1
|
Fu C, Zhang B, Guo T, Li J. Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques. Korean J Radiol 2024; 25:86-102. [PMID: 38184772 PMCID: PMC10788608 DOI: 10.3348/kjr.2023.0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 01/08/2024] Open
Abstract
Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.
Collapse
Affiliation(s)
- Chen Fu
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bangxing Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Huang W, Xiong W, Tang L, Chen C, Yuan Q, Zhang C, Zhou K, Sun Z, Zhang T, Han Z, Feng H, Liang X, Zhong Y, Deng H, Yu L, Xu Y, Wang W, Shen L, Li G, Jiang Y. Non-invasive CT imaging biomarker to predict immunotherapy response in gastric cancer: a multicenter study. J Immunother Cancer 2023; 11:e007807. [PMID: 38179695 PMCID: PMC10668251 DOI: 10.1136/jitc-2023-007807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Despite remarkable benefits have been provided by immune checkpoint inhibitors in gastric cancer (GC), predictions of treatment response and prognosis remain unsatisfactory, making identifying biomarkers desirable. The aim of this study was to develop and validate a CT imaging biomarker to predict the immunotherapy response in patients with GC and investigate the associated immune infiltration patterns. METHODS This retrospective study included 294 GC patients who received anti-PD-1/PD-L1 immunotherapy from three independent medical centers between January 2017 and April 2022. A radiomics score (RS) was developed from the intratumoral and peritumoral features on pretreatment CT images to predict immunotherapy-related progression-free survival (irPFS). The performance of the RS was evaluated by the area under the time-dependent receiver operating characteristic curve (AUC). Multivariable Cox regression analysis was performed to construct predictive nomogram of irPFS. The C-index was used to determine the performance of the nomogram. Bulk RNA sequencing of tumors from 42 patients in The Cancer Genome Atlas was used to investigate the RS-associated immune infiltration patterns. RESULTS Overall, 89 of 294 patients (median age, 57 years (IQR 48-66 years); 171 males) had an objective response to immunotherapy. The RS included 13 CT features that yielded AUCs of 12-month irPFS of 0.787, 0.810 and 0.785 in the training, internal validation, and external validation 1 cohorts, respectively, and an AUC of 24-month irPFS of 0.805 in the external validation 2 cohort. Patients with low RS had longer irPFS in each cohort (p<0.05). Multivariable Cox regression analyses showed RS is an independent prognostic factor of irPFS. The nomogram that integrated the RS and clinical characteristics showed improved performance in predicting irPFS, with C-index of 0.687-0.778 in the training and validation cohorts. The CT imaging biomarker was associated with M1 macrophage infiltration. CONCLUSION The findings of this prognostic study suggest that the non-invasive CT imaging biomarker can effectively predict immunotherapy outcomes in patients with GC and is associated with innate immune signaling, which can serve as a potential tool for individual treatment decisions.
Collapse
Affiliation(s)
- Weicai Huang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Tang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Kangneng Zhou
- University of Science and Technology, Beijing, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Hao Feng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xiaokun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yonghong Zhong
- Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haijun Deng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Yikai Xu
- Department of Medical Imaging Center, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Xie J, Xue B, Bian S, Ji X, Lin J, Zheng X, Tang K. A radiomics nomogram based on 18 F-FDG PET/CT and clinical risk factors for the prediction of peritoneal metastasis in gastric cancer. Nucl Med Commun 2023; 44:977-987. [PMID: 37578301 DOI: 10.1097/mnm.0000000000001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
PURPOSE Peritoneal metastasis (PM) is usually considered an incurable factor of gastric cancer (GC) and not fit for surgery. The aim of this study is to develop and validate an 18 F-FDG PET/CT-derived radiomics model combining with clinical risk factors for predicting PM of GC. METHOD In this retrospective study, 410 GC patients (PM - = 281, PM + = 129) who underwent preoperative 18 F-FDG PET/CT images from January 2015 to October 2021 were analyzed. The patients were randomly divided into a training cohort (n = 288) and a validation cohort (n = 122). The maximum relevance and minimum redundancy (mRMR) and the least shrinkage and selection operator method were applied to select feature. Multivariable logistic regression analysis was preformed to develop the predicting model. Discrimination, calibration, and clinical usefulness were used to evaluate the performance of the nomogram. RESULT Fourteen radiomics feature parameters were selected to construct radiomics model. The area under the curve (AUC) of the radiomics model were 0.86 [95% confidence interval (CI), 0.81-0.90] in the training cohort and 0.85 (95% CI, 0.78-0.92) in the validation cohort. After multivariable logistic regression, peritoneal effusion, mean standardized uptake value (SUVmean), carbohydrate antigen 125 (CA125) and radiomics signature showed statistically significant differences between different PM status patients( P < 0.05). They were chosen to construct the comprehensive predicting model which showed a performance with an AUC of 0.92 (95% CI, 0.89-0.95) in the training cohort and 0.92 (95% CI, 0.86-0.98) in the validation cohort, respectively. CONCLUSION The nomogram based on 18 F-FDG PET/CT radiomics features and clinical risk factors can be potentially applied in individualized treatment strategy-making for GC patients before the surgery.
