiments. We also explored the prognostic value of RISE in five independent TCGA cohorts consisting of 1137 patients who received radiation therapy and found that RISE was an independent adverse prognostic factor (pooled multivariate Cox regression hazard ratio [HR]: 1.84, 95% CI 1.39-2.42; p < 0.01). RISE showed a promising ability to evaluate the radiotherapy benefit while predicting the prognosis of cancer patients, enabling clinicians to make individualized radiotherapy strategies in the future and improve the success rate of radiotherapy.
Collapse
Affiliation(s)
- Qi Yang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xinyi Zhou
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianbo Fang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Anqi Lin
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongman Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Hassan F, Wang JH, O'Leary DP, Corrigan M, Redmond HP. Association of preoperative and postoperative circulating tumour DNA (ctDNA) with PIK3CA gene mutation with risk of recurrence in patients with non-metastatic breast cancer. Surg Oncol 2024; 54:102060. [PMID: 38603927 DOI: 10.1016/j.suronc.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Circulating tumour DNA (ctDNA), contains tumour-specific gene mutation in blood circulation and could aid in postoperative risk stratification of non-metastatic breast cancer. In this study, we investigated the feasibility of detecting PIK3CA gene mutations in ctDNA in the preoperative (preop) and postoperative period (postop), and its prognostic significance in patients with breast cancer. METHODS A cohort of patients with breast cancer undergoing curative surgery with available blood samples preoperatively and postoperatively (Post op) at either Post op time period; week 1-2, week 3-4 or weeks 5-12 were enrolled. PIK3CA gene mutations at exons 9 and 20 were detected in ctDNA with High resolution melting (HRM) PCR and Allele specific fluorescence probe-based PCR. RESULTS A total of 62 patients (age, median (IQR), 51.50 (45.0-65.0) years), with a median follow-up of 90 months (interquartile range (IQR),60-120 months) were enrolled. In total, 25 (40.3%) and 22 (35%) patients with breast cancer had detectable PIK3CA gene mutations in ctDNA in preoperative and postoperative period, respectively. PIK3CA gene mutations in ctDNA in postoperative period (hazard ratio (H.R: 18.05, p = 0.001) were a negative prognostic factor for recurrencefree survival (RFS) and overall survival (OS) (H.R: 11.9, p = 0.01) in patients with breast cancer. Subgroup analysis of ctDNA indicate that positive ctDNA in both preoperative/postoperative period and post op period only were found to have prognostic effect on RFS and OS (RFS; p < 0.0001, O·S; p = 0.0007). Moreover, ctDNA-based detection preceded clinical detection of recurrence in patients with an average lead time of 12 months (IQR:20-28.5 months) across all the breast cancer subtypes. CONCLUSION We highlighted the prognostic ability of ctDNA in patients with breast cancer in perioperative period. However, future prospective studies are needed to assess the utility of ctDNA in clinical practice.
Collapse
Affiliation(s)
- Fara Hassan
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland; SURGUVANT Research Lab, University College Cork, Cork, Ireland.
| | - Jiang Huai Wang
- SURGUVANT Research Lab, University College Cork, Cork, Ireland
| | | | - Mark Corrigan
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland; SURGUVANT Research Lab, University College Cork, Cork, Ireland; Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry Paul Redmond
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland; SURGUVANT Research Lab, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Bahrin NWS, Matusin SNI, Mustapa A, Huat LZ, Perera S, Hamid MRWHA. Exploring the effectiveness of molecular subtypes, biomarkers, and genetic variations as first-line treatment predictors in Asian breast cancer patients: a systematic review and meta-analysis. Syst Rev 2024; 13:100. [PMID: 38576013 PMCID: PMC10993489 DOI: 10.1186/s13643-024-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021246295.
Collapse
Affiliation(s)
- Nurul Wafiqah Saipol Bahrin
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Siti Nur Idayu Matusin
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Aklimah Mustapa
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Lu Zen Huat
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Sriyani Perera
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mas Rina Wati Haji Abdul Hamid
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| |
Collapse
|
11
|
Wang L, Hu Z, Chen C, Chen T, Yao Z, Li W, Yang Z. Low-dose aspirin can inhibit exosomal release induced by radiotherapy in breast cancer and attenuate its inhibitory effect on NK cell proliferation. Cancer Med 2023; 12:16386-16404. [PMID: 37392173 PMCID: PMC10469664 DOI: 10.1002/cam4.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.
