1
|
Qin C, Zhao B, Wang Y, Li Z, Li T, Zhao Y, Wang W, Zhao Y. Extracellular vesicles miR-31-5p promotes pancreatic cancer chemoresistance via regulating LATS2-Hippo pathway and promoting SPARC secretion from pancreatic stellate cells. J Extracell Vesicles 2024; 13:e12488. [PMID: 39104296 DOI: 10.1002/jev2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
2
|
Liu L, Xiao H, Yang G. SPARC Controls Migration and Invasion of Hepatocellular Carcinoma Cells Via Regulating GPD2-Mediated Mitochondrial Respiration. Biochem Genet 2024:10.1007/s10528-024-10682-z. [PMID: 38334876 DOI: 10.1007/s10528-024-10682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial respiration and metabolism play a pivotal role in facilitating the migratory and invasive capacities of cancer cells. In this study, we aimed to explore the potential influence of glycoprotein SPARC on mitochondrial respiration and its subsequent influence on the migration and invasion of hepatocellular carcinoma (HCC) cells. Lentivirus-mediated shRNA delivery was employed to deplete SPARC in HCC cell lines. The mitochondria localization of SPARC was validated using cellular fractionation followed by Western blot analysis, as well as immunofluorescence staining and Proteinase K protection assay. Co-immunoprecipitation was employed to investigate the interaction between SPARC and GPD2. Seahorse XF Cell Mito Stress Test was conducted to assess the mitochondrial respiration and functionality of HCC cells. Our study identifies an active pool of SPARC within the mitochondria of HCC cells, with the mitochondrial subset proving crucial for the regulation of migration and invasion. The mitochondrial SPARC interacts with GPD2, influencing its expression levels and subsequently modulating GPD2-mediated mitochondrial respiration. This regulatory mechanism orchestrates the migratory and invasive phenotypes of HCC cells. Notably, SPARC and GPD2 exhibit upregulated expression in HCC tissues compared to normal liver tissues. High expression levels of both SPARC and GPD2 in HCC patients are associated with a poorer prognosis. Our study unveils a novel role for SPARC in governing HCC cell migration and invasion through regulating GPD2-mediated mitochondrial respiration. These findings underscore the importance of mitochondrial processes in cancer progression and propose the SPARC/GPD2 axis as a promising target for HCC interventions.
Collapse
Affiliation(s)
- Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Huawei Xiao
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Guiqing Yang
- Department of Medical Oncology, Yantai Traditional Chinese Medicine Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
3
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Kwon HJ, Lee S, Lee HH, Cho H, Jung J. Korean Red Ginseng Enhances Immunotherapeutic Effects of NK Cells via Eosinophils in Metastatic Liver Cancer Model. Nutrients 2021; 14:nu14010134. [PMID: 35011007 PMCID: PMC8747263 DOI: 10.3390/nu14010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis decreases the survival rate of patients with liver cancer. Therefore, novel anti-metastatic strategies are needed. Korean Red Ginseng (KRG) is often ingested as a functional food with an immune-boosting effect. We investigated a combination of KRG and natural killer (NK) cells as a novel immunotherapy approach. SK-Hep1 cells were injected into the tail vein of NRGA mice to establish an experimental metastasis model. KRG, NK cells, or a combination of KRG and NK cells were administered. Tumor growth was observed using an in vivo imaging system, and metastatic lesions were evaluated by histological analysis and immunohistochemistry. Bioluminescence intensity was lower in the KRG and NK cell combination group than in the other groups, indicating that the combination treatment suppressed the progression of metastasis. CD56 expression was used as a NK cell marker and hematological analysis was performed. The combination treatment also decreased the expression of matrix metalloproteinases and the area of metastatic lesions in liver and bone tissues, as well as increased the eosinophil count. Expression of cytokines-related eosinophils and NK cells was determined by Western blotting analysis. The expression of interleukin 33 (IL33) was induced by the combination of KRG and NK cells. High IL33 expression was associated with prolonged overall survival in the Kaplan–Meier plotter. Our results suggest that KRG enhances the immune activity of NK cells by IL-33 through eosinophils and suppresses metastatic liver cancer progression.