Collapse
Affiliation(s)
- Jiageng Xie
- Departments of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beihui Xue
- Departments of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuying Bian
- Departments of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaowei Ji
- Departments of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Lin
- Departments of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangwu Zheng
- Departments of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kun Tang
- Departments of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Ho SYA, Tay KV. Systematic review of diagnostic tools for peritoneal metastasis in gastric cancer-staging laparoscopy and its alternatives. World J Gastrointest Surg 2023; 15:2280-2293. [PMID: 37969710 PMCID: PMC10642463 DOI: 10.4240/wjgs.v15.i10.2280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer burden and mortality, often resulting in peritoneal metastasis in advanced stages with negative survival outcomes. Staging laparoscopy has become standard practice for suspected cases before a definitive gastrectomy or palliation. This systematic review aims to compare the efficacy of other diagnostic modalities instead of staging laparoscopy as the alternatives are able to reduce cost and invasive staging procedures. Recently, a radiomic model based on computed tomography and positron emission tomography (PET) has also emerged as another method to predict peritoneal metastasis. AIM To determine if the efficacy of computed tomography, magnetic resonance imaging and PET is comparable with staging laparoscopy. METHODS Articles comparing computed tomography, PET, magnetic resonance imaging, and radiomic models based on computed tomography and PET to staging laparoscopies were filtered out from the Cochrane Library, EMBASE, PubMed, Web of Science, and Reference Citations Analysis (https://www.referencecitationanalysis.com/). In the search for studies comparing computed tomography (CT) to staging laparoscopy, five retrospective studies and three prospective studies were found. Similarly, five retrospective studies and two prospective studies were also included for papers comparing CT to PET scans. Only one retrospective study and one prospective study were found to be suitable for papers comparing CT to magnetic resonance imaging scans. RESULTS Staging laparoscopy outperformed computed tomography in all measured aspects, namely sensitivity, specificity, positive predictive value and negative predictive value. Magnetic resonance imaging and PET produced mixed results, with the former shown to be only marginally better than computed tomography. CT performed slightly better than PET in most measured domains, except in specificity and true negative rates. We speculate that this may be due to the limited F-fluorodeoxyglucose uptake in small peritoneal metastases and in linitis plastica. Radiomic modelling, in its current state, shows promise as an alternative for predicting peritoneal metastases. With further research, deep learning and radiomic modelling can be refined and potentially applied as a preoperative diagnostic tool to reduce the need for invasive staging laparoscopy. CONCLUSION Staging laparoscopy was superior in all measured aspects. However, associated risks and costs must be considered. Refinements in radiomic modelling are necessary to establish it as a reliable screening technique.
Collapse
Affiliation(s)
| | - Kon Voi Tay
- Upper GI and Bariatric Division, General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Upper GI and Bariatric Division, General Surgery, Woodlands Health, Singapore 768024, Singapore
| |
Collapse
|
5
|
Xue Y, Zhang H, Zheng Z, Liu X, Yin J, Zhang J. Predictive performance of radiomics for peritoneal metastasis in patients with gastric cancer: a meta-analysis and radiomics quality assessment. J Cancer Res Clin Oncol 2023; 149:12103-12113. [PMID: 37422882 DOI: 10.1007/s00432-023-05096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE The purpose of this meta-analysis is to systematically review the diagnostic performance of radiomic techniques in predicting peritoneal metastasis in patients with gastric cancer, and to evaluate the quality of current research. METHODS We searched PubMed, Web of Science, EBSCO, Embase, and Cochrane databases for relevant studies up to April 3, 2023. Data extraction and quality evaluation were performed by two independent reviewers. Then we performed statistical analysis, including plotting the forest plot and summary receiver operating characteristic (SROC) curve, and source of heterogeneity analysis, through the MIDAS module in Stata 15. We performed meta-regression and subgroup analyses to analyze the sources of heterogeneity. Using the QUADAS-2 scale and the RQS scale to assess the quality of retrieved studies. RESULTS Ten studies with 6199 patients were finally included in our meta-analysis. Pooled sensitivity and specificity were 0.77 (95% confidence interval [CI]: 0.66, 0.86), and 0.88 (95% CI 0.80, 0.93), respectively. The overall AUC was 0.89 (95% CI 0.86, 0.92). The heterogeneity of this meta-analysis was high, with I2 = 88% (95% CI 75,100). The result of meta-regression showed that QUADAS-2 results, RQS results and machine learning method led to heterogeneity in sensitivity and specificity (P < 0.05). Furthermore, the image segmentation area and the presence or absence of combined clinical factors were associated with sensitivity heterogeneity and specificity heterogeneity, respectively. CONCLUSION Undoubtedly, radiomics has potential value in diagnosing peritoneal metastasis of gastric cancer, but the quality of current research is inconsistent, and more standardized and high-quality research is still needed in the future to achieve the transformation of radiomics results into clinical applications.