Collapse
Affiliation(s)
- Li Wang
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zaoxiu Hu
- Department of PathologyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunmingChina
| | - Ting Chen
- Department of Nuclear MedicineThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Wenhui Li
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| |
Collapse
|
12
|
Pham TD, Ravi V, Luo B, Fan C, Sun XF. Artificial intelligence fusion for predicting survival of rectal cancer patients using immunohistochemical expression of Ras homolog family member B in biopsy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1-16. [PMID: 36937315 PMCID: PMC10017185 DOI: 10.37349/etat.2023.00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/31/2022] [Indexed: 02/10/2023] Open
Abstract
Aim The process of biomarker discovery is being accelerated with the application of artificial intelligence (AI), including machine learning. Biomarkers of diseases are useful because they are indicators of pathogenesis or measures of responses to therapeutic treatments, and therefore, play a key role in new drug development. Proteins are among the candidates for biomarkers of rectal cancer, which need to be explored using state-of-the-art AI to be utilized for prediction, prognosis, and therapeutic treatment. This paper aims to investigate the predictive power of Ras homolog family member B (RhoB) protein in rectal cancer. Methods This study introduces the integration of pretrained convolutional neural networks and support vector machines (SVMs) for classifying biopsy samples of immunohistochemical expression of protein RhoB in rectal-cancer patients to validate its biologic measure in biopsy. Features of the immunohistochemical expression images were extracted by the pretrained networks and used for binary classification by the SVMs into two groups of less and more than 5-year survival rates. Results The fusion of neural search architecture network (NASNet)-Large for deep-layer feature extraction and classifier using SVMs provided the best average classification performance with a total accuracy = 85%, prediction of survival rate of more than 5 years = 90%, and prediction of survival rate of less than 5 years = 75%. Conclusions The finding obtained from the use of AI reported in this study suggest that RhoB expression on rectal-cancer biopsy can be potentially used as a biomarker for predicting survival outcomes in rectal-cancer patients, which can be informative for clinical decision making if the patient would be recommended for preoperative therapy.
Collapse
Affiliation(s)
- Tuan D. Pham
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
| | - Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
| | - Bin Luo
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, Chengdu 610032, Sichuan, China
| | - Chuanwen Fan
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
13
|
Sigurdson S, Thibodeau S, Korzeniowski M, Moraes FY. A Precise Approach for Radiotherapy of Breast Cancer. Cancer Treat Res 2023; 188:175-198. [PMID: 38175346 DOI: 10.1007/978-3-031-33602-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Radiotherapy is an integral part of the multidisciplinary management of breast cancer (BC). There have been multiple recent advances in the delivery of radiotherapy, reviewed with a critical discussion of the evidence from trials investigating adjuvant ultra-hypofractionation and partial breast irradiation for early-stage BC, and the locoregional management of lymph nodes in locally advanced BC. Multiple precision medicine-based approaches have been developed as prognostic and/or predictive for BC patients and identifying biomarkers of radioresistance could help identify patients that may benefit from dose-escalated radiotherapy or radiosensitizers. Radiotherapy after breast reconstruction is an area of current controversy in the field, and we evaluated the decision-making considerations in this situation. The oligometastatic state is an emerging field for many cancer sites based on recent trials investigating ablative radiotherapy for oligometastatic BC. This chapter is an overview of radiotherapy for BC, with a focus on recent advances in early-stage, locally advanced, and oligometastatic disease.
Collapse
Affiliation(s)
- Samantha Sigurdson
- Department of Oncology - Division of Radiation Oncology, Kingston Health Sciences Centre and Queen's University, Kingston, Canada
| | - Stephane Thibodeau
- Department of Oncology - Division of Radiation Oncology, Kingston Health Sciences Centre and Queen's University, Kingston, Canada
| | - Martin Korzeniowski
- Department of Oncology - Division of Radiation Oncology, Kingston Health Sciences Centre and Queen's University, Kingston, Canada
| | - Fabio Ynoe Moraes
- Department of Oncology - Division of Radiation Oncology, Kingston Health Sciences Centre and Queen's University, Kingston, Canada.
