1
|
Kamali AN, Hamedifar H, Eisenhut M, Bautista JM. Multiple myeloma and the potential of new checkpoint inhibitors for immunotherapy. Ther Adv Vaccines Immunother 2024; 12:25151355241288453. [PMID: 39399301 PMCID: PMC11467827 DOI: 10.1177/25151355241288453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Multiple myeloma (MM), a cancer of the bone marrow, is categorized as the second most common hematological malignancy of adults in the Western world. Despite dramatic improvements in immunotherapies in the field of cancers, MM immunotherapy has not been promising until now. Recent clinical studies of immune checkpoint inhibitor therapy, either alone or in combination with anticancer drugs, showed excessive side effects or low efficacy, particularly in advanced MM patients. In this context, lymphocyte levels of exhaustion markers play a pivotal role in the MM tumor microenvironment (TME). Hence in the present review, the mechanisms relevant to MM of five inhibitory molecules including T-cell immunoreceptor with Ig and ITIM domains (TIGIT), T-cell immunoglobulin, and mucin domain 3 (Tim-3), lymphocyte activation gene-3 (LAG-3), V-domain Ig Suppressor of T-cell activation and killer immunoglobulin-like receptors along with bispecific T-cell antibodies (BsAbs) will be discussed. Further, we summarized the underlying biology of these checkpoints in cancer and their rapidly emerging role in pathways in MM along with presenting recent clinical trials in context.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Michael Eisenhut
- Department of Pediatrics, Luton & Dunstable University Hospital, Luton, UK
| | - Jose M. Bautista
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Faculty of Veterinary Sciences, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
2
|
Wang X, Lu L, Yang R, Wang Z, Li Q, Li J, Liu Y. Diagnostic and prognostic value of CD44v9 and TIM3 expression in CK ‑ and CK + regions in gastric cancer tissues. Oncol Lett 2024; 28:479. [PMID: 39161328 PMCID: PMC11332578 DOI: 10.3892/ol.2024.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
The specificity and sensitivity of the current diagnostic and prognostic biomarkers for gastric cancer (GC) are limited. The present study aimed to evaluate the diagnostic and prognostic significance of cluster-of-differentiation gene 44 variant isoform 9 (CD44v9) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) expression levels alone or combined in the tumor tissues of patients with GC and reveal the roles of CD44v9 and TIM3 in the cytokeratin (CK)+ and CK- regions. Multiplex immunofluorescence staining was performed for CD44v9, TIM3 and CK using a tissue microarray. The tissues were divided into three regions based on CK expression: Total, CK+, and CK- regions. The diagnostic and prognostic value was evaluated using receiver operating characteristic curves, Kaplan-Meier and Cox regression analyses. The results demonstrated that the density of cells expressing CD44v9, TIM3 and co-expressing CD44v9 and TIM3 (CD44v9/TIM3) in both the CK+ and CK- regions of tumor tissues was significantly higher than those in normal tissues (P<0.001). Moreover, the expression of CD44v9 in the CK- region was significantly positively correlated with age and tumor grade (P<0.05), and the expression of CD44v9/TIM3 in the CK- region of tumor tissues was significantly positively correlated with age, tumor grade and metastasis (P<0.05). Furthermore, the area under the curve for TIM3 expression in the CK+ region was 0.709, with a sensitivity of 45.83% and a specificity of 85.54% (P<0.001). High expression of CD44v9 in the CK- region was also significantly associated with poor survival and independently predicted a poor prognosis in patients with GC (hazard ratio, 2.387; 95% confidence interval, 1.384-4.118; P<0.01). In conclusion, dividing tissue regions based on CK expression is important for the diagnosis of GC. The expression of TIM3 in the CK+ region demonstrated diagnostic potential for GC, and high expression of CD44v9 in the CK- region was an independent prognostic risk factor for patients with GC.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Lin Lu
- Department of Medical Molecular Diagnosis, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
- Tangshan Key Laboratory of Precision Medicine Testing, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
- Hebei Province Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Ruidong Yang
- Department of Pathology, Luanzhou City People's Hospital, Tangshan, Hebei 063004, P.R. China
| | - Zhiwu Wang
- Second Department of Radiotherapy and Chemotherapy, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Qingke Li
- Department of Gastrointestinal Surgery, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Jingwu Li
- Hebei Province Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Yankun Liu
- Department of Medical Molecular Diagnosis, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
- Tangshan Key Laboratory of Precision Medicine Testing, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
- Hebei Province Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| |
Collapse
|
3
|
Azizi M, Mokhtari Z, Tavana S, Bemani P, Heidari Z, Ghazavi R, Rezaei M. A Comprehensive Study on the Prognostic Value and Clinicopathological Significance of Different Immune Checkpoints in Patients With Colorectal Cancer: A Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 101:100760. [PMID: 39434898 PMCID: PMC11492099 DOI: 10.1016/j.curtheres.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Background The prognostic significance of immune checkpoint expression in the tumor microenvironment has been widely investigated in colorectal cancers. However, the results of these studies are inconsistent and limited to some immune checkpoints. Objective The study aimed to investigate the correlation between different immune checkpoint expression and clinicopathological features and prognostic parameters. Methods We conducted a systematic review and meta-analysis of the published literature in PubMed, Web of Science-Core Collection, Scopus, Embase, and Cochrane databases to summarize the association between various immune checkpoints expression on both tumor cells and immune cells with clinicopathological features and prognostic parameters in patients with colorectal cancer. Results One hundred four studies incorporating 22,939 patients were included in our meta-analysis. Our results showed that among the B7 family, the high expression of B7H3, B7H4, PD-1, and PD-L1 on tumor cells and tumor tissue was significantly associated with higher T stage, advanced tumor, node, metastasis (TNM) stage, presence of vascular invasion, and lymphatic invasion. In addition, patients with high expression of B7H3, B7H4, PD-1, PD-L1, and PD-L2 were associated with shorter overall survival. High expression of PD-1 and PD-L1 in immune cells correlated with the absence of lymph node metastasis, lower TNM stage, early T stage, poor overall survival, and disease-free survival, respectively. Moreover, we found significant positive correlations between CD70 and Galectin-3 expression with advanced T stage. HLA-II overexpression was correlated with the absence of lymph node metastasis (odds ratio = 0.21, 95% CI = 0.11-0.38, P < 0.001) and early TNM stage (odds ratio = 0.35, 95% CI = 0.26-0.47, P < 0.001). Conclusions Overexpression of B7H3, B7H4, PD-1, PD-L1, PD-L2, CD70, and Galectin-3 on tumors is significantly associated with unfavorable clinicopathological characteristics and poor prognostic factors. Hence, these immune checkpoints can serve as predictive biomarkers for prognosis and the clinicopathological features of colorectal cancer because this is essential to identify patients suitable for anticancer therapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mokhtari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Bemani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roghayeh Ghazavi
