1
|
Reyes-Oliveras A, Ellis AE, Sheldon RD, Haab B. Metabolomics and 13C labelled glucose tracing to identify carbon incorporation into aberrant cell membrane glycans in cancer. Commun Biol 2024; 7:1576. [PMID: 39592729 PMCID: PMC11599571 DOI: 10.1038/s42003-024-07277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cell membrane glycans contribute to immune recognition, signaling, and cellular adhesion and migration, and altered membrane glycosylation is a feature of cancer cells that contributes to cancer progression. The uptake and metabolism of glucose and other nutrients essential for glycan synthesis could underlie altered membrane glycosylation, but the relationship between shifts in nutrient metabolism and the effects on glycans have not been directly examined. We developed a method that combines stable isotope tracing with metabolomics to enable direct observations of glucose allocation to nucleotide sugars and cell-membrane glycans. We compared the glucose allocation to membrane glycans of two pancreatic cancer cell lines that are genetically identical but have differing energy requirements. The 8988-S cells had higher glucose allocation to membrane glycans and intracellular pathways relating to glycan synthesis, but the 8988-T cells had higher glucose uptake and commitment of glucose to non-glycosylation pathways. The cell lines differed in the requirements of glucose for energy production, resulting in differences in glucose bioavailability for glycan synthesis. The workflow demonstrated here enables studies on the effects of metabolic shifts on the commitment of nutrients to cell-membrane glycans. The results suggest that cell-membrane glycans are remodeled through shifts in glucose commitment to non-glycosylation pathways.
Collapse
Affiliation(s)
- Alfredo Reyes-Oliveras
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Brian Haab
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| |
Collapse
|
2
|
Lan S, Liu S, Wang K, Chen W, Zheng D, Zhuang Y, Zhang S. tRNA-derived RNA fragment, tRF-18-8R6546D2, promotes pancreatic adenocarcinoma progression by directly targeting ASCL2. Gene 2024; 927:148739. [PMID: 38955307 DOI: 10.1016/j.gene.2024.148739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.
Collapse
Affiliation(s)
- Sihua Lan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sixue Liu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ke Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Wenying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Dandan Zheng
- Doctor of excellence program, First Affiliated Hospital of Jilin University, Changchun 130000, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
3
|
Szymczak-Kulus K, Czerwinski M, Kaczmarek R. Human Gb3/CD77 synthase: a glycosyltransferase at the crossroads of immunohematology, toxicology, and cancer research. Cell Mol Biol Lett 2024; 29:137. [PMID: 39511480 PMCID: PMC11546571 DOI: 10.1186/s11658-024-00658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Human Gb3/CD77 synthase (α1,4-galactosyltransferase, P1/Pk synthase, UDP-galactose: β-D-galactosyl-β1-R 4-α-D-galactosyltransferase, EC 2.4.1.228) forms Galα1 → 4Gal structures on glycosphingolipids and glycoproteins. These glycans are recognized by bacterial adhesins and toxins. Globotriaosylceramide (Gb3), the major product of Gb3/CD77 synthase, is a glycosphingolipid located predominantly in plasma membrane lipid rafts, where it serves as a main receptor for Shiga toxins released by enterohemorrhagic Escherichia coli and Shigella dysenteriae of serotype 1. On the other hand, accumulation of glycans formed by Gb3/CD77 synthase contributes to the symptoms of Anderson-Fabry disease caused by α-galactosidase A deficiency. Moreover, variation in Gb3/CD77 synthase expression and activity underlies the P1PK histo-blood group system. Glycosphingolipids synthesized by the enzyme are overproduced in colorectal, gastric, pancreatic, and ovarian cancer, and elevated Gb3 biosynthesis is associated with cancer cell chemo- and radioresistance. Furthermore, Gb3/CD77 synthase acts as a key glycosyltransferase modulating ovarian cancer cell plasticity. Here, we describe the role of human Gb3/CD77 synthase and its products in the P1PK histo-blood group system, Anderson-Fabry disease, and bacterial infections. Additionally, we provide an overview of emerging evidence that Gb3/CD77 synthase and its glycosphingolipid products are involved in cancer metastasis and chemoresistance.