Collapse
Affiliation(s)
- Yasheng Xue
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
6
|
Ma T, Wang H, Ye Z. Artificial intelligence applications in computed tomography in gastric cancer: a narrative review. Transl Cancer Res 2023; 12:2379-2392. [PMID: 37859746 PMCID: PMC10583011 DOI: 10.21037/tcr-23-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/01/2023] [Indexed: 10/21/2023]
Abstract
Background and Objective Artificial intelligence (AI) is a revolutionary technique which is deeply impacting and reshaping clinical practice in oncology. This review aims to summarize the current status of the clinical application of AI-based computed tomography (CT) for gastric cancer (GC), focusing on diagnosis, genetic status detection and risk prediction of metastasis, prognosis and treatment efficacy. The challenges and prospects for future research will also be discussed. Methods We searched the PubMed/MEDLINE database to identify clinical studies published between 1990 and November 2022 that investigated AI applications in CT in GC. The major findings of the verified studies were summarized. Key Content and Findings AI applications in CT images have attracted considerable attention in various fields such as diagnosis, prediction of metastasis risk, survival, and treatment response. These emerging techniques have shown a high potential to outperform clinicians in diagnostic accuracy and time-saving. Conclusions AI-powered tools showed great potential to increase diagnostic accuracy and reduce radiologists' workload. However, the goal of AI is not to replace human ability but to help oncologists make decisions in their practice. Therefore, radiologists should play a predominant role in AI applications and decide the best ways to integrate these complementary techniques within clinical practice.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hua Wang
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
7
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. Methods A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. Results A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. Conclusions Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|
8
|
Li LM, Feng LY, Liu CC, Huang WP, Yu Y, Cheng PY, Gao JB. Can visceral fat parameters based on computed tomography be used to predict occult peritoneal metastasis in gastric cancer? World J Gastroenterol 2023; 29:2310-2321. [PMID: 37124887 PMCID: PMC10134425 DOI: 10.3748/wjg.v29.i15.2310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The preoperative prediction of peritoneal metastasis (PM) in gastric cancer would prevent unnecessary surgery and promptly indicate an appropriate treatment plan.
AIM To explore the predictive value of visceral fat (VF) parameters obtained from preoperative computed tomography (CT) images for occult PM and to develop an individualized model for predicting occult PM in patients with gastric carcinoma (GC).
METHODS A total of 128 confirmed GC cases (84 male and 44 female patients) that underwent CT scans were analyzed and categorized into PM-positive (n = 43) and PM-negative (n = 85) groups. The clinical characteristics and VF parameters of two regions of interest (ROIs) were collected. Univariate and stratified analyses based on VF volume were performed to screen for predictive characteristics for occult PM. Prediction models with and without VF parameters were established by multivariable logistic regression analysis.
RESULTS The mean attenuations of VFROI 1 and VFROI 2 varied significantly between the PM-positive and PM-negative groups (P = 0.044 and 0.001, respectively). The areas under the receiver operating characteristic curves (AUCs) of VFROI 1 and VFROI 2 were 0.599 and 0.657, respectively. The mean attenuation of VFROI 2 was included in the final prediction combined model, but not an independent risk factor of PM (P = 0.068). No significant difference was observed between the models with and without mean attenuation of VF (AUC: 0.749 vs 0.730, P = 0.339).
CONCLUSION The mean attenuation of VF is a potential auxiliary parameter for predicting occult PM in patients with GC.
Collapse
Affiliation(s)
- Li-Ming Li
- Department of Radiology, Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive system Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Lei-Yu Feng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chen-Chen Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wen-Peng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yang Yu
- Beijing Branch, Siemens Healthineers Ltd., Shenyang 110011, Liaoning Province, China
| | - Peng-Yun Cheng
- Beijing Branch, Siemens Healthineers Ltd., Shenyang 110011, Liaoning Province, China
| | - Jian-Bo Gao
- Department of Radiology, Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive system Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
9
|
Giandola T, Maino C, Marrapodi G, Ratti M, Ragusi M, Bigiogera V, Talei Franzesi C, Corso R, Ippolito D. Imaging in Gastric Cancer: Current Practice and Future Perspectives. Diagnostics (Basel) 2023; 13:diagnostics13071276. [PMID: 37046494 PMCID: PMC10093088 DOI: 10.3390/diagnostics13071276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Gastric cancer represents one of the most common oncological causes of death worldwide. In order to treat patients in the best possible way, the staging of gastric cancer should be accurate. In this regard, endoscopy ultrasound (EUS) has been considered the reference standard for tumor (T) and nodal (N) statuses in recent decades. However, thanks to technological improvements, computed tomography (CT) has gained an important role, not only in the assessment of distant metastases (M status) but also in T and N staging. In addition, magnetic resonance imaging (MRI) can contribute to the detection and staging of primary gastric tumors thanks to its excellent soft tissue contrast and multiple imaging sequences without radiation-related risks. In addition, MRI can help with the detection of liver metastases, especially small lesions. Finally, positron emission tomography (PET) is still considered a useful diagnostic tool for the staging of gastric cancer patients, with a focus on nodal metastases and peritoneal carcinomatosis. In addition, it may play a role in the treatment of gastric cancer in the coming years thanks to the introduction of new labeling peptides. This review aims to summarize the most common advantages and pitfalls of EUS, CT, MRI and PET in the TNM staging of gastric cancer patients.