- Department of Knowledge and Information Science, Faculty of Education and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
5
|
Ahmed J, Nishizaki D, Miyashita H, Lee S, Nesline MK, Pabla S, Conroy JM, DePietro P, Sicklick JK, Kato S, Kurzrock R. TIM-3 transcriptomic landscape with clinical and immunomic correlates in cancer. Am J Cancer Res 2024; 14:2493-2506. [PMID: 38859842 PMCID: PMC11162668 DOI: 10.62347/mqff6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
TIM-3, an inhibitory checkpoint receptor, may invoke anti-PD-1/anti-PD-L1 immune checkpoint inhibitor (ICI) resistance. The predictive impact of TIM-3 RNA expression in various advanced solid tumors among patients treated with ICIs is yet to be determined, and their prognostic significance also remains unexplored. We investigated TIM-3 transcriptomic expression and clinical outcomes. We examined TIM-3 RNA expression data through the OmniSeq database. TIM-3 transcriptomic patterns were calibrated against a reference population (735 tumors), adjusted to internal housekeeping genes, and calculated as percentiles. Overall, 514 patients (31 cancer types; 489 patients with advanced/metastatic disease and clinical annotation) were assessed. Ninety tumors (17.5% of 514) had high (≥75th percentile RNA rank) TIM-3 expression. Pancreatic cancer had the greatest proportion of TIM-3 high expressors (36% of 55 patients). Still, there was variability within cancer types with, for instance, 12.7% of pancreatic cancers harboring low TIM-3 (<25th percentile) levels. High TIM-3 expression independently and significantly correlated with high PD-L2 RNA expression (odds ratio (OR) 9.63, 95% confidence interval (CI) 4.91-19.4, P<0.001) and high VISTA RNA expression (OR 2.71, 95% CI 1.43-5.13, P=0.002), all in multivariate analysis. High TIM-3 RNA did not correlate with overall survival (OS) from time of metastatic disease in the 272 patients who never received ICIs, suggesting that it is not a prognostic factor. However, high TIM-3 expression predicted longer median OS (but not progression-free survival) in 217 ICI-treated patients (P=0.0033; median OS, 2.84 versus 1.21 years (high versus not-high TIM-3)), albeit not retained in multivariable analysis. In summary, TIM-3 RNA expression was variable between and within malignancies, and high levels associated with high PD-L2 and VISTA checkpoints and with pancreatic cancer. Individual tumor immunomic assessment and co-targeting co-expressed checkpoints merits exploration in prospective trials as part of a precision immunotherapy strategy.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of HealthBethesda, MD, The United Sates
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | - Hirotaka Miyashita
- Dartmouth Cancer Center, Hematology and Medical OncologyLebanon, NH, The United States
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | | | | | | | - Paul DePietro
- OmniSeq Inc. (Labcorp)Buffalo, NY, The United States
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California San DiegoSan Diego, CA, The United States
- Department of Pharmacology, University of California San DiegoSan Diego, CA, The United States
- Moores Cancer Center, University of California San DiegoLa Jolla, CA, The United States
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | - Razelle Kurzrock
- WIN ConsortiumParis, France
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of WisconsinMilwaukee, WI, The United States
| |
Collapse
|
6
|
Davoudi F, Moradi A, Sadeghirad H, Kulasinghe A. Tissue biomarkers of immune checkpoint inhibitor therapy. Immunol Cell Biol 2024; 102:179-193. [PMID: 38228572 DOI: 10.1111/imcb.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Cancer immunotherapy has been rejuvenated by the growing understanding of the immune system's role in tumor activity over the past two decades. During cancer initiation and progression, tumor cells employ various mechanisms that resemble peripheral immune tolerance to evade the antitumor responses of the immune system. Immune checkpoint molecules are the major mechanism of immune resistance that are exploited by tumor cells to inhibit T-cell activation and suppress immune responses. The targeting of immune checkpoint pathways has led to substantial improvements in survival rates in a number of solid cancers. However, a lack of understanding of the heterogeneity of the tumor microenvironment (TME) has resulted in inefficient therapy responses. A greater understanding of the TME is needed to identify patients likely to respond, and those that will have resistance to immune checkpoint inhibitors (ICIs). Advancement in spatial single-cell technologies has allowed deeper insight into the phenotypic and functional diversities of cells in the TME. In this review, we provide an overview of ICI biomarkers and highlight how high-dimensional spatially resolved, single-cell approaches provide deep molecular insights into the TME and allow for the discovery of biomarkers of clinical benefit.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|
8
|
Sun Y, Zhou X, Lucas E, Chen L, Zhang H, Chen H, Zhou F. Expression of B7-H3 and TIM-3 in gastric-type endocervical adenocarcinoma: prevalence, association with PD-L1 expression, and prognostic significance. J Pathol Clin Res 2024; 10:e345. [PMID: 37798754 PMCID: PMC10766062 DOI: 10.1002/cjp2.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 10/07/2023]
Abstract
Gastric-type endocervical adenocarcinoma (GEA) is the second most common subtype of endocervical adenocarcinoma and has a poor prognosis. Anti-programmed death-1 and anti-programmed death-ligand 1 (PD-L1) inhibitors have emerged as a major treatment option for GEA; however, data on the expression of other immune checkpoints in GEA are limited. We analyzed the expression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and B7 homolog 3 protein (B7-H3) in 58 GEA and investigated their prognostic significance as well as association with PD-L1 expression and other known prognostic factors. Applying the tumor proportion score (TPS) with a cutoff of 1%, B7-H3 and TIM-3 were present in 48.3% and 17.2% of cases, respectively. Applying the combined positive score (CPS) with a cutoff of 1, TIM-3 expression was present in 70.7% of cases. Moreover, the expression of three checkpoints (B7-H3, TIM-3, and PD-L1) was incompletely overlapping. Patients with B7-H3 positive tumors (by TPS) or TIM-3 positive tumors (by TPS) had significantly worse recurrence-free survival (RFS) and overall survival (OS) (log-rank). Using CPS, patients with TIM-3 positive tumors showed significantly worse RFS (log-rank). Similarly, B7-H3 positivity (by TPS) and TIM-3 positivity (by TPS) were associated with worse RFS and OS in univariate analysis. TIM-3 positivity (by CPS) was associated with worse RFS in univariate analysis and the final Cox multivariate analysis. In conclusion, our results show that (1) B7-H3 and TIM-3 are frequently expressed in GEA and their expression overlaps incompletely with PD-L1; and (2) both B7-H3 and TIM-3 are independent negative prognostic markers in GEA.