Collapse
Affiliation(s)
- Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
4
|
Uemura S, Kabe Y, Kitago M, Matsuda S, Abe Y, Hasegawa Y, Hori S, Tanaka M, Nakano Y, Sato Y, Itonaga M, Ono M, Kawakami T, Suematsu M, Kitagawa Y. Prognosis prediction of PDAC via detection of O-glycan altered extracellular vesicles in perioperative sera. Cancer Sci 2024; 115:3718-3728. [PMID: 39285510 PMCID: PMC11531947 DOI: 10.1111/cas.16341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignancy due to the difficulty in diagnosis and poor prognosis because of the high recurrence rate, necessitating reliable biomarkers to improve the diagnosis and prognosis. However, the existing markers have limitations. We previously identified extracellular vesicles (EVs) recognized by O-glycan-binding lectins (Amaranthus caudatus agglutinin [ACA]) as a novel diagnostic biomarker for PDAC using an EV-counting system (ExoCounter). This retrospective study analyzed changes in ACA-positive EVs in perioperative PDAC serum and its association with prognosis using ExoCounter. Absolute EV levels in the pre- and postoperative sera of 44 patients who underwent curative pancreatectomy for PDAC were quantified using ExoCounter. The carbohydrate antigen 19-9 levels declined in most samples postoperatively, and presented no correlation with poor prognosis. In contrast, ACA-positive EVs increased in serum at 7 days postoperatively in 27 of 44 patients (61.4%). We therefore divided participants with ACA-positive EVs before and after surgery into elevation and decline groups. The overall survival (OS) and recurrence-free survival (RFS) of patients with higher ACA-positive EVs were significantly shorter than those with lower ACA-positive EVs (26.1 months vs. not reached, P = 0.018; 11.9 vs. 38.6 months, P = 0.013). Multivariable analysis revealed that ACA-positive EV elevation in postoperative serum was an independent prognostic factor for poor OS (hazard ratio [HR] = 3.891, P = 0.023) and RFS (HR = 2.650, P = 0.024). The detection of ACA-positive EVs in perioperative serum may be used to predict the prognosis of PDAC in the early postoperative period.
Collapse
Affiliation(s)
- Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yasuaki Kabe
- Department of BiochemistryKeio University School of MedicineTokyoJapan
- Department of BiochemistryKochi University Medical SchoolNankokuKochiJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Sachiko Matsuda
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yuta Abe
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yasushi Hasegawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Shutaro Hori
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Masayuki Tanaka
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yutaka Nakano
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yasunori Sato
- Department of BiostatisticsKeio University School of MedicineTokyoJapan
| | | | - Masayuki Ono
- Future Creation Research LaboratoryJvckenwood CorporationYokohamaJapan
| | - Tatsuya Kawakami
- Future Creation Research LaboratoryJvckenwood CorporationYokohamaJapan
| | - Makoto Suematsu
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Yuko Kitagawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| |
Collapse
|
5
|
van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology 2024; 34:cwae036. [PMID: 38785323 PMCID: PMC11137322 DOI: 10.1093/glycob/cwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Victor Lorrain
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Florance de Bruin
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Tianne Spreij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Hitoshi Nakayama
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Kazuhisa Iwabuchi
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Rømer TB, Khoder-Agha F, Aasted MKM, de Haan N, Horn S, Dylander A, Zhang T, Pallesen EMH, Dabelsteen S, Wuhrer M, Høgsbro CF, Thomsen EA, Mikkelsen JG, Wandall HH. CRISPR-screen identifies ZIP9 and dysregulated Zn2+ homeostasis as a cause of cancer-associated changes in glycosylation. Glycobiology 2023; 33:700-714. [PMID: 36648436 PMCID: PMC10627246 DOI: 10.1093/glycob/cwad003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION In epithelial cancers, truncated O-glycans, such as the Thomson-nouveau antigen (Tn) and its sialylated form (STn), are upregulated on the cell surface and associated with poor prognosis and immunological escape. Recent studies have shown that these carbohydrate epitopes facilitate cancer development and can be targeted therapeutically; however, the mechanism underpinning their expression remains unclear. METHODS To identify genes directly influencing the expression of cancer-associated O-glycans, we conducted an unbiased, positive-selection, whole-genome CRISPR knockout-screen using monoclonal antibodies against Tn and STn. RESULTS