Collapse
Affiliation(s)
- Hee Jung Kwon
- Department of Pharmacy, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea; (H.J.K.); (H.C.)
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea; (S.L.); (H.H.L.)
| | - Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea; (S.L.); (H.H.L.)
| | - Hwan Hee Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea; (S.L.); (H.H.L.)
| | - Hyosun Cho
- Department of Pharmacy, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea; (H.J.K.); (H.C.)
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea; (S.L.); (H.H.L.)
| | - Joohee Jung
- Department of Pharmacy, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea; (H.J.K.); (H.C.)
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea; (S.L.); (H.H.L.)
- Correspondence: ; Tel.: +82-2-901-8731
| |
Collapse
|
5
|
Gao ZW, Liu C, Yang L, He T, Wu XN, Zhang HZ, Dong K. SPARC Overexpression Promotes Liver Cancer Cell Proliferation and Tumor Growth. Front Mol Biosci 2021; 8:775743. [PMID: 34912848 PMCID: PMC8668270 DOI: 10.3389/fmolb.2021.775743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Secreted protein acidic and rich in cysteine (SPARC) plays an important role in cancer development. The roles of SPARC in the liver hepatocellular carcinoma (LIHC) are unclear. Methods: GEPIA2 and UALCAN were used to analyze the SPARC mRNA expression levels in LIHC based on the TCGA database. The GEO database was used to verify the analysis results. Immunohistochemical (IHC) analysis was used to investigate the SPARC protein levels in LIHC tissues. The Kaplan-Meier (KM) plotter was used to analyze the correlation between SPARC and prognosis. The serum SPARC levels were measured by ELISA. CCK8 and murine xenograft models were used to investigate the effect of SPARC on the liver cancer growth in vitro and in vivo. SPARC-correlated genes were screened by LinkedOmics. Results: Based on the TCGA and GEO databases, the analysis showed that the SPARC mRNA expression levels were increased in tumor tissues and peripheral blood mononuclear cell (PBMC) from LIHC compared to normal controls. The IHC analysis showed an increased level of SPARC in LIHC tissues compared to adjacent non-tumor tissues. However, we found that the serum SPARC levels were lower in LIHC than those in healthy controls. The KM plotter showed that there was no significant correlation between the SPARC mRNA levels and overall survival. However, in sorafenib-treated LIHC patients, the high SPARC expression predicts favorable prognosis. Furthermore, the endogenous SPARC overexpression promotes liver cancer cell proliferation in vitro and tumor growth in vivo, while there was no significant effect of exogenous SPARC treatment on liver cancer cell proliferation. Function enrichment analysis of SPARC-correlated genes indicated a critical role of interaction with an extracellular matrix in SPARC-promoting cancer cell proliferation. Conclusion: SPARC mRNAs were increased in LIHC tumor tissues, and SPARC overexpression may promote the liver cancer growth. Further studies are needed to clarify the potential prognostic value of SPARC, both in tissues and in circulation.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Ting He
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Xia-Nan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| |
Collapse
|
6
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as a Molecular Physiological and Pathological Biomarker. Biomolecules 2021; 11:1689. [PMID: 34827687 PMCID: PMC8615851 DOI: 10.3390/biom11111689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is expressed in diverse tissues and plays roles in various biological functions and processes. Increased serum levels of SPARC or its gene overexpression have been reported following numerous physiological and pathological changes including injuries, exercise, regeneration, obesity, cancer, and inflammation. Such expression pattern interrelation between these biological changes and the SPARC expression/secretion points to it as a biomarker. This property could lead to a variety of potential applications ranging from mechanistic studies and animal model validation to the clinical and therapeutic evaluation of both disease prognosis and pharmacological agents.