Collapse
Affiliation(s)
- Yao Sun
- Department of PathologyZhejiang University School of Medicine Women's HospitalHangzhouZhejiang ProvincePR China
| | - Xin Zhou
- Department of PathologyZhejiang University School of Medicine Women's HospitalHangzhouZhejiang ProvincePR China
- Department of PathologyInternational Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Elena Lucas
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PathologyParkland HospitalDallasTXUSA
| | - Lili Chen
- Department of GynecologyZhejiang University School of Medicine Women's HospitalHangzhouZhejiang ProvincePR China
| | - Huijuan Zhang
- Department of PathologyInternational Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Hao Chen
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PathologyParkland HospitalDallasTXUSA
| | - Feng Zhou
- Department of PathologyZhejiang University School of Medicine Women's HospitalHangzhouZhejiang ProvincePR China
- Department of PathologyInternational Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiPR China
| |
Collapse
|
9
|
Zhang XS, Zhou HC, Wei P, Chen L, Ma WH, Ding L, Liang SC, Chen BD. Combined TIM-3 and PD-1 blockade restrains hepatocellular carcinoma development by facilitating CD4+ and CD8+ T cell-mediated antitumor immune responses. World J Gastrointest Oncol 2023; 15:2138-2149. [PMID: 38173440 PMCID: PMC10758641 DOI: 10.4251/wjgo.v15.i12.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) are beneficial to the resumption of anti-tumor immunity response and hold extreme potential as efficient therapies for certain malignancies. However, ICIs with a single target exhibit poor overall response rate in hepatocellular carcinoma (HCC) patients due to the complex pathological mechanisms of HCC. AIM To investigate the effects of combined TIM-3 and PD-1 blockade on tumor development in an HCC mouse model, aiming to identify more effective immunotherapies and provide more treatment options for HCC patients. METHODS The levels of PD-1 and TIM-3 on CD4+ and CD8+ T cells from tumor tissues, ascites, and matched adjacent tissues from HCC patients were determined with flow cytometry. An HCC xenograft mouse model was established and treated with anti-TIM-3 monoclonal antibody (mAb) and/or anti-PD-1 mAb. Tumor growth in each group was measured. Hematoxylin and eosin staining and immunohistochemical staining were used to evaluate T cell infiltration in tumors. The percentage of CD4+ and CD8+ T cells in tissue samples from mice was tested with flow cytometry. The percentages of PD-1+CD8+, TIM-3+CD8+, and PD-1+TIM-3+ CD8+ T cells was accessed by flow cytometry. The levels of the cytokines including tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-10 in tumor tissues were gauged with enzyme-linked immunosorbent assay kits. RESULTS We confirmed that PD-1 and TIM-3 expression was substantially upregulated in CD4+ and CD8+ T cells isolated from tumor tissues and ascites of HCC patients. TIM-3 mAb and PD-1 mAb treatment both reduced tumor volume and weight, while combined blockade had more substantial anti-tumor effects than individual treatment. Then we showed that combined therapy increased T cell infiltration into tumor tissues, and downregulated PD-1 and TIM-3 expression on CD8+ T cells in tumor tissues. Moreover, combined treatment facilitated the production of T cell effector cytokines TNF-α and IFN-γ, and reduced the production of immunosuppressive cytokines IL-10 and IL-6 in tumor tissues. Thus, we implicated that combined blockade could ameliorate T cell exhaustion in HCC mouse model. CONCLUSION Combined TIM-3 and PD-1 blockade restrains HCC development by facilitating CD4+ and CD8+ T cell-mediated antitumor immune responses.
Collapse
Affiliation(s)
- Xu-Sheng Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Hong-Cai Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Peng Wei
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Long Chen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wei-Hu Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lin Ding
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shi-Cai Liang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ben-Dong Chen
- Department of Hepatobiliary Surgery, The General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Hepatobiliary Pancreatic Surgical, Ningxia Hepatobiliary Pancreatic Surgical Diseases Clinical Research Center, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
10
|
Teagle AR, Castro-Sanchez P, Brownlie RJ, Logan N, Kapoor SS, Wright D, Salmond RJ, Zamoyska R. Deletion of the protein tyrosine phosphatase PTPN22 for adoptive T cell therapy facilitates CTL effector function but promotes T cell exhaustion. J Immunother Cancer 2023; 11:e007614. [PMID: 38056892 PMCID: PMC10711921 DOI: 10.1136/jitc-2023-007614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) is a promising strategy for treating cancer, yet it faces several challenges such as lack of long-term protection due to T cell exhaustion induced by chronic TCR stimulation in the tumor microenvironment. One benefit of ACT, however, is that it allows for cellular manipulations, such as deletion of the phosphotyrosine phosphatase non-receptor type 22 (PTPN22), which improves CD8+ T cell antitumor efficacy in ACT. We tested whether Ptpn22KO cytolytic T cells (CTLs) were also more effective than Ptpn22WT CTL in controlling tumors in scenarios that favor T cell exhaustion. METHODS Tumor control by Ptpn22WT and Ptpn22KO CTL was assessed following adoptive transfer of low numbers of CTL to mice with subcutaneously implanted MC38 tumors. Tumor infiltrating lymphocytes were isolated for analysis of effector functions. An in vitro assay was established to compare CTL function in response to acute and chronic restimulation with antigen-pulsed tumor cells. The expression of effector and exhaustion-associated proteins by Ptpn22WT and Ptpn22KO T cells was followed over time in vitro and in vivo using the ID8 tumor model. Finally, the effect of PD-1 and TIM-3 blockade on Ptpn22KO CTL tumor control was assessed using monoclonal antibodies and CRISPR/Cas9-mediated knockout. RESULTS Despite having improved effector function at the time of transfer, Ptpn22KO CTL became more exhausted than Ptpn22WT CTL, characterized by more rapid loss of effector functions, and earlier and higher expression of inhibitory receptors (IRs), particularly the terminal exhaustion marker TIM-3. TIM-3 expression, under the control of the transcription factor NFIL3, was induced by IL-2 signaling which was enhanced in Ptpn22KO cells. Antitumor responses of Ptpn22KO CTL were improved following PD-1 blockade in vivo, yet knockout or antibody-mediated blockade of TIM-3 did not improve but further impaired tumor control, indicating TIM-3 signaling itself did not drive the diminished function seen in Ptpn22KO CTL. CONCLUSIONS This study questions whether TIM-3 plays a role as an IR and highlights that genetic manipulation of T cells for ACT needs to balance short-term augmented effector function against the risk of T cell exhaustion in order to achieve longer-term protection.