AND CONCLUSIONS We show that knockout of the Zn2+-transporter SLC39A9 (ZIP9), alongside the well-described targets C1GALT1 (C1GalT1) and its molecular chaperone, C1GALT1C1 (COSMC), results in surface-expression of cancer-associated O-glycans. No other gene perturbations were found to reliably induce O-glycan truncation. We furthermore show that ZIP9 knockout affects N-linked glycosylation, resulting in upregulation of oligo-mannose, hybrid-type, and α2,6-sialylated structures as well as downregulation of tri- and tetra-antennary structures. Finally, we demonstrate that accumulation of Zn2+ in the secretory pathway coincides with cell-surface presentation of truncated O-glycans in cancer tissue, and that over-expression of COSMC mitigates such changes. Collectively, the findings show that dysregulation of ZIP9 and Zn2+ induces cancer-like glycosylation on the cell surface by affecting the glycosylation machinery.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Koed Møller Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sabrina Horn
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - August Dylander
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Emil Marek Heymans Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Christine Flodgaard Høgsbro
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Maus A, Fatica EM, Taylor R, Larson BJ, Algeciras-Schimnich A, Singh RJ, Grebe SK. Identification, Measurement, and Assessment of the Clinical Utility of Human Pancreatic Polypeptide by Liquid Chromatography-Tandem Mass Spectrometry. J Proteome Res 2023; 22:1322-1330. [PMID: 36880754 DOI: 10.1021/acs.jproteome.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Human pancreatic polypeptide (HPP) is a 36 amino acid peptide hormone that plays a role in the bidirectional communication between the digestive system and the brain. HPP measurements are used to assess vagal nerve function following sham feeding and to detect gastroenteropancreatic-neuroendocrine tumors. These tests have historically been conducted by radioimmunoassays, but liquid chromatography-tandem mass spectrometry (LC-MS/MS) has several advantages such as improved specificity and elimination of radioactive molecules. Here, we present our LC-MS/MS method. Initially, samples were immunopurified and subjected to LC-high resolution accurate mass tandem mass spectrometry (HRAM-MS/MS) to identify circulating forms of the peptide in human plasma. We identified 23 forms of HPP, including several glycosylated forms. The most abundant peptides then were used for targeted LC-MS/MS measurements. LC-MS/MS performance for precision, accuracy, linearity, recovery, limit of detection, and carryover met our acceptance criteria based on CLIA regulations. Additionally, we observed the expected physiological rise in HPP in response to sham feeding. Our results indicate that HPP measurement by LC-MS/MS produces clinically equivalent results to our established immunoassay when several peptides are monitored, making it a suitable replacement. The measurement of peptide fragments, including modified species, might have additional clinical value.
Collapse
Affiliation(s)
- Anthony Maus
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Erica M Fatica
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Robert Taylor
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Bethany J Larson
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Alicia Algeciras-Schimnich
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Stefan K Grebe
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55902, United States
| |
Collapse
|
8
|
Zhang J, van der Zon G, Ma J, Mei H, Cabukusta B, Agaser CC, Madunić K, Wuhrer M, Zhang T, Ten Dijke P. ST3GAL5-catalyzed gangliosides inhibit TGF-β-induced epithelial-mesenchymal transition via TβRI degradation. EMBO J 2023; 42:e110553. [PMID: 36504224 PMCID: PMC9841337 DOI: 10.15252/embj.2021110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-β-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-β/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-β signaling and TGF-β-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-β signaling by promoting lipid raft localization of the TGF-β type I receptor (TβRI) and by increasing TβRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-β signaling and TGF-β-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard van der Zon
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jin Ma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cedrick C Agaser
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
10
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
11
|
Glycosphingolipids are mediators of cancer plasticity through independent signaling pathways. Cell Rep 2022; 40:111181. [PMID: 35977490 DOI: 10.1016/j.celrep.2022.111181] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.