| |
Collapse
|
14
|
Polygenic risk score for prediction of radiotherapy efficacy and radiosensitivity in patients with non-metastatic breast cancer. RADIATION MEDICINE AND PROTECTION 2023. [DOI: 10.1016/j.radmp.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Wardana T, Chasanah SN, Oktriani R, Herawati C, Anwar SL, Astuti I, Mubarika Haryana S. Circulation microRNA expression profiles in patients with complete responses to chemoradiotherapy in nasopharyngeal carcinoma. Noncoding RNA Res 2022; 7:233-241. [PMID: 36203524 PMCID: PMC9519485 DOI: 10.1016/j.ncrna.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Aims Methods Results Conclusion
Collapse
Affiliation(s)
- Tirta Wardana
- Department of Biomedicine, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Central Java, Indonesia
- Corresponding author.
| | - Siti Nur Chasanah
- Graduate Student, Biomedical Science, Faculty of Medicine, Nursing, and Public Health, Gadjah Mada University, Yogyakarta, Indonesia
| | - Risky Oktriani
- Department of Biochemistry, Faculty of Medicine, Nursing, and Public Health, Gadjah Mada University, Yogyakarta, Indonesia
| | - Cita Herawati
- Department of THT, Dharmais Hospital National Cancer Center, West Jakarta, Indonesia
| | - Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Nursing, and Public Health, Gadjah Mada University, Yogyakarta, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology and Therapy, Faculty of Medicine, Nursing, and Public Health, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Nursing, and Public Health, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
16
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Rodrigues-Ferreira S, Nahmias C. Predictive biomarkers for personalized medicine in breast cancer. Cancer Lett 2022; 545:215828. [PMID: 35853538 DOI: 10.1016/j.canlet.2022.215828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is one of the most frequent malignancies among women worldwide. Based on clinical and molecular features of breast tumors, patients are treated with chemotherapy, hormonal therapy and/or radiotherapy and more recently with immunotherapy or targeted therapy. These different therapeutic options have markedly improved patient outcomes. However, further improvement is needed to fight against resistance to treatment. In the rapidly growing area of research for personalized medicine, predictive biomarkers - which predict patient response to therapy - are essential tools to select the patients who are most likely to benefit from the treatment, with the aim to give the right therapy to the right patient and avoid unnecessary overtreatment. The search for predictive biomarkers is an active field of research that includes genomic, proteomic and/or machine learning approaches. In this review, we describe current strategies and innovative tools to identify, evaluate and validate new biomarkers. We also summarize current predictive biomarkers in breast cancer and discuss companion biomarkers of targeted therapy in the context of precision medicine.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005, Paris, France
| | - Clara Nahmias
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
18
|
An Eleven-microRNA Signature Related to Tumor-Associated Macrophages Predicts Prognosis of Breast Cancer. Int J Mol Sci 2022; 23:ijms23136994. [PMID: 35805995 PMCID: PMC9266835 DOI: 10.3390/ijms23136994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72−0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.
Collapse
|
19
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
20
|
The Legend of ATP: From Origin of Life to Precision Medicine. Metabolites 2022; 12:metabo12050461. [PMID: 35629965 PMCID: PMC9148104 DOI: 10.3390/metabo12050461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Adenosine triphosphate (ATP) may be the most important biological small molecule. Since it was discovered in 1929, ATP has been regarded as life’s energy reservoir. However, this compound means more to life. Its legend starts at the dawn of life and lasts to this day. ATP must be the basic component of ancient ribozymes and may facilitate the origin of structured proteins. In the existing organisms, ATP continues to construct ribonucleic acid (RNA) and work as a protein cofactor. ATP also functions as a biological hydrotrope, which may keep macromolecules soluble in the primitive environment and can regulate phase separation in modern cells. These functions are involved in the pathogenesis of aging-related diseases and breast cancer, providing clues to discovering anti-aging agents and precision medicine tactics for breast cancer.
