1
|
Liu X, Li T, Wang Y, Gao X, Wang F, Chen Y, Wang K, Luo W, Kong F, Kou Y, You H, Kong D, Zhang Q, Tang R. Delta-Like Homolog 2 Facilitates Malignancy of Hepatocellular Carcinoma via Activating EGFR/PKM2 Signaling Pathway. Mol Carcinog 2024. [PMID: 39467107 DOI: 10.1002/mc.23836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Delta-like homolog 2 (DLK2) plays a crucial role in adipogenesis, chondrogenic differentiation, and the progression of certain cancers. However, the key roles of DLK2 underlying the progression of hepatocellular carcinoma (HCC) remain ambiguous. In the current study, we demonstrate that DLK2 is upregulated in HCC, significantly correlated with clinicopathological variables and serves as an independent diagnostic marker. Functional assays reveal that DLK2 facilitates malignant progression of HCC in vitro and in vivo models. Mechanistically, DLK2 binds to EGFR resulting in its auto-phosphorylation, which activates NK-κB pathway leading to P65-dependent transcriptional upregulation of PKM2. Furthermore, that elevates both enzyme-dependent and -independent activities of PKM2 contributing to cancer proliferation and metastasis. In summary, our findings demonstrate a novel pro-tumoral role and mechanism of DLK2 in the regulation of HCC malignant progression, suggesting its potential as a clinical diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Tingting Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Yuting Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Feitong Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Yang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Kaisheng Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Weiming Luo
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Zhang K, Shi Y, Jin Z, He J. Advances in tumor vascular growth inhibition. Clin Transl Oncol 2024; 26:2084-2096. [PMID: 38504070 DOI: 10.1007/s12094-024-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.
Collapse
Affiliation(s)
- Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Garrett AA, Bai S, Cascio S, Gupta N, Yang D, Buckanovich RJ. EGFL6 promotes endometrial cancer cell migration and proliferation. Gynecol Oncol 2024; 185:75-82. [PMID: 38368816 PMCID: PMC11179989 DOI: 10.1016/j.ygyno.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE EGFL6, a growth factor produced by adipocytes, is upregulated in and implicated in the tumorigenesis of multiple tumor types. Given the strong link between obesity and endometrial cancer, we sought to determine the impact of EGFL6 on endometrial cancer. METHODS EGFL6 expression in endometrial cancer and correlation with patient outcomes was evaluated in the human protein atlas and TCGA. EGFL6 treatment, expression upregulation, and shRNA knockdown were used to evaluate the impact of EGFL6 on the proliferation and migration of 3 endometrial cancer cell lines in vitro. Similarly, the impact of EGFL6 expression and knockdown on tumor growth was evaluated. Western blotting was used to evaluate the impact of EGFL6 on MAPK phosphorylation. RESULTS EGFL6 is upregulated in endometrial cancer, primarily in cony-number high tumors. High tumor endometrial cancer expression of EGFL6 predicts poor patient prognosis. We find that EGFL6 acts to activate the MAPK pathway increasing cellular proliferation and migration. In xenograft models, EGFL6 overexpression increases endometrial cancer tumor growth while EGFL6 knockdown decreases endometrial cancer tumor growth. CONCLUSIONS EGFL6 is a marker of poor prognosis endometrial cancers, driving cancer cell proliferation and growth. As such EGFL6 represents a potential therapeutic target in endometrial cancer.
Collapse
Affiliation(s)
- Alison A Garrett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Kim Y, Lee HM. CRISPR-Cas System Is an Effective Tool for Identifying Drug Combinations That Provide Synergistic Therapeutic Potential in Cancers. Cells 2023; 12:2593. [PMID: 37998328 PMCID: PMC10670858 DOI: 10.3390/cells12222593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Despite numerous efforts, the therapeutic advancement for neuroblastoma and other cancer treatments is still ongoing due to multiple challenges, such as the increasing prevalence of cancers and therapy resistance development in tumors. To overcome such obstacles, drug combinations are one of the promising applications. However, identifying and implementing effective drug combinations are critical for achieving favorable treatment outcomes. Given the enormous possibilities of combinations, a rational approach is required to predict the impact of drug combinations. Thus, CRISPR-Cas-based and other approaches, such as high-throughput pharmacological and genetic screening approaches, have been used to identify possible drug combinations. In particular, the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) is a powerful tool that enables us to efficiently identify possible drug combinations that can improve treatment outcomes by reducing the total search space. In this review, we discuss the rational approaches to identifying, examining, and predicting drug combinations and their impact.