Collapse
|
12
|
Wang D, Madunić K, Zhang T, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. High Diversity of Glycosphingolipid Glycans of Colorectal Cancer Cell Lines Reflects the Cellular Differentiation Phenotype. Mol Cell Proteomics 2022; 21:100239. [PMID: 35489554 PMCID: PMC9157004 DOI: 10.1016/j.mcpro.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC)–associated changes of protein glycosylation have been widely studied. In contrast, the expression of glycosphingolipid (GSL) patterns in CRC has, hitherto, remained largely unexplored. Even though GSLs are major carriers of cell surface carbohydrates, they are understudied due to their complexity and analytical challenges. In this study, we provide an in-depth analysis of GSL glycans of 22 CRC cell lines using porous graphitized carbon nano–liquid chromatography coupled with electrospray ionization–mass spectrometry. Our data revealed that the GSL expression varies among different cell line classifications, with undifferentiated cell lines showing high expression of blood group A, B, and H antigens while for colon-like cell lines the most prominent GSL glycans contained (sialyl)-LewisA/X and LewisB/Y antigens. Moreover, the GSL expression correlated with relevant glycosyltransferases that are involved in their biosynthesis as well as with transcription factors (TFs) implicated in colon differentiation. Additionally, correlations between certain glycosyltransferases and TFs at mRNA expression level were found, such as FUT3, which correlated with CDX1, ETS2, HNF1A, HNF4A, MECOM, and MYB. These TFs are upregulated in colon-like cell lines pointing to their potential role in regulating fucosylation during colon differentiation. In conclusion, our study reveals novel layers of potential GSL glycans regulation relevant for future research in colon differentiation and CRC. Undifferentiated cell lines showed high expression of blood group A, B, and H antigens. Colon-like cell lines are high in GSLs carrying (sialyl)-LewisA/X and LewisB/Y antigens. (Sialyl)-LewisA/X and LewisB/Y antigens associated with expression of FUT3 and CDX1. I-branching was elevated in undifferentiated cells.
Collapse
Affiliation(s)
- Di Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Katarina Madunić
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Tao Zhang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Oleg A Mayboroda
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands.
| |
Collapse
|
13
|
Zhang J, Zhang Z, Holst S, Blöchl C, Madunic K, Wuhrer M, Ten Dijke P, Zhang T. Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. J Biol Chem 2022; 298:101717. [PMID: 35151689 PMCID: PMC8914387 DOI: 10.1016/j.jbc.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Katarina Madunic
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Wang D, Zhang T, Madunić K, de Waard AA, Blöchl C, Mayboroda OA, Griffioen M, Spaapen RM, Huber CG, Lageveen-Kammeijer GSM, Wuhrer M. Glycosphingolipid-Glycan Signatures of Acute Myeloid Leukemia Cell Lines Reflect Hematopoietic Differentiation. J Proteome Res 2022; 21:1029-1040. [PMID: 35168327 PMCID: PMC8981326 DOI: 10.1021/acs.jproteome.1c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aberrant expression of certain glycosphingolipids (GSLs) is associated with the differentiation of acute myeloid leukemia (AML) cells. However, the expression patterns of GSLs in AML are still poorly explored because of their complexity, the presence of multiple isomeric structures, and tedious analytical procedures. In this study, we performed an in-depth GSL glycan analysis of 19 AML cell lines using porous graphitized carbon liquid chromatography-mass spectrometry revealing strikingly different GSL glycan profiles between the various AML cell lines. The cell lines of the M6 subtype showed a high expression of gangliosides with α2,3-sialylation and Neu5Gc, while the M2 and M5 subtypes were characterized by high expression of (neo)lacto-series glycans and Lewis A/X antigens. Integrated analysis of glycomics and available transcriptomics data revealed the association of GSL glycan abundances with the transcriptomics expression of certain glycosyltransferases (GTs) and transcription factors (TFs). In addition, correlations were found between specific GTs and TFs. Our data reveal TFs GATA2, GATA1, and RUNX1 as candidate inducers of the expression of gangliosides and sialylation via regulation of the GTs ST3GAL2 and ST8SIA1. In conclusion, we show that GSL glycan expression levels are associated with hematopoietic AML classifications and TF and GT gene expression. Further research is needed to dissect the regulation of GSL expression and its role in hematopoiesis and associated malignancies.