Collapse
|
21
|
Khan MZI, Tam MSY, Azam Z, Law HKW. Proteomic profiling of metabolic proteins as potential biomarkers of radioresponsiveness for colorectal cancer. J Proteomics 2022; 262:104600. [DOI: 10.1016/j.jprot.2022.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 12/24/2022]
|
22
|
Berger T, Noble DJ, Shelley LE, Hopkins KI, McLaren DB, Burnet NG, Nailon WH. Response to letter to the editor of radiotherapy and oncology regarding the paper entitled “50 years of radiotherapy research: Evolution, trends and lessons for the future“ by Berger et al. (December 2021, Volume 165). Radiother Oncol 2022; 172:151-152. [DOI: 10.1016/j.radonc.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
23
|
de Aguiar BRL, Ferreira EB, Normando AGC, Guerra ENS, Assad DX, Mazzeu JF, dos Reis PED. Single nucleotide polymorphisms to predict acute radiation dermatitis in breast cancer patients: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 173:103651. [DOI: 10.1016/j.critrevonc.2022.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
|
24
|
Shen J, Yan D, Bai L, Geng R, Zhao X, Li H, Dong Y, Cao J, Tang Z, Liu SB. An 11-Gene Signature Based on Treatment Responsiveness Predicts Radiation Therapy Survival Benefit Among Breast Cancer Patients. Front Oncol 2022; 11:816053. [PMID: 35071020 PMCID: PMC8770413 DOI: 10.3389/fonc.2021.816053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose We developed a strategy of building prognosis gene signature based on clinical treatment responsiveness to predict radiotherapy survival benefit in breast cancer patients. Methods and Materials Analyzed data came from the public database. PFS was used as an indicator of clinical treatment responsiveness. WGCNA was used to identify the most relevant modules to radiotherapy response. Based on the module genes, Cox regression model was used to build survival prognosis signature to distinguish the benefit group of radiotherapy. An external validation was also performed. Results In the developed dataset, MEbrown module with 534 genes was identified by WGCNA, which was most correlated to the radiotherapy response of patients. A number of 11 hub genes were selected to build the survival prognosis signature. Patients that were divided into radio-sensitivity group and radio-resistant group based on the signature risk score had varied survival benefit. In developed dataset, the 3-, 5-, and 10-year AUC of the signature were 0.814 (CI95%: 0.742–0.905), 0.781 (CI95%: 0.682–0.880), and 0.762 (CI95%: 0.626–0.897), respectively. In validation dataset, the 3- and 5-year AUC of the signature were 0.706 (CI95%: 0.523–0.889) and 0.743 (CI95%: 0.595–0.891). The signature had higher predictive power than clinical factors alone and had more clinical prognosis efficiency. Functional enrichment analysis revealed that the identified genes were mainly enriched in immune-related processes. Further immune estimated analysis showed the difference in distribution of immune micro-environment between radio-sensitivity group and radio-resistant group. Conclusions The 11-gene signature may reflect differences in tumor immune micro-environment that underlie the differential response to radiation therapy and could guide clinical-decision making related to radiation in breast cancer patients.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Derui Yan
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Lu Bai
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ruirui Geng
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xulun Zhao
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yongfei Dong
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
25
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Shafaee MN, Makawita S, Lim B, Ellis MJ, Ducan DL, Ludwig MS, Duncan DL. Concurrent Chemo-radiation As a Means of Achieving Pathologic Complete Response in Triple Negative Breast Cancer. Clin Breast Cancer 2021; 22:e536-e543. [DOI: 10.1016/j.clbc.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
|
27
|
Shen J, Liu J, Li H, Bai L, Du Z, Geng R, Cao J, Sun P, Tang Z. Explore association of genes in PDL1/PD1 pathway to radiotherapy survival benefit based on interaction model strategy. Radiat Oncol 2021; 16:223. [PMID: 34794456 PMCID: PMC8600865 DOI: 10.1186/s13014-021-01951-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/08/2021] [Indexed: 02/25/2023] Open
Abstract
Purpose To explore the association of genes in “PD-L1 expression and PD-1 check point pathway in cancer” to radiotherapy survival benefit. Methods and materials Gene expression data and clinical information of cancers were downloaded from TCGA. Radiotherapy survival benefit was defined based on interaction model. Fast backward multivariate Cox regression was performed using stacking multiple interpolation data to identify radio-sensitive (RS) genes. Results Among the 73 genes in PD-L1/PD-1 pathway, we identified 24 RS genes in BRCA data set, 25 RS genes in STAD data set and 20 RS genes in HNSC data set, with some crossover genes. Theoretically, there are two types of RS genes. The expression level of Type I RS genes did not affect patients' overall survival (OS), but when receiving radiotherapy, patients with different expression level of Type I RS genes had varied survival benefit. Oppositely, Type II RS genes affected patients' OS. And when receiving radiotherapy, those with lower OS could benefit a lot. Type II RS genes in BRCA had strong positive correlation and closely biological interactions. When performing cluster analysis using these related Type II RS genes, patients could be divided into RS group and non-RS group in BRCA and METABRIC data sets. Conclusions Our study explored potential radio-sensitive biomarkers of several main cancer types in an important tumor immune checkpoint pathway and revealed a strong association between this pathway and radiotherapy survival benefit. New types of RS genes could be identified based on expanded definition to RS genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01951-x.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Jingfang Liu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Lu Bai
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Zixuan Du
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Ruirui Geng
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215006, China
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
da Cunha IW, de Almeida Coudry R, de Macedo MP, de Assis EACP, Stefani S, Soares FA. A call to action: molecular pathology in Brazil. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-021-00096-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Adoption of molecular pathology in Brazil is currently very limited. Of note, there are no programs for training new molecular pathologists in the country; thus, documents compiling nationally applicable information on molecular pathology are few.