Collapse
|
10
|
Du G, Zeng Y, Chen D, Zhan W, Zhan Y. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer. Jpn J Radiol 2023; 41:245-257. [PMID: 36260211 DOI: 10.1007/s11604-022-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Gastric cancer is one of the most common malignant tumors. Although some progress has been made in chemotherapy and surgery, it is still one of the highest mortalities in the world. Therefore, early detection, diagnosis and treatment are very important to improve the prognosis of patients. In recent years, with the proposal of the concept of radiomics, it has been gradually applied to histopathological grading, differential diagnosis, therapeutic efficacy and prognosis evaluation of gastric cancer, whose advantage is to comprehensively quantify the tumor phenotype using a large number of quantitative image features, so as to predict and diagnose the lesion area of gastric cancer early. The purpose of this review is to evaluate the research status and progress of radiomics in gastric cancer, and reviewed the workflow and clinical application of radiomics. The 27 original studies on the application of radiomics in gastric cancer were included from web of science database search results from 2017 to 2021, the number of patients included ranged from 30 to 1680, and the models used were based on the combination of radiomics signature and clinical factors. Most of these studies showed positive results, the median radiomics quality score (RQS) for all studies was 36.1%, and the development prospect and challenges of radiomics development were prospected. In general, radiomics has great potential in improving the early prediction and diagnosis of gastric cancer, and provides an unprecedented opportunity for clinical practice to improve the decision support of gastric cancer treatment at a low cost.
Collapse
Affiliation(s)
- Getao Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
11
|
Construction of a nomogram model for predicting peritoneal metastasis in gastric cancer: focused on cardiophrenic angle lymph node features. Abdom Radiol (NY) 2023; 48:1227-1236. [PMID: 36807997 PMCID: PMC10115726 DOI: 10.1007/s00261-023-03848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND A different treatment was used when peritoneal metastases (PM) occurred in patients with gastric cancer (GC). Certain cancers' peritoneal metastasis could be predicted by the cardiophrenic angle lymph node (CALN). This study aimed to establish a predictive model for PM of gastric cancer based on the CALN. METHODS Our center retrospectively analyzed all GC patients between January 2017 and October 2019. Pre-surgery computed tomography (CT) scans were performed on all patients. The clinicopathological and CALN features were recorded. PM risk factors were identified via univariate and multivariate logistic regression analyses. The receiver operator characteristic (ROC) curves were generated using these CALN values. Using the calibration plot, the model fit was assessed. A decision curve analysis (DCA) was conducted to assess the clinical utility. RESULTS 126 of 483 (26.1%) patients were confirmed as having peritoneal metastasis. These relevant factors were associated with PM: age, sex, T stage, N stage, enlarged retroperitoneal lymph nodes (ERLN), CALN, the long diameter of the largest CALN (LD of LCALN), the short diameter of the largest CALN (SD of LCALN), and the number of CALNs (N of CALNs). The multivariate analysis illustrated that the LD of LCALN (OR = 2.752, p < 0.001) was PM's independent risk factor in GC patients. The area under the curve (AUC) of the model was 0.907 (95% CI 0.872-0.941), demonstrating good performance in the predictive value of PM. There is excellent calibration evident from the calibration plot, which is close to the diagonal. The DCA was presented for the nomogram. CONCLUSION CALN could predict gastric cancer peritoneal metastasis. The model in this study provided a powerful predictive tool for determining PM in GC patients and helping clinicians allocate treatment.
Collapse
|
12
|
Horvat N, Miranda J, El Homsi M, Peoples JJ, Long NM, Simpson AL, Do RKG. A primer on texture analysis in abdominal radiology. Abdom Radiol (NY) 2022; 47:2972-2985. [PMID: 34825946 DOI: 10.1007/s00261-021-03359-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
The number of publications on texture analysis (TA), radiomics, and radiogenomics has been growing exponentially, with abdominal radiologists aiming to build new prognostic or predictive biomarkers for a wide range of clinical applications including the use of oncological imaging to advance the field of precision medicine. TA is specifically concerned with the study of the variation of pixel intensity values in radiological images. Radiologists aim to capture pixel variation in radiological images to deliver new insights into tumor biology that cannot be derived from visual inspection alone. TA remains an active area of investigation and requires further standardization prior to its clinical acceptance and applicability. This review is for radiologists interested in this rapidly evolving field, who are thinking of performing research or want to better interpret results in this arena. We will review the main concepts in TA, workflow processes, and existing challenges and steps to overcome them, as well as look at publications in body imaging with external validation.