Collapse
Affiliation(s)
- Alexandra Rose Teagle
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca J Brownlie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Nicola Logan
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simran S Kapoor
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - David Wright
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Robert J Salmond
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Qiang L, Huili Z, Leilei Z, Xiaoyan W, Hui W, Biao H, Yigang W, Fang H, Yiqiang W. Intratumoral delivery of a Tim-3 antibody-encoding oncolytic adenovirus engages an effective antitumor immune response in liver cancer. J Cancer Res Clin Oncol 2023; 149:18201-18213. [PMID: 38078962 DOI: 10.1007/s00432-023-05501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND PURPOSE The use of oncolytic viruses as a gene therapy vector is an area of active biomedical research, particularly in the context of cancer treatment. However, the actual therapeutic success of this approach to tumor elimination remains limited. As such, the present study was developed with the goal of simultaneously enhancing the antitumor efficacy of oncolytic viruses and the local immune response by combining the Ad-GD55 oncolytic adenovirus and an antibody specific for the TIM-3 immune checkpoint molecule (α-TIM-3). APPROACH AND KEY RESULTS The results of Virus and cell-mediated cytotoxicity assay, qPCR, and Western immunoblotting showed that Ad-GD55-α-Tim-3 oncolytic adenovirus is capable of inducing α-TIM-3 expression within hepatoma cells upon infection, and Ad-GD55-α-TIM-3 exhibited inhibitory efficacy superior to that of Ad-GD55 when used to treat these tumor cells together with the induction of enhanced intracellular immunity. In vivo experiments revealed that Ad-GD55-α-TIM-3 administration was sufficient to inhibit tumor growth and engage in a more robust local immune response within the simulated tumor immune microenvironment. CONCLUSION AND IMPLICATIONS These results highlighted the promising therapeutic effects of Ad-GD55-α-TIM-3 oncolytic adenovirus against HCC in vitro and in vivo. As such, this Ad-GD55-α-TIM-3 oncolytic adenovirus may represent a viable approach to the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Qiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Zhang Huili
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhang Leilei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wang Xiaoyan
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Wang Hui
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wang Yigang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Huang Fang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Wang Yiqiang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China.
| |
Collapse
|
12
|
Lee J, Lathia JD. The one-two punch: TIM-3 blockade targets immune and tumor cells to knock out pediatric brain tumors. Cancer Cell 2023; 41:1843-1845. [PMID: 37863067 DOI: 10.1016/j.ccell.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
Diffuse midline gliomas (DMGs) pose treatment challenges due to their location within the brainstem and invasive nature. Although classical immune checkpoint inhibitors have demonstrated limited success in clinical trials, Ausejo-Mauleon et al. demonstrate TIM-3 is an effective DMG strategy, targeting both immune and tumor cells for dual therapeutic benefit.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
13
|
Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. Ther Adv Vaccines Immunother 2023; 11:25151355231192043. [PMID: 37662491 PMCID: PMC10469281 DOI: 10.1177/25151355231192043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Checkpoint markers and immune checkpoint inhibitors have been increasingly identified and developed as potential immunotherapeutic targets in various human cancers. Despite valuable efforts to discover novel immune checkpoints and their ligands, the precise roles of their therapeutic functions, as well as the broad identification of their counterpart receptors, remain to be addressed. In this context, it has been suggested that various putative checkpoint receptors can be induced upon activation. In the tumor microenvironment, T cells, as crucial immune response against malignant diseases as well as other immune central effector cells, such as natural killer cells, are regulated via co-stimulatory or co-inhibitory signals from immune or tumor cells. Studies have shown that exposure of T cells to tumor antigens upregulates the expression of inhibitory checkpoint receptors, leading to T-cell dysfunction or exhaustion. Although targeting immune checkpoint regulators has shown relative clinical efficacy in some tumor types, most trials in the field of cancer immunotherapies have revealed unsatisfactory results due to de novo or adaptive resistance in cancer patients. To overcome these obstacles, combinational therapies with newly discovered inhibitory molecules or combined blockage of several checkpoints provide a rationale for further research. Moreover, precise identification of their receptors counterparts at crucial checkpoints is likely to promise effective therapies. In this review, we examine the prospects for the application of newly emerging checkpoints, such as T-cell immunoglobulin and mucin domain 3, lymphocyte activation gene-3, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Ig suppressor of T-cell activation (VISTA), new B7 family proteins, and B- and T-cell lymphocyte attenuator, in association with immunotherapy of malignancies. In addition, their clinical and biological significance is discussed, including their expression in various human cancers, along with their roles in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Simin Dasht Industrial Area, Karaj, Iran
- CinnaGen Research and Production Co., Alborz 3165933155, Iran
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| |
Collapse
|
14
|
Liu G, Liu B, Liu B, Tang L, Liu Z, Dai H. Cytokines as Prognostic Biomarkers in Osteosarcoma Patients: A Systematic Review and Meta-analysis. J Interferon Cytokine Res 2023; 43:335-343. [PMID: 37566475 DOI: 10.1089/jir.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Osteosarcoma is the most prevalent type of primary bone malignancy in children and adolescents. The effect of cytokines on osteosarcoma prognosis has been studied and reported. This meta-analysis aimed to assess the prognostic value of cytokines as osteosarcoma biomarkers. Databases including PubMed, Embase, and Cochrane Library were searched for studies on the prognostic value of cytokines in osteosarcoma. From the eligible studies, data on overall survival (OS), disease-free survival, and metastasis-free survival (MFS) were extracted. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. A total of 11 studies involving 755 patients were included in this analysis. High macrophage migration inhibitory factor (MIF) expression in tumors was significantly associated with shortened OS (HR = 2.01, 95% CI: 1.18-3.42, P = 0.010) and MFS (HR = 2.51, 95% CI: 1.47-4.01, P = 0.001). Elevated T cell immunoglobulin and mucin domain-3 (Tim-3) levels in serum correlated with increased risk of disease progression in patients with osteosarcoma (HR = 3.14, 95% CI: 2.88-3.03, P < 0.001). However, interleukin 6 (IL-6) and tumor necrosis factor were not substantially associated with osteosarcoma prognosis. Owing to a paucity of research, other relevant cytokines [interferon-α/β receptor, tissue factor, macrophage inhibitory cytokine 1 (MIC-1), and IL-23] could not be combined. In conclusion, MIF levels in tumors and Tim-3 levels in serum can be potential biomarkers of poor prognosis in osteosarcoma. To confirm this finding and implement these biomarkers into clinical applications, additional large-scale, high-quality studies are needed.