Methods
A selected panel of Brazilian experts in fields related to molecular pathology were provided with a series of relevant questions to address prior to the multi-day conference. Within this conference, each narrative was discussed and edited by the entire group, through numerous drafts and rounds of discussion until a consensus was achieved.
Results
The panel proposes specific and realistic recommendations for implementing molecular pathology in cancer care in Brazil. In creating these recommendations, the authors strived to address all barriers to the widespread use and impediments to access mentioned previously within this manuscript.
Conclusion
This manuscript provides a review of molecular pathology principles as well as the current state of molecular pathology in Brazil. Additionally, the panel proposes practical and actionable recommendations for the implementation of molecular pathology throughout the country in order to increase awareness of the importance molecular pathology in Brazil.
Collapse
|
29
|
Mohankumar MN. Biomarkers for translational oncology - Peggy Olive's contribution. Int J Radiat Biol 2021; 98:303-307. [PMID: 34473601 DOI: 10.1080/09553002.2021.1976865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Peggy Olive of the BC cancer research center (BCCRC), Vancouver, Canada, dedicated her career to improving the efficiency of radiation in the treatment of cancer. Keenly interested in the study of hypoxic cell radiosensitizers, she recognized the importance of DNA repair in improving the efficacy of radiotherapy. At the BCCRC she developed two methods for clinical practice that detect and quantitate DNA damage in mammalian cells. The alkaline comet assay and phosphorylated gamma histone H2AX (γH2AX) protein foci staining were two sensitive and attractive techniques that she attempted to apply in clinical practice. CONCLUSION Peggy Olive was able to establish the comet and the γH2AX assays as prospective predictive biomarkers in the application of personalized radiation treatment and improved cancer treatment outcomes. Nevertheless, several studies with a large number of samples are required before application of these biomarkers in routine radiotherapy could become a reality. The advent of 'omis' and microchip technologies envisage successful outcomes of future research in this direction.
Collapse
Affiliation(s)
- Mary N Mohankumar
- Department of Atomic Energy, Indira Gandhi Center for Atomic Research, Kalpakkam, India
| |
Collapse
|
30
|
Fan L, Li B, Li Z, Sun L. Identification of Autophagy Related circRNA-miRNA-mRNA-Subtypes Network With Radiotherapy Responses and Tumor Immune Microenvironment in Non-small Cell Lung Cancer. Front Genet 2021; 12:730003. [PMID: 34567080 PMCID: PMC8458766 DOI: 10.3389/fgene.2021.730003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer (LC) is one of the most frequently diagnosed cancers and the leading cause of cancer death worldwide, and most LCs are non-small cell lung cancer (NSCLC). Radiotherapy is one of the most effective treatments for patients with lung cancer, either alone or in combination with other treatment methods. However, radiotherapy responses vary considerably among NSCLC patients. The efficacy of radiotherapy is influenced by several factors, among which autophagy is of importance. Autophagy is induced by radiotherapy and also influences cell responses to radiation. We explored the clinical significance of autophagy-related genes (ARGs) and gene sets (ARGSs) and the underlying mechanism in NSCLC patients treated with radiotherapy. First, differentially expressed ARGs (SNCA, SESN3, DAPL1, and ELAPOR1) and miRNAs (miR-205-5p, miR-26a-1-3p, miR-6510-3p, miR-194-3p, miR-215-5p, and miR-375-3p) were identified between radiotherapy-resistant and radiotherapy-sensitive groups. An autophagy-related radiosensitivity risk signature (ARRS) by nine ARmRNAs/miRNAs and an autophagy-related overall survival risk signature (AROS) by three ARmRNAs were then constructed with estimated AUCs of 0.8854 (95% CI: 0.8131–0.9576) and 0.7901 (95% CI: 0.7168–0.8685), respectively. The correlations between ARGSs or prognostic signatures and clinicopathological factors, short-term radiotherapy responses (radiotherapy sensitivity), long-term radiotherapy responses (overall survival), and immune characteristics were analyzed. Both ARGSs and prognostic signatures were related to immune checkpoint inhibitors (ICIs), infiltration of tumor-infiltrating immune cells (TIICs), and the activity of the cancer immune cycle. Finally, after target prediction and correlation analysis, circRNA (hsa_circ_0019709, hsa_circ_0081983, hsa_circ_0112354, hsa_circ_0040569, hsa_circ_0135500, and hsa_circ_0098966)-regulated miRNA/ARmRNA axes (miR-194-3p/SESN3, miR-205-5p/ELAPOR1, and miR-26a-1-3p/SNCA) were considered potential modulatory mechanisms by influencing the regulation of autophagy, macroautophagy, and chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Liyuan Fan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baosheng Li
