1
|
Sood A, Munir M, Syed O, Mehta V, Kaur R, Kumar A, Sridhar A, Sood A, Gupta R. An update on the safety of lanreotide autogel for the treatment of patients with neuroendocrine tumors. Expert Opin Drug Saf 2024; 23:949-957. [PMID: 38847075 DOI: 10.1080/14740338.2024.2365823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) are a rare group of tumors originating from neuroendocrine cells in various organs. They include neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), which differ in biological behavior and prognosis. NETs are usually well-differentiated and slow-growing, while NECs are poorly differentiated and more aggressive. Management of NETs often involves somatostatin analogs like octreotide and lanreotide to control tumor growth and alleviate symptoms, especially in well-differentiated NETs. Lanreotide is used to control tumor growth, and both lanreotide and octreotide alleviate symptoms. Treatment approaches may vary depending on the specific type and grade of the neuroendocrine neoplasm. AREAS COVERED This review provides an update on the safety of lanreotide autogel in treating patients with NETs, through a comprehensive review of clinical trials, post-marketing surveillance, real-world evidence, and its safety profile. Specific adverse events, side effects, and potential risks associated with lanreotide autogel are discussed, along with risk mitigation strategies and recommendations for patient monitoring. EXPERT OPINION The findings highlight the overall safety of lanreotide autogel in managing NETs, focusing on its efficacy in controlling hormone secretion, tumor progression, and symptom management. New safety concerns and precautions are also addressed to help healthcare providers make informed decisions when prescribing lanreotide autogel.
Collapse
Affiliation(s)
- Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Malak Munir
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Omar Syed
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Vidhi Mehta
- Department of Medicine, Mercy Catholic Medical Center, Darby, PA, USA
| | - Ravleen Kaur
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Arathi Kumar
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Archana Sridhar
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Akshit Sood
- Department of Medicine, Navjivan General and Maternity Hospital, Jalandhar, Punjab, India
| | - Rahul Gupta
- Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| |
Collapse
|
2
|
Vitali E, Valente G, Panzardi A, Laffi A, Zerbi A, Uccella S, Mazziotti G, Lania A. Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay. J Endocrinol Invest 2024; 47:1101-1117. [PMID: 37882947 DOI: 10.1007/s40618-023-02221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE The finding of mTOR overactivation in patients affected by pancreatic neuroendocrine tumors (Pa-NETs) led to their treatment with the mTOR inhibitor everolimus. Unfortunately, the efficacy of everolimus is restricted by the occurrence of resistance. The mechanisms leading to Pa-NETs' progression and resistance are not well understood. Notably, chronic inflammation is implicated in NET development. NF-kB is involved in inflammation and drug resistance mechanisms through the activation of several mediators, including STAT3. In this respect, NF-κB and STAT3 interaction is implicated in the crosstalk between inflammatory and tumor cells. METHODS We investigated the expression of NF-kB in different Pa-NETs by RT-qPCR and immunohistochemistry. Then, we studied the role of NF-κB and STAT3 interplay in QGP-1 cells. Subsequently, we assessed the impact of NF-κB and STAT3 inhibitors in QGP-1 cell proliferation and spheroids growth. Finally, we evaluated the implication of the NF-kB pathway in everolimus-resistant Pa-NET cells. RESULTS We found that the increased NF-kB expression correlates with a higher grade in Pa-NETs. The activation of the STAT3 pathway induced by TNFα is mediated by NF-kB p65. NF-kB p65 and STAT3 inhibitors decrease QGP-1 viability, spheroids growth, and Pa-NETs cell proliferation. These effects are maintained in everolimus-resistant QGP-1R cells. Interestingly, we found that NF-kB, STAT3, IL-8, and SOCS3 are overexpressed in QGP-1R compared to QGP-1. CONCLUSION Since the NF-kB pathway is implicated in Pa-NETs' progression and resistance to everolimus, these data could explain the potential use of NF-kB as a novel therapeutic target in Pa-NET patients.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - G Valente