Collapse
Affiliation(s)
- Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.,Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
15
|
Deschuyter M, Leger DY, Verboom A, Chaunavel A, Maftah A, Petit JM. ST3GAL2 knock-down decreases tumoral character of colorectal cancer cells in vitro and in vivo. Am J Cancer Res 2022; 12:280-302. [PMID: 35141018 PMCID: PMC8822282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023] Open
Abstract
Tumor cells have a modified glycosylation profile that promotes their evolution and/or their maintenance in the tumor. Sialylation is a type of glycosylation that is often altered in cancers. RNA-Seq database analysis revealed that the sialyltransferase gene ST3GAL2 is significantly overexpressed at all stages of colorectal cancer (CRC). ST3GAL2 sialylates both glycoproteins and glycolipids. The aim of this work was to investigate the involvement of ST3GAL2 in CRC. Using the HT29 tumor cell line derived from a stage II of CRC, we decreased the expression of ST3GAL2 by specific shRNA, and then characterized these cells by performing functional tests. We found that ST3GAL2 knock down (KD) significantly decreases tumor cell proliferation, cell migration and invasiveness properties in vitro. The cell cycle of these cells is affected with a change in cell cycle distribution and an increase of cell apoptosis. The effect of ST3GAL2 KD was then studied in vivo, following xenografts into nude mice, in which the tumor progression was significantly reduced. This work demonstrates that ST3GAL2 is a major player in the behavior of colorectal tumor cells, by modifying the sialylation state of glycoproteins and glycolipids which remain to be specifically identified.
Collapse
Affiliation(s)
- Marlène Deschuyter
- PEIRENE Laboratory, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of LimogesLimoges F-87060, France
| | - David Yannick Leger
- PEIRENE Laboratory, EA 7500, Faculty of Pharmacy, University of LimogesLimoges 87025, France
| | - Anne Verboom
- PEIRENE Laboratory, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of LimogesLimoges F-87060, France
| | - Alain Chaunavel
- Department of Pathology, Limoges University HospitalLimoges 87042, France
| | - Abderrahman Maftah
- PEIRENE Laboratory, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of LimogesLimoges F-87060, France
| | - Jean-Michel Petit
- PEIRENE Laboratory, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of LimogesLimoges F-87060, France
| |
Collapse
|
16
|
Glycation Interferes with the Expression of Sialyltransferases in Meningiomas. Cells 2021; 10:cells10123298. [PMID: 34943806 PMCID: PMC8699175 DOI: 10.3390/cells10123298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.
Collapse
|
17
|
Tabang DN, Ford M, Li L. Recent Advances in Mass Spectrometry-Based Glycomic and Glycoproteomic Studies of Pancreatic Diseases. Front Chem 2021; 9:707387. [PMID: 34368082 PMCID: PMC8342852 DOI: 10.3389/fchem.2021.707387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Modification of proteins by glycans plays a crucial role in mediating biological functions in both healthy and diseased states. Mass spectrometry (MS) has emerged as the most powerful tool for glycomic and glycoproteomic analyses advancing knowledge of many diseases. Such diseases include those of the pancreas which affect millions of people each year. In this review, recent advances in pancreatic disease research facilitated by MS-based glycomic and glycoproteomic studies will be examined with a focus on diabetes and pancreatic cancer. The last decade, and especially the last five years, has witnessed developments in both discovering new glycan or glycoprotein biomarkers and analyzing the links between glycans and disease pathology through MS-based studies. The strength of MS lies in the specificity and sensitivity of liquid chromatography-electrospray ionization MS for measuring a wide range of biomolecules from limited sample amounts from many sample types, greatly enhancing and accelerating the biomarker discovery process. Furthermore, imaging MS of glycans enabled by matrix-assisted laser desorption/ionization has proven useful in complementing histology and immunohistochemistry to monitor pancreatic disease progression. Advances in biological understanding and analytical techniques, as well as challenges and future directions for the field, will be discussed.