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhao Li
- Shandong Yidian Gene Technology Co., Ltd., Jinan, China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
31
|
Multiomics Differences in Lung Squamous Cell Carcinoma Patients with High Radiosensitivity Index Compared with Those with Low Radiosensitivity Index. DISEASE MARKERS 2021; 2021:3766659. [PMID: 34504628 PMCID: PMC8423540 DOI: 10.1155/2021/3766659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Objectives Radiosensitivity Index (RSI) can predict intrinsic radiotherapy sensitivity. We analyzed multiomics characteristics in lung squamous cell carcinoma between high and low RSI groups, which may help understand the underlying molecular mechanism of radiosensitivity and guide optional treatment for patients in the future. Methods The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data were used to download clinical data, mRNA, microRNA, and lncRNA expression. Differential analyses, including mRNA, miRNA, lncRNA, and G.O. and KEGG, and GSVA analyses, were performed with R. Gene set enrichment analysis was done by GSEA. miRNA-differentially expressed gene network and ceRNA network were analyzed and graphed by the Cytoscape software. Results In TCGA data, 542 patients were obtained, including 171 in the low RSI group (LRSI) and 371 in the high RSI group (HRSI). In RNAseq, 558 significantly differentially expressed genes (DEGs) were obtained. KRT6A was the most significantly upregulated gene and IDO1 was the most significantly downregulated gene. In miRNAseq, miR-1269a was the most significantly upregulated. In lncRNAseq, LINC01871 was the most upregulated. A 66-pair interaction between differentially expressed genes and miRNAs and an 11-pair interaction between differential lncRNAs and miRNAs consisted of a ceRNA network, of which miR-184 and miR-490-3p were located in the center. In the GEO data, there were 40 DEGs. A total of 17 genes were founded in both databases, such as ADAM23, AHNAK2, BST2, COL11A1, CXCL13, FBN2, IFI27, IFI44L, MAGEA6, and PTGR1. GSVA analysis revealed 31 significant pathways. GSEA found 87 gene sets enriched in HRSI and 91 gene sets in LRSI. G.O. and KEGG of RNA expression levels revealed that these genes were most enriched in T cell activation and cytokine-cytokine receptor interaction. Conclusions Patients with lung squamous cell carcinoma have different multiomics characteristics between two groups. These differences may have an essential significance with radiotherapy effect.
Collapse
|
32
|
A Novel Approach for the Discovery of Biomarkers of Radiotherapy Response in Breast Cancer. J Pers Med 2021; 11:jpm11080796. [PMID: 34442440 PMCID: PMC8399231 DOI: 10.3390/jpm11080796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy (RT) is an important treatment modality for the local control of breast cancer (BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells that either possess intrinsic radioresistance or develop resistance during treatment can reduce its efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers that can predict and/or monitor a tumour's response to radiation. Here we describe a novel method to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on conditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line (MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene expression experiments, using both radiosensitive and radioresistant cells, to identify a signature related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using CM samples from cell lines confirmed a significant increase in the release of each candidate biomarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry showed that higher intracellular protein levels of the biomarkers were associated with greater radiosensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recurrence-free survival times, indicating that these two candidate biomarkers have the potential to predict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for the identification of biomarkers that may have a potential clinical role in personalising and optimising RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to benefit.