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Panzardi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Laffi
- Oncology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Surgery Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - S Uccella
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, ilan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Chowdhury A, Chatterjee S, Kushwaha A, Nanda S, Dhilip Kumar TJ, Bandyopadhyay A. Sulfonyl Diazaborine 'Click' Chemistry Enables Rapid and Efficient Bioorthogonal Labeling. Chemistry 2023; 29:e202300393. [PMID: 37155600 DOI: 10.1002/chem.202300393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Finding an ideal bioorthogonal reaction that responds to a wide range of biological queries and applications is of great interest in biomedical applications. Rapid diazaborine (DAB) formation in water by the reactions of ortho-carbonyl phenylboronic acid with α-nucleophiles is an attractive conjugation module. Nevertheless, these conjugation reactions demand to satisfy stringent criteria for bioorthogonal applications. Here we show that widely used sulfonyl hydrazide (SHz) offers a stable DAB conjugate by combining with ortho-carbonyl phenylboronic acid at physiological pH, competent for an optimal biorthogonal reaction. Remarkably, the reaction conversion is quantitative and rapid (k2 >103 M-1 s-1 ) at low micromolar concentrations, and it preserves comparable efficacy in a complex biological milieu. DFT calculations support that SHz facilitates DAB formation via the most stable hydrazone intermediate and the lowest energy transition state compared to other biocompatible α-nucleophiles. This conjugation is extremely efficient on living cell surfaces, enabling compelling pretargeted imaging and peptide delivery. We anticipate this work will permit addressing a wide range of cell biology queries and drug discovery platforms exploiting commercially available sulfonyl hydrazide fluorophores and derivatives.
Collapse
Affiliation(s)
- Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Apoorv Kushwaha
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Sidhanta Nanda
- Immunology Lab, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - T J Dhilip Kumar
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
4
|
Viol F, Sipos B, Fahl M, Clauditz TS, Amin T, Kriegs M, Nieser M, Izbicki JR, Huber S, Lohse AW, Schrader J. Novel preclinical gastroenteropancreatic neuroendocrine neoplasia models demonstrate the feasibility of mutation-based targeted therapy. Cell Oncol (Dordr) 2022; 45:1401-1419. [PMID: 36269546 PMCID: PMC9747820 DOI: 10.1007/s13402-022-00727-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) form a rare and remarkably heterogeneous group of tumors. Therefore, establishing personalized therapies is eminently challenging. To achieve progress in preclinical drug development, there is an urgent need for relevant tumor models. METHODS We successfully established three gastroenteropancreatic neuroendocrine tumor (GEP-NET) cell lines (NT-18P, NT-18LM, NT-36) and two gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) cell lines (NT-32 and NT-38). We performed a comprehensive characterization of morphology, NET differentiation, proliferation and intracellular signaling pathways of these five cell lines and, in addition, of the NT-3 GEP-NET cell line. Additionally, we conducted panel sequencing to identify genomic alterations suitable for mutation-based targeted therapy. RESULTS We found that the GEP-NEN cell lines exhibit a stable neuroendocrine phenotype. Functional kinome profiling revealed a higher activity of serine/threonine kinases (STK) as well as protein tyrosine kinases (PTK) in the GEP-NET cell lines NT-3 and NT-18LM compared to the GEP-NEC cell lines NT-32 and NT-38. Panel sequencing revealed a mutation in Death Domain Associated Protein (DAXX), sensitizing NT-18LM to the Ataxia telangiectasia and Rad3 related (ATR) inhibitor Berzosertib, and a mutation in AT-Rich Interaction Domain 1A (ARID1A), sensitizing NT-38 to the Aurora kinase A inhibitor Alisertib. Small interfering RNA-mediated knock down of DAXX in the DAXX wild type cell line NT-3 sensitized these cells to Berzosertib. CONCLUSIONS The newly established GEP-NET and GEP-NEC cell lines represent comprehensive preclinical in vitro models suitable to decipher GEP-NEN biology and pathogenesis. Additionally, we present the first results of a GEP-NEN-specific mutation-based targeted therapy. These findings open up new potentialities for personalized therapies in GEP-NEN.