Collapse
Affiliation(s)
- Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Jacob J Peoples
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Niamh M Long
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Amber L Simpson
- School of Computing, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Li Y, Xie F, Xiong Q, Lei H, Feng P. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:946038. [PMID: 36059703 PMCID: PMC9433672 DOI: 10.3389/fonc.2022.946038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Objective To evaluate the diagnostic performance of machine learning (ML) in predicting lymph node metastasis (LNM) in patients with gastric cancer (GC) and to identify predictors applicable to the models. Methods PubMed, EMBASE, Web of Science, and Cochrane Library were searched from inception to March 16, 2022. The pooled c-index and accuracy were used to assess the diagnostic accuracy. Subgroup analysis was performed based on ML types. Meta-analyses were performed using random-effect models. Risk of bias assessment was conducted using PROBAST tool. Results A total of 41 studies (56182 patients) were included, and 33 of the studies divided the participants into a training set and a test set, while the rest of the studies only had a training set. The c-index of ML for LNM prediction in training set and test set was 0.837 [95%CI (0.814, 0.859)] and 0.811 [95%CI (0.785-0.838)], respectively. The pooled accuracy was 0.781 [(95%CI (0.756-0.805)] in training set and 0.753 [95%CI (0.721-0.783)] in test set. Subgroup analysis for different ML algorithms and staging of GC showed no significant difference. In contrast, in the subgroup analysis for predictors, in the training set, the model that included radiomics had better accuracy than the model with only clinical predictors (F = 3.546, p = 0.037). Additionally, cancer size, depth of cancer invasion and histological differentiation were the three most commonly used features in models built for prediction. Conclusion ML has shown to be of excellent diagnostic performance in predicting the LNM of GC. One of the models covering radiomics and its ML algorithms showed good accuracy for the risk of LNM in GC. However, the results revealed some methodological limitations in the development process. Future studies should focus on refining and improving existing models to improve the accuracy of LNM prediction. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022320752
Collapse
|
14
|
Dong Z, Zhang Y, Geng H, Ni B, Xia X, Zhu C, Liu J, Zhang Z. Development and validation of two nomograms for predicting overall survival and cancer-specific survival in gastric cancer patients with liver metastases: A retrospective cohort study from SEER database. Transl Oncol 2022; 24:101480. [PMID: 35868142 PMCID: PMC9304879 DOI: 10.1016/j.tranon.2022.101480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Nomograms constructed by overall survival and cancer-specific survival can predict more accurately than AJCC stage system for GCLM patients. The study includes the prognostic factor as many as possible and evaluated all of them in the cohort. In our cohort, surgery is a beneficial factor associated with survival.
Background Gastric cancer is heterogeneous and aggressive, especially with liver metastasis. This study aims to develop two nomograms to predict the overall survival (OS) and cancer-specific survival (CSS) of gastric cancer with liver metastasis (GCLM) patients. Methods From January 2000 to December 2018, a total of 1936 GCLM patients were selected from the Surveillance, Epidemiology, and End Results Program (SEER) database. They were further divided into a training cohort and a validation cohort, with the OS and CSS serving as the study's endpoints. The correlation analyses were used to determine the relationship between the variables. The univariate and multivariate Cox analyses were used to confirm the independent prognostic factors. To discriminate and calibrate the nomogram, calibration curves and the area under the time-dependent receiver operating characteristic curve (time-dependent AUC) were used. DCA curves were used to examine the accuracy and clinical benefits. The clinical utility of the nomogram and the AJCC Stage System was compared using net reclassification improvement (NRI) and integrated differentiation improvement (IDI) (IDI). Finally, the nomogram and the AJCC Stage System risk stratifications were compared. Results There was no collinearity among the variables that were screened. The results of multivariate Cox regression analysis showed that six variables (bone metastasis, lung metastasis, surgery, chemotherapy, grade, age) and five variables (lung metastasis, surgery, chemotherapy, grade, N stage) were identified to establish the nomogram for OS and CSS, respectively. The calibration curves, time-dependent AUC curves, and DCA revealed that both nomograms had pleasant predictive power. Furthermore, NRI and IDI confirmed that the nomogram outperformed the AJCC Stage System. Conclusion Both nomograms had satisfactory accuracy and were validated to assist clinicians in evaluating the prognosis of GCLM patients.
Collapse
Affiliation(s)
- Zhongyi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China
| | - Yeqian Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China
| | - Jiahua Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China.
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 East Road, Pudong New Area, Shanghai 200127, China.