Collapse
|
33
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
34
|
Aristei C, Perrucci E, Alì E, Marazzi F, Masiello V, Saldi S, Ingrosso G. Personalization in Modern Radiation Oncology: Methods, Results and Pitfalls. Personalized Interventions and Breast Cancer. Front Oncol 2021; 11:616042. [PMID: 33816246 PMCID: PMC8012886 DOI: 10.3389/fonc.2021.616042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer, the most frequent malignancy in women worldwide, is a heterogeneous group of diseases, characterized by distinct molecular aberrations. In precision medicine, radiation oncology for breast cancer aims at tailoring treatment according to tumor biology and each patient’s clinical features and genetics. Although systemic therapies are personalized according to molecular sub-type [i.e. endocrine therapy for receptor-positive disease and anti-human epidermal growth factor receptor 2 (HER2) therapy for HER2-positive disease] and multi-gene assays, personalized radiation therapy has yet to be adopted in the clinical setting. Currently, attempts are being made to identify prognostic and/or predictive factors, biomarkers, signatures that could lead to personalized treatment in order to select appropriate patients who might, or might not, benefit from radiation therapy or whose radiation therapy might be escalated or de-escalated in dosages and volumes. This overview focuses on what has been achieved to date in personalized post-operative radiation therapy and individual patient radiosensitivity assessments by means of tumor sub-types and genetics.
Collapse
Affiliation(s)
- Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| | | | - Emanuele Alì
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Fabio Marazzi
- Radiation Oncology Department, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Valeria Masiello
- Radiation Oncology Department, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Simonetta Saldi
- Radiation Oncology Section, Perugia General Hospital, Perugia, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| |
Collapse
|
35
|
Autenshlyus A, Davletova K, Varaksin N, Marinkin I, Lyakhovich V. Cytokines in various molecular subtypes of breast cancer. Int J Immunopathol Pharmacol 2021; 35:20587384211034089. [PMID: 34399595 PMCID: PMC8375341 DOI: 10.1177/20587384211034089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/28/2021] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Breast cancer is a heterogeneous disease that has multiple molecular and morphological subtypes. Nonetheless, the relation between various molecular subtypes and functional characteristics of a tumor in terms of cytokine secretion remains unknown. METHODS We studied spontaneous and mitogen-induced cytokine secretion by invasive breast carcinoma of no special type (IBC NST; cultured tumors and cultured peripheral blood cells), depending on a molecular tumor subtype (where "mitogens" means "polyclonal activators" (PA): phytohemagglutinin p, phytohemagglutinin M, concanavalin A, and Escherichia coli lipopolysaccharide). Enzyme-linked immunosorbent assays were used to determine concentrations of IL-6, IL-8, IL-10, IL-17, IL-18, IL-1β, IL-1Ra, TNF-α, IFN-γ, G-CSF, GM-CSF, VEGF, and MCP-1 in culture supernatants of the tumors and peripheral blood cells. RESULTS The luminal B HER2-positive molecular subtype of IBC NST was found to feature the highest spontaneous secretion of IL-6 and IL-8 and the highest mitogen-induced secretion of IL-6, IL-8, IL-1Ra, and TNF-α by tumors; the highest mitogen-induced secretion of IL-2, IL-6, IL-8, IL-1β, TNF-α, IFN-γ, and G-CSF by peripheral blood cells; and the highest cytokine-producing potential (the ratio of mitogen-induced to spontaneous secretion) of peripheral blood cells for the secretion of IL-6, IL-8, and IL-1Ra as compared to other molecular subtypes. The triple-negative subtype of IBC NST was characterized by the lowest cytokine-producing potential of tumors for the secretion of IL-6 and IL-8 as compared to other molecular subtypes as well as a lower "stimulation index of polyclonal activators" (calculated as (cytokine secretion after incubation with PA)/(spontaneous cytokine secretion)) for IL-18 secretion as compared to luminal subtypes. The XYZ correlated with a suppressive effect of PA on cytokine secretion by tumors of the triple-negative molecular subtype. CONCLUSION Therefore, our findings indicate that in IBC NST of luminal B HER2-positive and triple-negative molecular subtypes, the cytokine network has distinctive functional features.