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Yao L, Zhou Y, Li J, Wickens L, Conforti F, Rattu A, Ibrahim FM, Alzetani A, Marshall BG, Fletcher SV, Hancock D, Wallis T, Downward J, Ewing RM, Richeldi L, Skipp P, Davies DE, Jones MG, Wang Y. Bidirectional epithelial-mesenchymal crosstalk provides self-sustaining profibrotic signals in pulmonary fibrosis. J Biol Chem 2021; 297:101096. [PMID: 34418430 PMCID: PMC8435701 DOI: 10.1016/j.jbc.2021.101096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1-mediated epithelial-mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-β-induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial-mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial-mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1-tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-β-activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor-like repeats. Together, these data identify that aberrant bidirectional epithelial-mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Leanne Wickens
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anna Rattu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Fathima Maneesha Ibrahim
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, United Kingdom
| | - Tim Wallis
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, United Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paul Skipp
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Mark G Jones
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
8
|
Zhang Y, Wu Q, Liu J, An X, Cao B. Circ-140/chi-miR-8516/ STC1- MMP1 Regulates αs1-/β-Casein Secretion and Lipid Formation in Goat Mammary Epithelial Cells. Genes (Basel) 2021; 12:genes12050671. [PMID: 33946970 PMCID: PMC8146108 DOI: 10.3390/genes12050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs play an essential role in mammary gland development, and involution is a factor that limits lactation. Chi-miR-8516 is one of the validated microRNAs that regulates the expression of STC1 and MMP1, which surge during the involution of the mammary gland. This study aims to explore the direct or indirect regulation of STC1 and MMP1 by chi-miR-8516 and the regulation of chi-miR-8516 by circ-140. In goat mammary epithelial cells, we found that chi-miR-8516 takes circ-140 as a sponge and regulates MMP1 expression by targeting STC1 and promoting the phosphorylation of MAPK. The examination of αs1-/β-casein and lipid showed the modulation of the circ-140/chi-miR-8516/STC1-MMP1 axis in casein secretion and lipid formation, which was regulated by the phosphorylation of mTOR and STAT5. This study illustrates an axis that regulates the synthesis of milk components, and explores the pathways in which the axis participates.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
- Medical College, Qinghai University, Xining 810001, China
| | - Jidan Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
- Correspondence: ; Tel.: +86-29-87092102
| |
Collapse
|
9
|
Pan K, Huang X, Jia X. SPARC promotes pancreatic cancer cell proliferation and migration through autocrine secretion into the extracellular milieu. Oncol Lett 2021; 21:485. [PMID: 33968201 PMCID: PMC8100956 DOI: 10.3892/ol.2021.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
SPARC is a secreted glycoprotein that plays a complex and multifaceted role in tumour formation and progression. However, whether SPARC is an oncogene or a tumour suppressor is still unclear. Moreover, SPARC demonstrates potential in clinical pancreatic adenocarcinoma (PAAD) treatment, although it has been identified as an oncogene in some studies and a tumor suppressor in others. In the present study, a pan-cancer analysis of SPARC was carried out using The Cancer genome Atlas data, which demonstrated that SPARC was an oncogene in most cancer types and a cancer suppressor in others. In addition, SPARC expression was significantly upregulated in PAAD and associated with poor prognosis. SPARC also promoted the proliferation and migration of PANC-1 and SW1990 cell lines in vitro. SPARC was detected in the culture supernatant of PAAD cells and pancreatic acinar AR42J cells. SPARC regulated PAAD cell proliferation only when secreted into the extracellular milieu, thus explaining why the prognosis of patients with PAAD is correlated with the SPARC expression of both tumour cells and stromal cells. Collectively, the present findings demonstrated that the function of SPARC was associated with tumour type and that SPARC may represent an important oncogene in PAAD that merits further study.