Collapse
Affiliation(s)
- Fabrice Viol
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Bence Sipos
- Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Martina Fahl
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Amin
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Nieser
- Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Jakob R Izbicki
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, Klinikum Nordfriesland, Husum, Germany.
| |
Collapse
|
5
|
Lipid Metabolism and Homeostasis in Patients with Neuroendocrine Neoplasms: From Risk Factor to Potential Therapeutic Target. Metabolites 2022; 12:metabo12111057. [PMID: 36355141 PMCID: PMC9692415 DOI: 10.3390/metabo12111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid metabolism is known to be involved in tumorigenesis and disease progression in many common cancer types, including colon, lung, breast and prostate, through modifications of lipid synthesis, storage and catabolism. Furthermore, lipid alterations may arise as a consequence of cancer treatment and may have a role in treatment resistance. Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies with increasing incidence, whose mechanisms of cancer initiation and progression are far from being fully understood. Alterations of lipid metabolism may be common across various cancer types, but data about NENs are scattered and heterogeneous. Herein, we provide an overview of the relevant literature on lipid metabolism and alterations in NENs. The available evidence both in basic and clinical research about lipid metabolism in NENs, including therapeutic effects on lipid homeostasis, are summarized. Additionally, the potential of targeting the lipid profile in NEN therapy is also discussed, and areas for further research are proposed.
Collapse
|
6
|
Xu S, Ye C, Chen R, Li Q, Ruan J. The Landscape and Clinical Application of the Tumor Microenvironment in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2022; 14:cancers14122911. [PMID: 35740577 PMCID: PMC9221445 DOI: 10.3390/cancers14122911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The tumor microenvironment (TME) plays a role in promoting tumor progression. Elucidating the relationship between the TME and tumor cells will benefit current therapies. Therefore, this review summarizes the most recent relationship between the TME and tumor characteristics, discusses the differences in the TME at various sites along the digestive tract, and compares the TMEs of neuroendocrine tumors and neuroendocrine carcinomas. Microbial ecological changes in the TME were reviewed. The clinical application of the TME was summarized from bench to bedside. The TME can be used as a tumor drug target for diagnostic value, prognosis prediction, and efficacy evaluation, further revealing the potential of immune checkpoints combined with antiangiogenic drugs. The clinical application prospects of adoptive cell therapy and oncolytic viruses were described. The potential therapeutic approaches and strategies for gastrointestinal neuroendocrine neoplasms are considered. Abstract Gastroenteropancreatic neuroendocrine neoplasms feature high heterogeneity. Neuroendocrine tumor cells are closely associated with the tumor microenvironment. Tumor-infiltrating immune cells are mutually educated by each other and by tumor cells. Immune cells have dual protumorigenic and antitumorigenic effects. The immune environment is conducive to the invasion and metastasis of the tumor; in turn, tumor cells can change the immune environment. These cells also form cytokines, immune checkpoint systems, and tertiary lymphoid structures to participate in the process of mutual adaptation. Additionally, the fibroblasts, vascular structure, and microbiota exhibit interactions with tumor cells. From bench to bedside, clinical practice related to the tumor microenvironment is also regarded as promising. Targeting immune components and angiogenic regulatory molecules has been shown to be effective. The clinical efficacy of immune checkpoint inhibitors, adoptive cell therapy, and oncolytic viruses remains to be further discussed in clinical trials. Moreover, combination therapy is feasible for advanced high-grade tumors. The regulation of the tumor microenvironment based on multiple omics results can suggest innovative therapeutic strategies to prevent tumors from succeeding in immune escape and to support antitumoral effects.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
7
|
Li YL, Cheng ZX, Yu FH, Tian C, Tan HY. Advances in medical treatment for pancreatic neuroendocrine neoplasms. World J Gastroenterol 2022; 28:2163-2175. [PMID: 35721885 PMCID: PMC9157622 DOI: 10.3748/wjg.v28.i20.2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare neoplasms with strong heterogeneity that have experienced an increasing incidence rate in recent years. For patients with locally advanced or distant metastatic PanNENs, systemic treatment options vary due to the different differentiations, grades and stages. The available options for systemic therapy include somatostatin analogs, mole-cularly targeted agents, cytotoxic chemotherapeutic agents, immune checkpoint inhibitors, and peptide receptor radionuclide therapy. In addition, the development of novel molecularly targeted agents is currently in progress. The sequence of selection between different chemotherapy regimens has been of great interest, and resistance to chemotherapeutic agents is the major limitation in their clinical application. Novel agents and high-level clinical evidence continue to emerge in the field of antiangiogenic agents. Peptide receptor radionuclide therapy is increasingly employed for the treatment of advanced neuroendocrine tumors, and greater therapeutic efficacy may be achieved by emerging radio-labeled peptides. Since immune checkpoint inhibitor monotherapies for PanNENs appear to have limited antitumor activity, dual immune checkpoint inhibitor therapies or combinations of antiangiogenic therapies and immune checkpoint inhibitors have been applied in the clinic to improve clinical efficacy. Combining the use of a variety of agents with different mechanisms of action provides new possibilities for clinical treatments. In the future, the study of systemic therapies will continue to focus on the screening of the optimal benefit population and the selection of the best treatment sequence strategy with the aim of truly achieving individualized precise treatment of PanNENs.