Collapse
Affiliation(s)
| | - Hyeong-Min Lee
- Department of Computational Biology, St. Jude Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
5
|
Du Y, Liu Y, Hu J, Peng X, Liu Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J Pharm Sci 2023; 18:100854. [PMID: 38089835 PMCID: PMC10711398 DOI: 10.1016/j.ajps.2023.100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2024] Open
Abstract
The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Lin YQ, Feng KK, Lu JY, Le JQ, Li WL, Zhang BC, Li CL, Song XH, Tong LW, Shao JW. CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery. J Control Release 2023; 361:727-749. [PMID: 37591461 DOI: 10.1016/j.jconrel.2023.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.
Collapse
Affiliation(s)
- Ying-Qi Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jie-Ying Lu
- Faculty of Foreign Studies, Guangdong Baiyun University, Guangzhou 510450, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wu-Lin Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Tang H, Fayomi AP, Bai S, Gupta N, Cascio S, Yang D, Buckanovich RJ. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol Oncol 2023; 171:49-58. [PMID: 36804621 PMCID: PMC10040429 DOI: 10.1016/j.ygyno.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.
Collapse
Affiliation(s)
- Huijuan Tang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
He G, Li W, Zhao W, Men H, Chen Q, Hu J, Zhang J, Zhu H, Wang W, Deng M, Xu Z, Wang G, Zhou L, Qian X, Liang L. Formin-like 2 promotes angiogenesis and metastasis of colorectal cancer by regulating the EGFL6/CKAP4/ERK axis. Cancer Sci 2023; 114:2014-2028. [PMID: 36715549 PMCID: PMC10154862 DOI: 10.1111/cas.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Increasing evidence indicates that angiogenesis plays a pivotal role in tumor progression. Formin-like 2 (FMNL2) is well-known for promoting metastasis; however, the molecular mechanisms by which FMNL2 promotes angiogenesis in colorectal cancer (CRC) remain unclear. Here, we found that FMNL2 promotes angiogenesis and metastasis of CRC in vitro and in vivo. The GDB/FH3 domain of FMNL2 directly interacts with epidermal growth factor-like protein 6 (EGFL6). Formin-like 2 promotes EGFL6 paracrine signaling by exosomes to regulate angiogenesis in CRC. Cytoskeleton associated protein 4 (CKAP4) is a downstream target of EGFL6 and is involved in CRC angiogenesis. Epidermal growth factor-like protein 6 binds to the N-terminus of CKAP4 to promote the migration of HUVECs by activating the ERK/MMP pathway. These findings suggest that FMNL2 promotes the migration of HUVECs and enhances angiogenesis and tumorigenesis in CRC by regulating the EGFL6/CKAP4/ERK axis. Therefore, the EGFL6/CKAP4/ERK axis could be a candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Wenli Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hui Men
- Department of Pathology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.,Department of Pathology, Southern Medical University, Guangzhou, China
| | - Qingqing Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jinlong Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingyu Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Huifang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Wenxin Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Meijing Deng
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Gaoxiang Wang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinlai Qian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Li Liang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
9
|
Chen YF, Wu S, Li X, Chen M, Liao HF. Luteolin Suppresses Three Angiogenesis Modes and Cell Interaction in Uveal Melanoma in Vitro. Curr Eye Res 2022; 47:1590-1599. [PMID: 36214596 DOI: 10.1080/02713683.2022.2134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Uveal melanoma is a high-vascularized tumor that lacks effective systemic therapies. Most anti-angiogenesis drug therapies only target endothelial cell-dependent angiogenesis but not vasculogenic mimicry (VM), which supplies blood to tumors independent of endothelial cells. Thus, we aimed to explore the inhibitory effects of luteolin on proliferation, migration, invasiveness, angiogenesis, and VM activity of uveal melanoma. We further explored the signaling pathway underlying the mechanism of action of luteolin. METHODS Monocultures of uveal melanoma C918 cells, human umbilical vein endothelial cells (HUVECs), and co-cultures of these two cell lines were established. Angiogenesis of HUVECs, VM formation of C918 cells, and the mosaic vessels formed by both cell types were observed under an inverted microscope. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), wound scratch, Transwell cell migration, and invasion assays were performed. VEGF levels were detected by ELISA. Western blotting was used to detect the expression of PI3K, p-PI3K P85, Akt, and p-Akt Ser473 proteins. RESULTS Luteolin inhibited all three modes of angiogenesis observed in uveal melanoma in vitro. Luteolin effectively inhibited the proliferation, migration, and invasion of C918 cells and proliferation and migration of HUVECs. Furthermore, luteolin could inhibit the interaction between the endothelial cells and C918 cells. VEGF secretion in C918 cells and HUVECs treated with luteolin was inhibited. Luteolin decreased the levels of phosphorylated Akt kinase. CONCLUSION We demonstrated the anti-angiogenic effects of luteolin, including against the VM type, in addition to suppressing tumor cell proliferation and migration in vitro. Furthermore, luteolin likely exerts its inhibitory effects via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Luteolin might be an effective therapeutic candidate for treating highly vascularized uveal melanoma tumors.
Collapse
Affiliation(s)
- Yu-Fen Chen
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China
| | - Sha Wu
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China
| | - Xuemei Li
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China.,Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Mingyuan Chen
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China.,Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Hong-Fei Liao
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China.,Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|
11
|
Progress of EGFL6 in angiogenesis and tumor development. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:436-443. [PMID: 36507067 PMCID: PMC9729941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
The epidermal growth factor (EGF) superfamily includes the protein 6 with an epidermal growth factor-like protein (EGFL6). EGFL6 has a signal peptide domain with an amino terminus and a MAM domain with a carboxy terminus. There are four whole EGF-like repeat regions and one partial EGF-like repeat region. Three of these regions include calcium-binding structures and an arg-gly-asp (RGD) integrin interaction motif. The epidermal growth factor-like (EGFL) and EGF domains have identical amino acid residues. Cell division, differentiation, mortality, cell adhesion, and migration are all affected by EGFL6. EGFL proteins are involved in a broad range of biological activities, making it important in tumor development and angiogenesis. We highlighted the latest development of EGFL6 research on tumor proliferation, invasion, and migration in this review.
Collapse
|
12
|
Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol 2022; 221:1428-1438. [PMID: 36122781 DOI: 10.1016/j.ijbiomac.2022.09.129] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Angiogenesis forms new vessels from existing ones. Abnormal angiogenesis, which is what gives tumor microenvironments their distinctive features, is characterised by convoluted, permeable blood vessels with a variety of shapes and high perfusion efficiency. Tumor angiogenesis controls cancer growth by allowing invasion and metastasis and is highly controlled by signalling networks. Therapeutic techniques targeting VEGF, PDGF, FGF Notch, Angiopoietin, and HGF signalling restrict the tumor's vascular supply. Numerous pathways regulate angiogenesis, and when one of those processes is blocked, the other pathways may step in to help. VEGF signalling inhibition alone has limits as an antiangiogenic therapy, and additional angiogenic pathways such as FGF, PDGF, Notch, angiopoietin, and HGF are important. For the treatment of advanced solid tumors, there are also new, emerging medicines that target multiple angiogenic pathways. Recent therapies block numerous signalling channels concurrently. This study focuses on 'alternative' methods to standard antiangiogenic medicines, such as cyclooxygenase-2 blocking, oligonucleotide binding complementary sites to noncoding RNAs to regulate mRNA target, matrix metalloproteinase inhibition and CRISPR/Cas9 based gene edition and dissecting alternative angiogenesis mechanism in tumor microenvironment.