Collapse
Affiliation(s)
- Gang Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Ben Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - BinBin Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Liyuan Tang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China
| | - Zhiwei Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Haiyang Dai
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
15
|
Li Y, Shen F, Tan Q, Chen Y, Gu Y. Research Progress of Immuno-Inhibitory Receptors in Gynecological Cervical Cancer. Technol Cancer Res Treat 2023; 22:15330338231208846. [PMID: 37908109 PMCID: PMC10621300 DOI: 10.1177/15330338231208846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/03/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
The mortality rate of cervical cancer is the highest among female malignant tumors and seriously threatens women's lives and health. Persistent high-risk human papillomavirus (HPV) infection is the leading cause of cervical cancer, which provides the basis for immunotherapy. In recent years, owing to progress in targeted therapy and immunotherapy, the survival time of patients with cervical cancer has been significantly extended. However, effective treatments for advanced, recurrent, and metastatic cancers are lacking. "Tumor immunotherapy" has been described as a viable option for tumor therapy but the efficacy of immunotherapy for cervical cancer has only been demonstrated in phase I or II clinical trials. Immune checkpoint inhibitors (ICIs) have shown promising clinical results particularly for treating recurrent and advanced cervical cancer, however, they remain inadequate in some patients. Immune checkpoint is the target of immunotherapy. Therefore, the identification of novel therapeutic targets is essential. In this paper, the structure, expression, function, biological effect of immune inhibitory receptors (IRs) and related clinical studies were reviewed, in order to further explore the application potential of these immune checkpoints and apply them to the future clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gynecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fangrong Shen
- Department of Gynecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingqing Tan
- Department of Gynecological Oncology, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Chen H, Molberg K, Carrick K, Niu S, Rivera Colon G, Gwin K, Lewis C, Zheng W, Castrillon DH, Lucas E. Prevalence and prognostic significance of PD-L1, TIM-3 and B7-H3 expression in endometrial serous carcinoma. Mod Pathol 2022; 35:1955-1965. [PMID: 35804040 DOI: 10.1038/s41379-022-01131-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Endometrial serous carcinoma (ESC) is an aggressive type of endometrial carcinoma with a poor prognosis. Immune checkpoint blockade has evolved as a novel treatment option for endometrial cancers; however, data on expression of immune checkpoints that may be potential targets for immunotherapy in ESC are limited. We analyzed the prevalence and prognostic significance of PD-L1, TIM-3 and B7-H3 immune checkpoints in 99 ESC and evaluated their correlation with CD8 + tumor infiltrating lymphocytes. Applying the tumor proportion score (TPS) with a cutoff of 1%, PD-L1, TIM-3 and B7-H3 expression was present in 17%, 10% and 93% of cases, respectively. Applying the combined positive score (CPS) with a cutoff of 1, PD-L1, TIM-3 and B7-H3 expression was present in 63%, 67% and 94% of cases, respectively. Expression of these markers was largely independent of one another. PD-L1 correlated with higher CD8 + T-cell density when evaluated by either TPS (p = 0.02) or CPS (p < 0.0001). TIM-3 correlated with CD8 + T-cell density when evaluated by CPS (p < 0.0001). PD-L1 positivity was associated with improved overall survival (p = 0.038) when applying CPS. No association between PD-L1 expression and survival was found using TPS, and there was no association between TIM-3 or B7-H3 positivity and survival by either TPS or CPS. Using TPS, PD-L1 correlated with a higher tumor stage but not with survival, whereas the converse was true when PD-L1 was evaluated by CPS, suggesting that PD-L1 expression in immune cells correlates with prognosis and is independent of tumor stage. In conclusion, PD-L1, TIM-3 and B7-H3 may be potential therapeutic targets in selected patients with ESC. Further investigation of their roles as predictive biomarkers is needed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Kyle Molberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Kelley Carrick
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Shuang Niu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Glorimar Rivera Colon
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Katja Gwin
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wenxin Zheng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diego H Castrillon
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Elena Lucas
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA. .,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Kozłowski M, Borzyszkowska D, Cymbaluk-Płoska A. The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer. Biomedicines 2022; 10:2826. [PMID: 36359346 PMCID: PMC9687228 DOI: 10.3390/biomedicines10112826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 08/11/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignancies. The main treatment options are surgical removal of the tumor and chemotherapy. Cancer treatment has been revolutionized by immunotherapy, which has developed explosively over the past two decades. Clinical anticancer strategies used in immunotherapy include therapies based on the inhibition of PD-1, PD-L1 or CTLA-4. Despite encouraging results, a large proportion of cancer patients are resistant to these therapies or eventually develop resistance. It is important to perform research that will focus on immunotherapy based on other immune checkpoint inhibitors. The aim of the review was to analyze studies considering the expression of TIM-3 and LAG-3 in the ovarian cancer microenvironment and considering immunotherapy for ovarian cancer that includes antibodies directed against TIM-3 and LAG-3. As the data showed, the expression of the described immune checkpoints was shown in different ways. Higher TIM-3 expression was associated with a more advanced tumor stage. Both TIM-3 and LAG-3 were co-expressed with PD-1 in a large proportion of studies. The effect of LAG-3 expression on progression-free survival and/or overall survival is inconclusive and certainly requires further study. Co-expression of immune checkpoints prompts combination therapies using anti-LAG-3 or anti-TIM-3. Research on immune checkpoints, especially TIM-3 and LAG-3, should be further developed.