| |
Collapse
|
15
|
Zeng CDD, Jin CC, Gao C, Xiao AT, Tong YX, Zhang S. Preoperative Folate Receptor-Positive Circulating Tumor Cells Are Associated With Occult Peritoneal Metastasis and Early Recurrence in Gastric Cancer Patients: A Prospective Cohort Study. Front Oncol 2022; 12:769203. [PMID: 35425708 PMCID: PMC9002093 DOI: 10.3389/fonc.2022.769203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background The aim of this study is to explore the clinical feasibility of detecting folate receptor-positive circulating tumor cells (FR+ CTCs) for predicting peritoneal metastasis and short-term outcome in gastric cancer patients. Methods This is a prospective, single-center, observational study. We applied ligand-targeted enzyme-linked polymerization method to detect preoperative FR+ CTC levels in peripheral blood. We evaluated the diagnostic value of FR+ CTCs and other biomarkers in predicting peritoneal metastasis. Prognostic factors for recurrence-free survival (RFS) were investigated in univariate and multivariate analyses. Results A total of 132 patients with gastric cancer and 9 patients with benign disease were recruited. Gastric cancer patients had a significantly higher CTC level compared to that of patients with benign disease (p < 0.01). Combined model including CTC level and other biomarkers presented high sensitivity (100%) and moderate specificity (59.3%) in predicting peritoneal metastasis. Univariate analysis revealed that decreased serum prealbumin, decreased peripheral lymphocyte count, FR+ CTCs, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and lymph node metastasis were significantly associated with shorter RFS. FR+ CTC level [≥12.6 folate units (FU)/3 ml, hazard ratio (HR) = 6.957, p = 0.005] and CA19-9 (>34 ng/ml, HR = 3.855, p = 0.037) were independent prognostic factors in multivariate analysis. Conclusions Our findings for the first time suggested the diagnostic value of preoperative CTC levels in predicting peritoneal metastasis in gastric cancer. Moreover, the FR+ CTC level could be a novel and promising prognostic factor for the recurrence of gastric cancer in patients who underwent surgery. Clinical Trial Registration Chinese Clinic Trial Registry, identifier ChiCTR2100050514.
Collapse
Affiliation(s)
| | | | | | | | | | - Sheng Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Hu Z, Zuo Z, Miao H, Ning Z, Deng Y. Incidence, Risk Factors and Prognosis of T4a Gastric Cancer: A Population-Based Study. Front Med (Lausanne) 2022; 8:767904. [PMID: 35071261 PMCID: PMC8766749 DOI: 10.3389/fmed.2021.767904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: T4a gastric cancer (GC) is a subtype of advanced GC (AGC), which urgently needs a comprehensive grade method for better treatment strategy choosing. The purpose of this study was to develop two nomograms for predicting the prognosis of patients with T4a GC. Methods: A total of 1,129 patients diagnosed as T4a GC between 2010 and 2015 were extracted from the Surveillance, Epidemiology, and End Result (SEER) program database. Univariate and multivariate Cox analyses were performed to explore the independent predictors and to establish nomogram for overall survival (OS) of the patients, whereas competing risk analyses were performed to find the independent predictors and to establish nomogram for cancer-specific survival (CSS) of the patients. The area under the curve (AUC), calibration curve, decision curve analysis (DCA), and Kaplan–Meier analysis were performed to evaluate the nomograms. Results: Older age, larger tumor size, black race, signet ring cell carcinoma (SRCC), more lymph node involvement, the absence of surgery, the absence of radiotherapy, and the absence of chemotherapy were identified as independent prognostic factors for both OS and CSS. In the training cohort, the AUCs of the OS nomogram were 0.760, 0.743, and 0.723 for 1-, 3-, and 5-year OS, whereas the AUCs of the CSS nomogram were 0.724, 0.703, and 0.713 for 1-, 3-, and 5-year CSS, respectively. The calibration curve and DCA indicated that both nomograms can effectively predict OS and CSS, respectively. The abovementioned results were also confirmed in the validation cohort. Stratification of the patients into high- and low-risk groups highlighted the differences in prognosis between the two groups both in training and in validation cohorts. Conclusions: Age, tumor size, race, histologic type, N stage, surgery status, radiotherapy, and chemotherapy were confirmed as independent prognostic factors for both OS and CSS in patients with T4a GC. Two nomograms based on the abovementioned variables were constructed to provide more accurate individual survival predictions for them.
Collapse
Affiliation(s)
- Zhiya Hu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Ziyi Zuo
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Han Miao
- Department of Clinical Medicine, Dalian University, Dalian, China
| | - Zhijie Ning
- Department of Neurology, Fengcheng Hospital, Shanghai, China
| | - Youyuan Deng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
17
|
A radiomics model predicts the response of patients with advanced gastric cancer to PD-1 inhibitor treatment. Aging (Albany NY) 2022; 14:907-922. [PMID: 35073519 PMCID: PMC8833127 DOI: 10.18632/aging.203850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
Programmed cell death 1 (PD1) inhibitors have shown promising treatment effects in advanced gastric cancer, the beneficiary population not definite. This study aimed to construct an individualized radiomics model to predict the treatment benefits of PD-1 inhibitors in gastric cancer. Patients with advanced gastric cancer treated with PD-1 inhibitors were randomly divided into a training set (n = 58) and a validation set (n = 29). CT imaging data were extracted from medical records, and an individual radiomics nomogram was generated based on the imaging features and clinicopathological risk factors. Discrimination performance was evaluated by Harrell’s c-index and receiver operator characteristic (ROC) curve analyses. The areas under the ROC curves (AUCs) were analyzed to predict anti-PD-1 efficacy and survival. We found that the radiomics nomogram could predict the response of gastric cancer to anti-PD-1 treatment. The AUC was 0.865 with a 95% CI of 0.812-0.828 in the training set, while the AUC was 0.778 with a 95% CI of 0.732–0.776 in the validation set. The diagnostic performance of the radiomics was significantly higher than that of the clinical factors (p < 0.01). Patients with a low risk of disease progression discriminated by the radiomics nomogram had longer progression-free survival than those with a high risk (6.5 vs. 3.2 months, HR 1.99, 95% CI: 1.19-3.31, p = 0.009). The radiomics nomogram based on CT imaging features and clinical risk factors could predict the treatment benefits of PD-1 inhibitors in advanced gastric cancer, enabling it to guide decision-making regarding clinical treatment.