Collapse
Affiliation(s)
- Yuan-Liang Li
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zi-Xuan Cheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fu-Huan Yu
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Tian
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huang-Ying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
8
|
Negri M, Amatrudo F, Gentile A, Patalano R, Montò T, de Angelis C, Simeoli C, Pirchio R, Auriemma RS, Colao A, Pivonello R, Pivonello C. Vitamin D Reverts the Exosome-Mediated Transfer of Cancer Resistance to the mTOR Inhibitor Everolimus in Hepatocellular Carcinoma. Front Oncol 2022; 12:874091. [PMID: 35547877 PMCID: PMC9083073 DOI: 10.3389/fonc.2022.874091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Several multi-kinase inhibitors were widely tested as potential first-line or second-line therapy in patients with advanced hepatocellular carcinoma (HCC). However, acquired drug resistance limits their clinical efficacy. Exosomes are microvesicles secreted by tumor and stromal cells that participate in many biological processes, including drug resistance. The current study evaluated the capability of exosomes derived from everolimus (EVE)-resistant HCC cells in inducing drug resistance in parental human HCC cells and the effect of 1,25(OH)2Vitamin D (VitD) treatment in restoring EVE sensitivity. The internalization of exosomes from EVE-resistant (EveR) cells into parental cells conferred the transmission of aggressive phenotype by promoting the transition of epithelial-to-mesenchymal phenotype, as demonstrated by immunofluorescence, and the acquisition of EVE resistance, as demonstrated by cell proliferation and colony formation assays. Moreover, the internalization of exosomes from EveR into parental cells induced deregulation of the mTOR pathway mainly by triggering the activation of the serine/threonine protein kinase Akt, involved in the cellular survival pathway, as demonstrated by Western blot analysis. Interestingly, the treatment with VitD prevented exosome-induced EVE resistance in HCC cells, significantly inhibiting cell proliferation but also partially reducing colony and size number when combined with EVE compared with control. In conclusion, the results of the current study demonstrated that exosomes derived from EveR cells could induce EVE resistance in EVE-sensitive HCC cells and that VitD can revert the exosome-induced EVE resistance by resensitizing to EVE treatment.