Collapse
|
18
|
Vlaming M, Bilemjian V, Freile JÁ, Melo V, Plat A, Huls G, Nijman H, de Bruyn M, Bremer E. Tumor infiltrating CD8/CD103/TIM-3-expressing lymphocytes in epithelial ovarian cancer co-express CXCL13 and associate with improved survival. Front Immunol 2022; 13:1031746. [DOI: 10.3389/fimmu.2022.1031746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Reactivation of tumor infiltrating T lymphocytes (TILs) with immune checkpoint inhibitors or co-stimulators has proven to be an effective anti-cancer strategy for a broad range of malignancies. However, epithelial ovarian cancer (EOC) remains largely refractory to current T cell-targeting immunotherapeutics. Therefore, identification of novel immune checkpoint targets and biomarkers with prognostic value for EOC is warranted. Combining multicolor immunofluorescent staining’s with single cell RNA-sequencing analysis, we here identified a TIM-3/CXCL13-positive tissue-resident memory (CD8/CD103-positive) T cell (Trm) population in EOC. Analysis of a cohort of ~175 patients with high-grade serous EOC revealed TIM-3-positive Trm were significantly associated with improved patient survival. As CXCL13-positive CD8-positive T cells have been strongly linked to patient response to anti-PD1 immune checkpoint blockade, combinatorial TIM-3 and PD-1 blockade therapy may be of interest for the (re)activation of anti-cancer immunity in EOC.
Collapse
|
19
|
Conway JW, Rawson RV, Lo S, Ahmed T, Vergara IA, Gide TN, Attrill GH, Carlino MS, Saw RPM, Thompson JF, Spillane AJ, Shannon KF, Shivalingam B, Menzies AM, Wilmott JS, Long GV, Scolyer RA, Pires da Silva I. Unveiling the tumor immune microenvironment of organ-specific melanoma metastatic sites. J Immunother Cancer 2022; 10:jitc-2022-004884. [PMID: 36096531 PMCID: PMC9472156 DOI: 10.1136/jitc-2022-004884] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background The liver is a known site of resistance to immunotherapy and the presence of liver metastases is associated with shorter progression-free and overall survival (OS) in melanoma, while lung metastases have been associated with a more favorable outcome. There are limited data available regarding the immune microenvironment at different anatomical sites of melanoma metastases. This study sought to characterize and compare the tumor immune microenvironment of liver, brain, lung, subcutaneous (subcut) as well as lymph node (LN) melanoma metastases. Methods We analyzed OS in 1924 systemic treatment-naïve patients with AJCC (American Joint Committee on Cancer) stage IV melanoma with a solitary site of organ metastasis. In an independent cohort we analyzed and compared immune cell densities, subpopulations and spatial distribution in tissue from liver, lung, brain, LN or subcut sites from 130 patients with stage IV melanoma. Results Patients with only liver, brain or bone metastases had shorter OS compared to those with lung, LN or subcutaneous and soft tissue metastases. Liver and brain metastases had significantly lower T-cell infiltration than lung (p=0.0116 and p=0.0252, respectively) and LN metastases (p=0.0116 and p=0.0252, respectively). T cells were further away from melanoma cells in liver than lung metastases (p=0.0335). Liver metastases displayed unique T-cell profiles, with a significantly lower proportion of programmed cell death protein-1+ T cells compared to all other anatomical sites (p<0.05), and a higher proportion of TIM-3+ T cells compared to LN (p=0.0004), subcut (p=0.0082) and brain (p=0.0128) metastases. Brain metastases had a lower macrophage density than subcut (p=0.0105), liver (p=0.0095) and lung (p<0.0001) metastases. Lung metastases had the highest proportion of programmed death ligand-1+ macrophages of the total macrophage population, significantly higher than brain (p<0.0001) and liver metastases (p=0.0392). Conclusions Liver and brain melanoma metastases have a significantly reduced immune infiltrate than lung, subcut and LN metastases, which may account for poorer prognosis and reduced immunotherapy response rates in patients with liver or brain metastases. Increased TIM-3 expression in liver metastases suggests TIM-3 inhibitor therapy as a potential therapeutic opportunity to improve patient outcomes.
Collapse
Affiliation(s)
- Jordan W Conway
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tasnia Ahmed
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Grace Heloise Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Alexander Maxwell Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia .,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia.,Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, Piñeiro-Hermida S, Vera R, Escors D, Kochan G. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells 2022; 11:2351. [PMID: 35954196 PMCID: PMC9367598 DOI: 10.3390/cells11152351] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ana Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), 31001 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Hugo Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - Miriam Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Maider Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Pablo Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| |
Collapse
|
21
|
Sellmer L, Kovács J, Walter J, Kumbrink J, Neumann J, Kauffmann-Guerrero D, Kiefl R, Schneider C, Jung A, Behr J, Tufman A. Markers of Immune Cell Exhaustion as Predictor of Survival in Surgically-Treated Early-Stage NSCLC. Front Immunol 2022; 13:858212. [PMID: 35833140 PMCID: PMC9271570 DOI: 10.3389/fimmu.2022.858212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor tissue as well as regional lymph nodes are removed during curative surgery for early-stage non-small cell lung cancer (NSCLC). These tissues provide a unique snapshot of the immune cell composition at the time of surgery. We investigated the immune landscape in matched tumor tissue, tumor bearing (tb) and non-tumor bearing (ntb) N1 as well as N2 lymph nodes (LNs) in patients with NSCLC and its relation to survival. Methods Internal hospital databases were screened for surgically treated NSCLC patients for whom tumor tissue, tbLNs as well as N1 and N2 ntbLNs were available. Clinical as well as demographic data were extracted from hospital records. Expression profiling of 770 immune-related genes was performed using the PanCancer IO 360 panel by NanoString Technologies. Results We identified 190 surgically treated patients of whom 16 fulfilled inclusion criteria and had sufficient archived tissue. The Tumor Immune Dysfunction and Exclusion (TIDE) score in N1 tumor-free lymph nodes was associated with OS. TIM-3 expression was inversely correlated with TIDE scores in affected LNs, N1 and N2 ntbLNs. Levels of CD8 expression were significantly higher in TIDE High compared to TIDE Low patients. TIM-3 and PD-L1 were selected for the final model for OS in multivariate regression in more than one tissue. Conclusion Levels of immune cell exhaustion markers may indicate a dysfunctional immune status and are associated with survival after curative surgery in NSCLC.