Collapse
|
18
|
Masci GM, Ciccarelli F, Mattei FI, Grasso D, Accarpio F, Catalano C, Laghi A, Sammartino P, Iafrate F. Role of CT texture analysis for predicting peritoneal metastases in patients with gastric cancer. Radiol Med 2022; 127:251-258. [PMID: 35066804 DOI: 10.1007/s11547-021-01443-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Aim of the study was to perform CT texture analysis in patients with gastric cancer (GC) to investigate potential role of radiomics for predicting the occurrence of peritoneal metastases (PM). MATERIALS AND METHODS In this single-centre retrospective study, patients with gastric adenocarcinoma and surgically confirmed presence or absence of PM were, respectively, enrolled in group PM and group non-PM. Patients with T1-staging, previous treatment or presence of imaging artifacts were excluded from the study. Pre-operative CT examinations were evaluated. Acquisition protocol consisted of gastric distension with water, pre-contrast and arterial phases on upper abdomen and portal phase on thorax and whole abdomen. Texture analysis was performed on portal phase images: the region of interest was manually drawn along the margins of the primitive lesion on each slice and the volume of interest of the whole tumour was obtained. A total of 38 texture parameters were extracted and analysed. ROC curves were performed on significant texture features (p < 0.05). Multiple logistic regression was conducted on features with the best AUC to identify differentiating variables for both groups. RESULTS A total of 90 patients were evaluated (group PM, n = 45; group non-PM, n = 45). T2/T3 tumours were prevalent in group non-PM, T4 was significantly associated with group PM. Significant differences between the two groups were observed for 22/38 texture parameters. Volume and GLRLM_LRHGE showed the greatest AUC in ROC curve analysis (0.737 and 0.734, respectively) and were found to be independent differentiating variables of group PM in the multiple regression analysis (OR 8.44, [95% CI, 1.52-46.8] and OR 18.99 [95% CI, 84-195.31], respectively). CONCLUSIONS Our preliminary results suggest the potential value of CT texture analysis for predicting the risk of PM from GC, which may be helpful to stratify patients and address them to the most appropriate treatment.
Collapse
Affiliation(s)
- Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Ciccarelli
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabrizio Ivo Mattei
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Damiano Grasso
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Accarpio
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Laghi
- Department of Medical-Surgical and Translational Medicine-Radiology Unit, "Sapienza" University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Sammartino
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
19
|
Xue B, Jiang J, Chen L, Wu S, Zheng X, Zheng X, Tang K. Development and Validation of a Radiomics Model Based on 18F-FDG PET of Primary Gastric Cancer for Predicting Peritoneal Metastasis. Front Oncol 2021; 11:740111. [PMID: 34765549 PMCID: PMC8576566 DOI: 10.3389/fonc.2021.740111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives The aim of this study was to develop a preoperative positron emission tomography (PET)-based radiomics model for predicting peritoneal metastasis (PM) of gastric cancer (GC). Methods In this study, a total of 355 patients (109PM+, 246PM-) who underwent preoperative fluorine-18-fludeoxyglucose (18F-FDG) PET images were retrospectively analyzed. According to a 7:3 ratio, patients were randomly divided into a training set and a validation set. Radiomics features and metabolic parameters data were extracted from PET images. The radiomics features were selected by logistic regression after using maximum relevance and minimum redundancy (mRMR) and the least shrinkage and selection operator (LASSO) method. The radiomics models were based on the rest of these features. The performance of the models was determined by their discrimination, calibration, and clinical usefulness in the training and validation sets. Results After dimensionality reduction, 12 radiomics feature parameters were obtained to construct radiomics signatures. According to the results of the multivariate logistic regression analysis, only carbohydrate antigen 125 (CA125), maximum standardized uptake value (SUVmax), and the radiomics signature showed statistically significant differences between patients (P<0.05). A radiomics model was developed based on the logistic analyses with an AUC of 0.86 in the training cohort and 0.87 in the validation cohort. The clinical prediction model based on CA125 and SUVmax was 0.76 in the training set and 0.69 in the validation set. The comprehensive model, which contained a rad-score and the clinical factor (CA125) as well as the metabolic parameter (SUVmax), showed promising performance with an AUC of 0.90 in the training cohort and 0.88 in the validation cohort, respectively. The calibration curve showed the actual rate of the nomogram-predicted probability of peritoneal metastasis. Decision curve analysis (DCA) also demonstrated the good clinical utility of the radiomics nomogram. Conclusions The comprehensive model based on the rad-score and other factors (SUVmax, CA125) can provide a novel tool for predicting peritoneal metastasis of gastric cancer patients preoperatively.