Collapse
Affiliation(s)
- Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan Ford
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
A semi-automated, high throughput approach for O-glycosylation profiling of in vitro established cancer cell lines by MALDI-FT-ICR MS. Glycoconj J 2021; 38:747-756. [PMID: 34283362 PMCID: PMC8821499 DOI: 10.1007/s10719-021-10003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
The study of protein O-glycosylation is important in biological research as O-glycans have been reported to regulate a multitude of molecular and cell biology processes occurring in cancer. It is known that alterations in O-glycosylation are involved in the development and progression of cancer. Their easy accessibility makes in vitro established cell lines suitable and useful models for studying biological mechanisms in disease. However, the O-glycosylation analysis of large numbers of samples, as required in systems biology and biomarker discovery studies, is often challenging. In the present study, O-glycans from three human colorectal cancer cell lines and two human pancreatic cancer cell lines were released by semi-automated, high throughput reductive β-elimination and analysed using ultrahigh resolution MALDI-FT-ICR MS. Automated data integration and processing was performed using MassyTools, where the analyte was automatically included for relative quantitation based on a range of selection criteria including signal-to-noise ratio, mass error and isotopic pattern quality scores. A total of 126 O-glycan compositions, ranging from a single monosaccharide to large oligosaccharides exhibiting complex glycan motifs, were detected. The use of ultrahigh resolution MALDI-FTICR MS enabled glycan identification and quantitation in the matrix region of the spectrum. This approach has the potential to be used for O-glycosylation analysis of large numbers of samples, such as patient sample cohorts.
Collapse
|
19
|
Lingwood C. Therapeutic Uses of Bacterial Subunit Toxins. Toxins (Basel) 2021; 13:toxins13060378. [PMID: 34073185 PMCID: PMC8226680 DOI: 10.3390/toxins13060378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and cytosolic A subunit transit via the ER retrotranslocon as a misfolded protein mimic, then inhibits protein synthesis to kill cells, which can cause hemolytic uremic syndrome clinically. This represents one of the most studied systems of prokaryotic hijacking of eukaryotic biology. Similarly, the interaction of cholera AB5 toxin with its GSL receptor, GM1 ganglioside, is the key component of the gastrointestinal pathogenesis of cholera and follows the same retrograde transport pathway for A subunit cytosol access. Although both VT and CT are the cause of major pathology worldwide, the toxin–receptor interaction is itself being manipulated to generate new approaches to control, rather than cause, disease. This arena comprises two areas: anti neoplasia, and protein misfolding diseases. CT/CTB subunit immunomodulatory function and anti-cancer toxin immunoconjugates will not be considered here. In the verotoxin case, it is clear that Gb3 (and VT targeting) is upregulated in many human cancers and that there is a relationship between GSL expression and cancer drug resistance. While both verotoxin and cholera toxin similarly hijack the intracellular ERAD quality control system of nascent protein folding, the more widespread cell expression of GM1 makes cholera the toxin of choice as the means to more widely utilise ERAD targeting to ameliorate genetic diseases of protein misfolding. Gb3 is primarily expressed in human renal tissue. Glomerular endothelial cells are the primary VT target but Gb3 is expressed in other endothelial beds, notably brain endothelial cells which can mediate the encephalopathy primarily associated with VT2-producing E. coli infection. The Gb3 levels can be regulated by cytokines released during EHEC infection, which complicate pathogenesis. Significantly Gb3 is upregulated in the neovasculature of many tumours, irrespective of tumour Gb3 status. Gb3 is markedly increased in pancreatic, ovarian, breast, testicular, renal, astrocytic, gastric, colorectal, cervical, sarcoma and meningeal cancer relative to the normal tissue. VT has been shown to be effective in mouse xenograft models of renal, astrocytoma, ovarian, colorectal, meningioma, and breast cancer. These studies are herein reviewed. Both CT and VT (and several other bacterial toxins) access the cell cytosol via cell surface ->ER transport. Once in the ER they interface with the protein folding homeostatic quality control pathway of the cell -ERAD, (ER associated degradation), which ensures that only correctly folded nascent proteins are allowed to progress to their cellular destinations. Misfolded proteins are translocated through the ER membrane and degraded by cytosolic proteosome. VT and CT A subunits have a C terminal misfolded protein mimic sequence to hijack this transporter to enter the cytosol. This interface between exogenous toxin and genetically encoded endogenous mutant misfolded proteins, provides a new therapeutic basis for the treatment of such genetic diseases, e.g., Cystic fibrosis, Gaucher disease, Krabbe disease, Fabry disease, Tay-Sachs disease and many more. Studies showing the efficacy of this approach in animal models of such diseases are presented.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Departments of Laboratory Medicine & Pathobiology, and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Deciphering the Importance of Glycosphingolipids on Cellular and Molecular Mechanisms Associated with Epithelial-to-Mesenchymal Transition in Cancer. Biomolecules 2021; 11:biom11010062. [PMID: 33418847 PMCID: PMC7824851 DOI: 10.3390/biom11010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.
Collapse
|