Collapse
Affiliation(s)
- Laura Sellmer
- Department of Medicine V, Member of the German Center for Lung Research, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
- *Correspondence: Laura Sellmer,
| | - Julia Kovács
- Department of Thoracic Surgery, Thoracic Oncology Centre Munich, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Julia Walter
- Department of Medicine V, Member of the German Center for Lung Research, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig Maximilians University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, Member of the German Center for Lung Research, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Rosemarie Kiefl
- Department of Medicine V, Member of the German Center for Lung Research, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Christian Schneider
- Department of Thoracic Surgery, Thoracic Oncology Centre Munich, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Andreas Jung
- Institute of Pathology, Medical Faculty, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Member of the German Center for Lung Research, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Amanda Tufman
- Department of Medicine V, Member of the German Center for Lung Research, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| |
Collapse
|
22
|
Gomes de Morais AL, Cerdá S, de Miguel M. New Checkpoint Inhibitors on the Road: Targeting TIM-3 in Solid Tumors. Curr Oncol Rep 2022; 24:651-658. [PMID: 35218498 DOI: 10.1007/s11912-022-01218-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Even though checkpoint inhibitors have become a recent milestone for the treatment of many different tumor types, eventually, most part of patients will develop resistance mechanisms and their disease will progress. New generations of checkpoint inhibitors, as the ones directed to TIM-3, are on research. RECENT FINDINGS TIM-3 expression has been associated with more advanced stages and shorter survival in several tumor types, due to its association with T-cell dysfunction, and has become an interesting target to explore. Early phase clinical trials with different anti-TIM-3 monoclonal antibodies have shown a safe toxicity profile, as cobolimab, LY3321367, or sabatolimab; however, the general antitumor activity remains to be determined and further investigations are needed. TIM-3 is implicated in resistance to immunotherapy due to its role in T cell exhaustion. However, the TIM-3 pathway is highly complex in terms of non-canonical signaling, broad expression by different immune cells and multiple ligands. Different anti-TIM-3 inhibitors are currently on research, either as monotherapy or in combination with other immunotherapies or chemotherapy, aiming to overcome resistance.
Collapse
Affiliation(s)
- Ana Luiza Gomes de Morais
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Sara Cerdá
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Calle Oña, 10, 28050, Madrid, Spain
| | - Maria de Miguel
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Calle Oña, 10, 28050, Madrid, Spain.
| |
Collapse
|
23
|
Association of Tim-3/Gal-9 Axis with NLRC4 Inflammasome in Glioma Malignancy: Tim-3/Gal-9 Induce the NLRC4 Inflammasome. Int J Mol Sci 2022; 23:ijms23042028. [PMID: 35216164 PMCID: PMC8878774 DOI: 10.3390/ijms23042028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Tim-3/Gal-9 and the NLRC4 inflammasome contribute to glioma progression. However, the underlying mechanisms involved are unclear. Here, we observed that Tim-3/Gal-9 expression increased with glioma malignancy and found that Tim-3/Gal-9 regulate NLRC4 inflammasome formation and activation. Tim-3/Gal-9 and NLRC4 inflammasome-related molecule expression levels increased with WHO glioma grade, and this association was correlated with low survival. We investigated NLRC4 inflammasome formation by genetically regulating Tim-3 and its ligand Gal-9. Tim-3/Gal-9 regulation was positively correlated with the NLRC4 inflammasome, NLRC4, and caspase-1 expression. Tim-3/Gal-9 did not trigger IL-1β secretion but were strongly positively correlated with caspase-1 activity as they induced programmed cell death in glioma cells. A protein–protein interaction analysis revealed that the FYN-JAK1-ZNF384 pathways are bridges in NLRC4 inflammasome regulation by Tim-3/Gal-9. The present study showed that Tim-3/Gal-9 are associated with poor prognosis in glioma patients and induce NLRC4 inflammasome formation and activation. We proposed that a Tim-3/Gal-9 blockade could be beneficial in glioma therapy as it would reduce the inflammatory microenvironment by downregulating the NLRC4 inflammasome.
Collapse
|
24
|
Tang J, Zhu Q, Li Z, Yang J, Lai Y. Natural killer cell-targeted immunotherapy for cancer. Curr Stem Cell Res Ther 2022; 17:513-526. [PMID: 34994316 DOI: 10.2174/1574888x17666220107101722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells were initially described in the early 1970s as major histocompatibility complex unrestricted killers due to their ability to spontaneously kill certain tumor cells. In the past decade, the field of NK cell-based treatment has been accelerating exponentially, holding a dominant position in cancer immunotherapy innovation. Generally, research on NK cell-mediated antitumor therapies can be categorized into three areas: choosing the optimal source of allogenic NK cells to yield massively amplified "off-the-shelf" products, improving NK cell cytotoxicity and longevity, and engineering NK cells with the ability of tumor-specific recognition. In this review, we focused on NK cell manufacturing techniques, some auxiliary methods to enhance the therapeutic efficacy of NK cells, chimeric antigen receptor NK cells, and monoclonal antibodies targeting inhibitory receptors, which can significantly augment the antitumor activity of NK cells. Notably, emerging evidence suggests that NK cells are a promising constituent of multipronged therapeutic strategies, strengthening immune responses to cancer.