Collapse
Affiliation(s)
- Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Feliciana Amatrudo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Annalisa Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| |
Collapse
|
9
|
Zhang D, Li L, Chen Y, Ma J, Yang Y, Aodeng S, Cui Q, Wen K, Xiao M, Xie J, Xu Y, Li Y. Syndecan-1, an indicator of endothelial glycocalyx degradation, predicts outcome of patients admitted to an ICU with COVID-19. Mol Med 2021; 27:151. [PMID: 34861818 PMCID: PMC8640509 DOI: 10.1186/s10020-021-00412-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background We investigated the feasibility of two biomarkers of endothelial damage (Syndecan-1 and thrombomodulin) in coronavirus disease 2019 (COVID-19), and their association with inflammation, coagulopathy, and mortality. Methods The records of 49 COVID-19 patients who were admitted to an intensive care unit (ICU) in Wuhan, China between February and April 2020 were examined. Demographic, clinical, and laboratory data, and outcomes were compared between survivors and non-survivors COVID-19 patients, and between patients with high and low serum Syndecan-1 levels. The dynamics of serum Syndecan-1 levels were also analyzed. Results The levels of Syndecan-1 were significantly higher in non-survivor group compared with survivor group (median 1031.4 versus 504.0 ng/mL, P = 0.002), and the levels of thrombomodulin were not significantly different between these two groups (median 4534.0 versus 3780.0 ng/mL, P = 0.070). Kaplan–Meier survival analysis showed that the group with high Syndecan-1 levels had worse overall survival (log-rank test: P = 0.023). Patients with high Syndecan-1 levels also had significantly higher levels of thrombomodulin, interleukin-6, and tumor necrosis factor-α. Data on the dynamics of Syndecan-1 levels indicated much greater variations in non-survivors than survivors. Conclusions COVID-19 patients with high levels of Syndecan-1 develop more serious endothelial damage and inflammatory reactions, and have increased mortality. Syndecan-1 has potential for use as a marker for progression or severity of COVID-19. Protecting the glycocalyx from destruction is a potential treatment for COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00412-1.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yu Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Jie Ma
- Division of Nephrology, Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yanli Yang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Surita Aodeng
- Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Qiuju Cui
- Operating Room, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Kedi Wen
- Operating Room, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Jing Xie
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
10
|
Mpilla GB, Uddin MH, Al-Hallak MN, Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E, Senapedis WT, Landesman Y, Wagner KU, Viola NT, El-Rayes BF, Philip PA, Mohammad RM, Azmi AS. PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Mol Cancer Ther 2021; 20:1836-1845. [PMID: 34253597 DOI: 10.1158/1535-7163.mct-20-1105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed β-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.
Collapse
Affiliation(s)
- Gabriel B Mpilla
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Md Hafiz Uddin
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Mohammed N Al-Hallak
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Amro Aboukameel
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Yiwei Li
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Steve H Kim
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Rafic Beydoun
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Gregory Dyson
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | - Kay-Uwe Wagner
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Nerissa T Viola
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | - Philip A Philip
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan.
| |
Collapse
|
11
|
Muscogiuri G, Barrea L, Campolo F, Sbardella E, Sciammarella C, Tarsitano MG, Bottiglieri F, Colao A, Faggiano A. Ketogenic diet: a tool for the management of neuroendocrine neoplasms? Crit Rev Food Sci Nutr 2020; 62:1035-1045. [PMID: 33938778 DOI: 10.1080/10408398.2020.1832955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms, whose incidence has rapidly increased in the last years. Nutrition plays an important role in their management; indeed, malnutrition negatively impacts on rates of complications, hospitalization, hospital stay, costs and mortality. Furthermore, it has been reported that a poor nutritional status could influence the outcome of patients with pancreatic NENs. Moreover, obesity, predisposing to insulin resistance and compensatory hyperinsulinemia, could stimulate the growth of these neoplasms. Ketogenic diet (KD), a high-fat, low-carbohydrate diet with adequate amounts of protein, has been reported to be a promising approach for the management of several types of cancer, mostly gynecological and neurological ones. Indeed, it appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells and thus resulting in a promising candidate as an adjuvant cancer therapy. Thus, the aim of this review is to provide an overview on the importance of nutrition in cancer management and in particular in NENs' setting. Furthermore, we reported the current evidence on the efficacy of KD in the management of cancer and based on molecular mechanisms; we also hypothesize the potential use of this nutritional pattern in the management of NENs.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Federica Campolo
- Department of Experimental Medicine, University of Rome "La Sapienza," Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, University of Rome "La Sapienza," Rome, Italy
| | - Concetta Sciammarella
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Filomena Bottiglieri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair "Education for Health and Sustainable Development," Federico II University, Naples, Italy
| | - Antongiulio Faggiano
- Department of Experimental Medicine, University of Rome "La Sapienza," Rome, Italy
| |
Collapse
|