Collapse
Affiliation(s)
- Kehua Pan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xince Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiufen Jia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
10
|
Liu J, Jiang Y, Liu Y, Pu L, Du C, Li Y, Wang X, Ren J, Liu W, Yang Z, Chen Z, Song R, Xie W, Wang X. Yindan Jiedu Granules, a Traditional Chinese Medicinal Formulation, as a Potential Treatment for Coronavirus Disease 2019. Front Pharmacol 2021; 11:634266. [PMID: 33732148 PMCID: PMC7957926 DOI: 10.3389/fphar.2020.634266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background:YindanJiedu Granules (YDJDG) have been newly prescribed as a Chinese herbal formula. This study aimed to compare the efficacy of YDJDG and lopinavir-ritonavir in the treatment of coronavirus disease 2019 (COVID-19). Methods: Overall, 131 patients with COVID-19 were included in this study. In addition to standard care, 60 of these patients received YDJDG (YDJDG group) and 71 received lopinavir-ritonavir (lopinavir-ritonavir group). Propensity score matching (PSM) was used to match the characteristics of individuals in the two groups, while the Kaplan-Meier method was used to compare the proportion recovery observed. Results: Cox analysis revealed that YDJDG and CD4 ≥ 660 cells/µL were independent predictive factors of proportion recovery. At baseline, disease types differed between the YDJDG and lopinavir-ritonavir treatment groups. Furthermore, no significant adverse effects or toxicities relevant to YDJDG were observed. The median recovery time was 21 days in the YDJDG group and 27 days in the lopinavir-ritonavir group. After PSM (1:1), 50 patient pairs, YDJDG vs. lopinavir-ritonavir, were analyzed. In the YDJDG group, the proportion of recovered patients was remarkably higher than that observed in the lopinavir-ritonavir group (p = 0.0013), especially for those presenting mild/moderate disease type and CD4 < 660 cells/µL. In the YDJDG group, the mean duration of fever and pulmonary exudative lesions was significantly shorter than that observed in the lopinavir-ritonavir group (p = 0.0180 and p = 0.0028, respectively). Conclusion: YDJDG reveals the potential to hasten the recovery period in COVID-19 patients with mild/moderate disease type or CD4 < 660 cells/µL by shortening the mean duration of fever and pulmonary exudative lesions.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lin Pu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaojing Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Liu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhihai Chen
- Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Xie
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Wang L, Wang W, Xu Y, Wang Q. Low Levels of SPARC are Associated with Tumor Progression and Poor Prognosis in Human Endometrial Carcinoma. Onco Targets Ther 2020; 13:11549-11569. [PMID: 33204109 PMCID: PMC7667597 DOI: 10.2147/ott.s277795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background SPARC (secreted protein acidic and rich in cysteine), also known as osteonectin, BM-40, and 43 K protein, is a matricellular protein associated with various tumor progressions. The aim of this research was to investigate the prognostic value of SPARC in endometrial carcinoma (EC) and its function in cancer cell invasion and metastasis. Methods From both mRNA and protein levels, SPARC expression in normal endometrial tissue and EC tissue, normal endometrial cells and 4 EC cell lines (KLE, HEC-1A, HEC-1B, Ishikawa) were evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC), quantitative real-time PCR (qRT-PCR) and Western blotting. RNA interference mediated by lentivirus was performed to get the stable SPARC down-expressing cells. The functional analysis techniques in vitro and in vivo were used to detect the effects of SPARC knockdown on EC cell proliferation, apoptosis, invasion and metastasis. Results The expressions of SPARC in EC tissues and cells were much lower than those in normal endometrial cells and tissues; meanwhile, its low expression was closely related to the malignant clinicopathological characteristics of EC. SPARC knockdown could inhibit apoptosis, promote the process of EMT and improve the proliferation and invasion capacities of EC cells in vitro and in vivo. Conclusion The low expression of SPARC was detected in EC tissues and cells, which was positively correlated with the poor prognosis of EC patients. SPARC acted as a tumor suppressor gene that hindered EC progression, which proposed a new therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Wei Wang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Qiang Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|