Collapse
Affiliation(s)
- Jingyi Tang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhu
- Sichuan Fine Arts Institute, Chongqing, China
| | - Zhaoyang Li
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
26
|
Niu M, Yi M, Li N, Luo S, Wu K. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Exp Hematol Oncol 2021; 10:18. [PMID: 33653420 PMCID: PMC7923338 DOI: 10.1186/s40164-021-00211-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy, especially anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) treatment has significantly improved the survival of non-small cell lung cancer (NSCLC) patients. However, the overall response rate remains unsatisfactory. Many factors affect the outcome of anti-PD-1/PD-L1 treatment, such as PD-L1 expression level, tumor-infiltrating lymphocytes (TILs), tumor mutation burden (TMB), neoantigens, and driver gene mutations. Further exploration of biomarkers would be favorable for the best selection of patients and precisely predict the efficacy of anti-PD-1/PD-L1 treatment. In this review, we summarized the latest advances in this field, and discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Zang K, Hui L, Wang M, Huang Y, Zhu X, Yao B. TIM-3 as a Prognostic Marker and a Potential Immunotherapy Target in Human Malignant Tumors: A Meta-Analysis and Bioinformatics Validation. Front Oncol 2021; 11:579351. [PMID: 33692946 PMCID: PMC7938756 DOI: 10.3389/fonc.2021.579351] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background As a novel immune checkpoint molecular, T-cell immunoglobulin mucin 3 (TIM-3) is emerging as a therapeutic target for cancer immunotherapy. However, the predictive role of TIM-3 in cancer remains largely undetermined. This study was designed to investigate the role of TIM-3 in cancer. Methods Publications were searched using multiple databases. The hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. To further confirm the prognostic effect of TIM-3, The Cancer Genome Atlas (TCGA) data were applied. Functional analysis of TIM-3 was also investigated. Results 28 studies with 7284 patients with malignant tumors were identified. Based on multivariate Cox regression analysis, TIM-3 was an independent prognostic indicator for poor overall survival (OS) (HR= 1.54, 95% CI = 1.19-1.98, P = 0.001). However, TIM-3 was not correlated with cancer-specific survival and disease-free survival (DFS). Particularly, TIM-3 showed a worse prognosis in non-small cell lung carcinoma and gastric cancer; but it showed a favorable prognosis in breast cancer. Functional analysis showed that TIM-3 was closely correlated with immune responses such as T-cell activation and natural killer cell-mediated cytotoxicity. Moreover, TIM-3 expression was found to be related to worse OS in 9491 TCGA patients (HR = 1.2, P < 0.001), but was not associated with DFS. Conclusions TIM-3 was an independent prognostic factor. Meanwhile, TIM-3 played a crucial role in tumor immune responses. This supports TIM-3 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Kui Zang
- Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Liangliang Hui
- Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Min Wang
- Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ying Huang
- Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Xingxing Zhu
- Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Bin Yao
- Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
28
|
Immune Cell Landscape in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1930706. [PMID: 33575321 PMCID: PMC7857889 DOI: 10.1155/2021/1930706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Background The tumor-infiltrating immune cells are closely associated with the prognosis of gastric cancer (GC). This article is aimed at determining the composition change of immune cells and immune regulatory factors in GC and normal tissues, depicting their prognosis value in GC, and revealing the relationship between them and GC clinical parameters. Methods We used CIBERSORT to calculate the proportion of 22 immune cells in the GC or normal tissues; a t-test was applied to assess the expression difference of immune cells and immune regulatory factors in normal and GC tissues. The relationship of the immune cells, immune regulatory factors, and GC patients' clinical characteristics was assessed by univariate analysis. Results In this study, we found that the proportion of macrophages increased, while plasma cells and monocytes decreased in GC tissues. In these immune fractions, Tregs and naïve B cells were found to be correlated with GC patients' prognosis. Interestingly, the expression of immune regulatory factors was ambiguous with their classical function in GC tissues. For example, TIM-3, FOXP3, and CMTM6 were overexpressed, while CD27 and PD-1 were underexpressed in GC tissues. We also found that IDO1, PD-1, TIGIT, and TIM-3 were highly expressed in high-grade GC tissues, the HERC2 expression level was related to patients' gender, and the TIGIT expression level was sensitive to targeted therapy. Furthermore, our results suggested that the infiltration of Tregs and naive B cells was strongly correlated with the T stage, radiation therapy, targeted molecular therapy, and the expression levels of TIM-3 and FOXP3 in GC. Conclusion The expression pattern of tumor-infiltrating immune cells and immune regulatory factors was systematically depicted in the GC tumor microenvironment, indicating that individualized treatment based on the tumor-infiltrating immune cells and immune regulatory factors may be beneficial to GC patients.
Collapse
|
29
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
30
|
Ganjalikhani Hakemi M, Jafarinia M, Azizi M, Rezaeepoor M, Isayev O, Bazhin AV. The Role of TIM-3 in Hepatocellular Carcinoma: A Promising Target for Immunotherapy? Front Oncol 2020; 10:601661. [PMID: 33425759 PMCID: PMC7793963 DOI: 10.3389/fonc.2020.601661] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
One of the most common tumors in the world is hepatocellular carcinoma (HCC), and its mortality rates are still on the rise, so addressing it is considered an important challenge for universal health. Despite the various treatments that have been developed over the past decades, the prognosis for advanced liver cancer is still poor. Recently, tumor immunotherapy has opened new opportunities for suppression of tumor progression, recurrence, and metastasis. Besides this, investigation into this malignancy due to high immune checkpoint expression and the change of immunometabolic programming in immune cells and tumor cells is highly considered. Because anti-cytotoxic T lymphocyte–associated protein (CTLA)-4 antibodies and anti-programmed cell death protein (PD)-1 antibodies have shown therapeutic effects in various cancers, studies have shown that T cell immunoglobulin mucin-3 (TIM-3), a new immune checkpoint molecule, plays an important role in the development of HCC. In this review, we summarize the recent findings on signal transduction events of TIM-3, its role as a checkpoint target for HCC therapy, and the immunometabolic situation in the progression of HCC.
Collapse
Affiliation(s)
| | - Morteza Jafarinia
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Rezaeepoor
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Orkhan Isayev
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.,Genetic Resources Institute, Azerbaijan National Academy of Scince, Baku, Azerbaijan
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|