Collapse
Affiliation(s)
- Alexsander Autenshlyus
- Federal Publicly Funded Institution of Higher Education, Novosibirsk State Medical University, Novosibirsk, Russian Federation
- Federal Publicly Funded Scientific Institution Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Novosibirsk, Russian Federation
| | - Kristina Davletova
- Federal Publicly Funded Institution of Higher Education, Novosibirsk State Medical University, Novosibirsk, Russian Federation
- Federal Publicly Funded Scientific Institution Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Novosibirsk, Russian Federation
| | - Nikolay Varaksin
- AO Vector-Best, Koltsovo, Novosibirsk Oblast, Russian Federation
| | - Igor Marinkin
- Federal Publicly Funded Institution of Higher Education, Novosibirsk State Medical University, Novosibirsk, Russian Federation
| | - Vyacheslav Lyakhovich
- Federal Publicly Funded Scientific Institution Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Novosibirsk, Russian Federation
| |
Collapse
|
36
|
Jiang M, Yang J, Li K, Liu J, Jing X, Tang M. Insights into the theranostic value of precision medicine on advanced radiotherapy to breast cancer. Int J Med Sci 2021; 18:626-638. [PMID: 33437197 PMCID: PMC7797538 DOI: 10.7150/ijms.49544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. "Breast cancer" encompasses a broad spectrum of diseases (i.e., subtypes) with significant epidemiological, clinical, and biological heterogeneity. Each of these subtypes has a different natural history and prognostic profile. Although tumour staging (TNM classification) still provides valuable information in the overall management of breast cancer, the current reality is that clinicians must consider other biological and molecular factors that directly influence treatment decision-making, including extent of surgery, indication for chemotherapy, hormonal therapy, and even radiotherapy (and treatment volumes). The management of breast cancer has changed radically in the last 15 years due to significant advances in our understanding of these tumours. While these changes have been extremely positive in terms of surgical and systemic management, they have also created significant uncertainties concerning integration of local and locoregional radiotherapy into the therapeutic scheme. In parallel, radiotherapy itself has also experienced major advances. Beyond the evident technological advances, new radiobiological concepts have emerged, and genomic data and other patient-specific factors must now be integrated into individualized treatment approaches. In this context, "precision medicine" seeks to provide an answer to these open questions and uncertainties. Although precision medicine has been much discussed in the last five years or so, the concept remains somewhat ambiguous, and it often appear to be used as a "catch-all" term. The present review aims to clarify the meaning of this term and, more importantly, to critically evaluate the role and impact of precision medicine on breast cancer radiotherapy. Finally, we will discuss the current and future of precision medicine in radiotherapy.
Collapse
Affiliation(s)
- Man Jiang
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.,Department of Oncology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Jianshe Yang
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Kang Li
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jia Liu
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xigang Jing
- Medical College of Wisconsin (Milwaukee), Wisconsin 53226, USA
| | - Meiqin Tang
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.,Department of Hematology, Longgang District People's Hospital, Shenzhen 518172, China
| |
Collapse
|
37
|
Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy? J Pers Med 2020; 11:jpm11010018. [PMID: 33379383 PMCID: PMC7823967 DOI: 10.3390/jpm11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
The main goal of precision medicine in patients with breast cancer is to tailor the treatment according to the particular genetic makeup and the genetic changes in the cancer cells. Breast cancer occurring during pregnancy (BCP) is a complex and difficult clinical problem. Although it is not very common, both maternal and fetal outcome must be always considered when planning treatment. Pregnancy represents a significant barrier to the implementation of personalized treatment for breast cancer. Tailoring therapy mainly takes into account the stage of pregnancy, the subtype of cancer, the stage of cancer, and the patient’s preference. Results of the treatment of breast cancer in pregnancy are as yet not very satisfactory because of often delayed diagnosis, and it usually has an unfavorable outcome. Treatment of patients with pregnancy-associated breast cancer should be centralized. Centralization may result in increased experience in diagnosis and treatment and accumulated data may help us to optimize the treatment approaches, modify general treatment recommendations, and improve the survival and quality of life of the patients.
Collapse
|