Collapse
Affiliation(s)
- Beihui Xue
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Jiang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sunjie Wu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuan Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangwu Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Chen Y, Xi W, Yao W, Wang L, Xu Z, Wels M, Yuan F, Yan C, Zhang H. Dual-Energy Computed Tomography-Based Radiomics to Predict Peritoneal Metastasis in Gastric Cancer. Front Oncol 2021; 11:659981. [PMID: 34055627 PMCID: PMC8160383 DOI: 10.3389/fonc.2021.659981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Objective To develop and validate a dual-energy computed tomography (DECT) derived radiomics model to predict peritoneal metastasis (PM) in patients with gastric cancer (GC). Methods This retrospective study recruited 239 GC (non-PM = 174, PM = 65) patients with histopathological confirmation for peritoneal status from January 2015 to December 2019. All patients were randomly divided into a training cohort (n = 160) and a testing cohort (n = 79). Standardized iodine-uptake (IU) images and 120-kV-equivalent mixed images (simulating conventional CT images) from portal-venous and delayed phases were used for analysis. Two regions of interest (ROIs) including the peritoneal area and the primary tumor were independently delineated. Subsequently, 1691 and 1226 radiomics features were extracted from the peritoneal area and the primary tumor from IU and mixed images on each phase. Boruta and Spearman correlation analysis were used for feature selection. Three radiomics models were established, including the R_IU model for IU images, the R_MIX model for mixed images and the combined radiomics model (the R_comb model). Random forest was used to tune the optimal radiomics model. The performance of the clinical model and human experts to assess PM was also recorded. Results Fourteen and three radiomics features with low redundancy and high importance were extracted from the IU and mixed images, respectively. The R_IU model showed significantly better performance to predict PM than the R_MIX model in the training cohort (AUC, 0.981 vs. 0.917, p = 0.034). No improvement was observed in the R_comb model (AUC = 0.967). The R_IU model was the optimal radiomics model which showed no overfitting in the testing cohort (AUC = 0.967, p = 0.528). The R_IU model demonstrated significantly higher predictive value on peritoneal status than the clinical model and human experts in the testing cohort (AUC, 0.785, p = 0.005; AUC, 0.732, p <0.001, respectively). Conclusion DECT derived radiomics could serve as a non-invasive and easy-to-use biomarker to preoperatively predict PM for GC, providing opportunity for those patients to tailor appropriate treatment.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Department of DI CT Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Michael Wels
- Department of Diagnostic Imaging Computed Tomography Image Analytics, Siemens Healthcare GmbH, Forchheim, Germany
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
A Nomogram Based on Clinicopathologic Features and Preoperative Hematology Parameters to Predict Occult Peritoneal Metastasis of Gastric Cancer: A Single-Center Retrospective Study. DISEASE MARKERS 2020; 2020:1418978. [PMID: 33376558 PMCID: PMC7746455 DOI: 10.1155/2020/1418978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2020] [Accepted: 11/22/2020] [Indexed: 01/19/2023]
Abstract
Background In patients with gastric cancer (GC), peritoneal metastasis is an indication of the end stage and often indicates a poor outcome. The diagnosis of peritoneal metastasis, especially occult peritoneal metastasis (OPM), remains a challenge for surgeons. This study was designed to explore the relationship between OPM and clinicopathological characteristics and preoperative hematological parameters in patients with GC and to develop a nomogram to predict the probability of OPM before surgery. Methods A total of 672 patients with GC from our center were included, including 583 OPM-negative and 89 OPM-positive patients. These patients were divided into training and validation groups based on when they received treatment. OPM was diagnosed during surgery in patients without any signs of metastasis through imaging examination. Predictive factors were screened by least absolute shrinkage and selection operator logistic regression of all 18 characteristics. The nomogram of OPM was constructed based on these filtered variables. The discriminative and calibration performance of the model were simultaneously evaluated. Results A total of six variables, including tumor size, degree of differentiation, depth of invasion, Glasgow prognosis score, and plasma levels of CA125 and fibrinogen, were selected for integration into the final predictive nomogram. The area under curve (AUC) of the nomogram with six factors was 0.906 (95% confidence interval (CI): 0.872-0.941) and 0.889 (95% CI: 0.795-0.984) in the training and validation groups, respectively. Calibration plots of the nomogram in the two sets revealed a good consistency between predicted and actual probabilities. Decision curve analysis showed that the nomogram had a positive net benefit among all threshold probabilities between 0% and 82%. This nomogram was superior to models incorporating only clinicopathologic or hematologic features. Conclusion Both clinicopathological and preoperative hematological parameters are significantly associated with OPM. The nomogram constructed with six factors could be used to calculate the probability of OPM and identify the high-risk population in GC. This may be helpful for early detection of OPM in patients with GC.
Collapse
|