Collapse
|
13
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Dholariya S, Parchwani D, Radadiya M, Singh RD, Sonagra A, Patel D, Sharma G. CRISPR/Cas9: A Molecular Tool for Ovarian Cancer Management beyond Gene Editing. Crit Rev Oncog 2022; 27:1-22. [PMID: 37199299 DOI: 10.1615/critrevoncog.2022043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ovarian cancer manifests with early metastases and has an adverse outcome, impacting the health of women globally. Currently, this malignancy is often treated with cytoreductive surgery and platinum-based chemotherapy. This treatment option has a limited success rate due to tumor recurrence and chemoresistance. Consequently, the fundamental objective of ovarian cancer treatment is the development of novel treatment approaches. As a new robust tool, the CRISPR/Cas9 gene-editing system has shown immense promise in elucidating the molecular basis of all the facets of ovarian cancer. Due to the precise gene editing capabilities of CRISPR-Cas9, researchers have been able to conduct a more comprehensive investigation of the genesis of ovarian cancer. This gained knowledge can be translated into the development of novel diagnostic approaches and newer therapeutic targets for this dreadful malignancy. There is encouraging preclinical evidence that suggests that CRISPR/Cas9 is a powerful versatile tool for selectively targeting cancer cells and inhibiting tumor growth, establishing new signaling pathways involved in carcinogenesis, and verifying biomolecules as druggable targets. In this review, we analyzed the current research and progress made using CRISPR/Cas9-based engineering strategies in the diagnosis and treatment, as well as the challenges in bringing this method to clinics. This comprehensive analysis will lay the basis for subsequent research in the future for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Madhuri Radadiya
- Department of Radiology, Pandit Dindayal Upadhyay (PDU) Medical College, Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | - Gaurav Sharma
- Department of Physiology, AIIMS, Rajkot, Gujarat, India
| |
Collapse
|
15
|
Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. [PMID: 36254536 PMCID: PMC9580090 DOI: 10.1177/15330338221132078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Memoona Imitaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
16
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
17
|
Yang Y, Xia L, Wu Y, Zhou H, Chen X, Li H, Xu M, Qi Z, Wang Z, Sun H, Cheng X. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. Cancer Commun (Lond) 2021; 41:511-527. [PMID: 33939321 PMCID: PMC8211352 DOI: 10.1002/cac2.12157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Although programmed cell death‐ligand 1 (PD‐L1) plays a well‐known function in immune checkpoint response by interacting with programmed cell death‐1 (PD‐1), the cell‐intrinsic role of PD‐L1 in tumors is still unclear. Here, we explored the molecular regulatory mechanism of PD‐L1 in the progression and metastasis of ovarian cancer. Methods Immunohistochemistry of benign tissues and ovarian cancer samples was performed, followed by migration, invasion, and angiogenesis assays in PD‐L1‐knockdown ovarian cancer cells. Immunoprecipitation, mass spectrometry, and chromatin immunoprecipitation were conducted along with zebrafish and mouse experiments to explore the specific functions and mechanisms of PD‐L1 in ovarian cancer. Results Our results showed that PD‐L1 induced angiogenesis, which further promoted cell migration and invasion in vitro and in vivo of ovarian cancer. Mechanistically, PD‐L1 was identified to directly interact with vascular endothelial growth factor receptor‐2 (VEGFR2) and then activated the FAK/AKT pathway, which further induced angiogenesis and tumor progression, leading to poor prognosis of ovarian cancer patients. Meanwhile, PD‐L1 was found to be regulated by the oncogenic transcription factor c‐JUN at the transcriptional level, which enhanced the expression of PD‐L1 in ovarian cancer. Furthermore, we demonstrated that PD‐L1 inhibitor durvalumab, combined with the antiangiogenic drug, apatinib, could enhance the effect of anti‐angiogenesis and the inhibition of cell migration and invasion. Conclusion Our results demonstrated that PD‐L1 promoted the angiogenesis and metastasis of ovarian cancer by participating in the c‐JUN/VEGFR2 signaling axis, suggesting that the combination of PD‐L1 inhibitor and antiangiogenic drugs may be considered as a potential therapeutic approach for ovarian cancer patients.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Lingfang Xia
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Yong Wu
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Hongyu Zhou
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Xin Chen
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Haoran Li
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Midie Xu
- Department of Pathology and Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zihao Qi
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Ziliang Wang
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China.,Clinical Research Unit of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200071, P. R. China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Xi Cheng
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|