1
|
Zhang S, Jiang Y, Shi L, Wei T, Lai Z, Feng X, Li S, Tang D. Identification and analysis of key genes related to efferocytosis in colorectal cancer. BMC Med Genomics 2024; 17:198. [PMID: 39107816 PMCID: PMC11304617 DOI: 10.1186/s12920-024-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
The impact of efferocytosis-related genes (ERGs) on the diagnosis of colorectal cancer (CRC) remains unclear. In this study, efferocytosis-associated biomarkers for the diagnosis of CRC were identified by integrating data from transcriptome sequencing and public databases. Finally, the expression of biomarkers was validated by real-time quantitative polymerase chain reaction (RT-qPCR). Our study may provide a reference for CRC diagnosis. BACKGROUND It has been shown that some efferocytosis related genes (ERGs) are associated with the development of cancer. However, it is still uncertain how ERGs may influence the diagnosis of colorectal cancer (CRC). METHODS In our study, the CRC cohorts were gained from transcriptome sequencing and the gene expression omnibus (GEO) database (GSE71187). Efferocytosis related biomarkers with diagnostic utility for CRC were identified through combining differentially expressed analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. Then, infiltration abundance of immune cells between CRC and control was evaluated. The regulatory networks (including mRNA-miRNA-lncRNA and miRNA/transcription factors (TF)-mRNA networks) were created. Finally, the expression of biomarkers was validated via real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS There were 3 biomarkers (ELMO3, P2RY12, and PDK4) related diagnosis for CRC patients gained. ELMO3 was highly expressed in CRC group, while P2RY12 and PDK4 was lowly expressed. Besides, the infiltrating abundance of 3 immune cells between CRC and control groups was significantly differential, namely activated CD4 memory T cells, macrophages M0, and resting mast cells. We then constructed a mRNA-miRNA-lncRNA network containing 3 mRNAs, 33 miRNAs, and 22 lncRNAs, and a miRNA/TF-mRNA network including 3 mRNAs, 33 miRNAs, and 7 TFs. Additionally, RT-qPCR results revealed that the expression trends of all biomarkers were consistent with the transcriptome sequencing data and GSE71187. CONCLUSION Taken together, this study provides three efferocytosis related biomarkers (ELMO3, P2RY12, and PDK4) for diagnosis of CRC, providing a scientific reference for further studies of CRC.
Collapse
Affiliation(s)
- Shengliang Zhang
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Ying Jiang
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Lei Shi
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Tianning Wei
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Zhiwen Lai
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Xuan Feng
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Shiyuan Li
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Detao Tang
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China.
| |
Collapse
|
2
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Sun Y, Liu L, Fu Y, Liu Y, Gao X, Xia X, Zhu D, Wang X, Zhou X. Metabolic reprogramming involves in transition of activated/resting CD4 + memory T cells and prognosis of gastric cancer. Front Immunol 2023; 14:1275461. [PMID: 38090588 PMCID: PMC10711070 DOI: 10.3389/fimmu.2023.1275461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background Little is known on how metabolic reprogramming potentially prompts transition of activated and resting CD4+ memory T cells infiltration in tumor microenvironment of gastric cancer (GC). The study aimed to evaluate their interactions and develop a risk model for predicting prognosis in GC. Methods Expression profiles were obtained from TCGA and GEO databases. An immunotherapeutic IMvigor210 cohort was also enrolled. CIBERSORT algorithm was used to evaluate the infiltration of immune cells. The ssGSEA method was performed to assess levels of 114 metabolism pathways. Prognosis and correlation analysis were conducted to identify metabolism pathways and genes correlated with activated CD4+ memory T cells ratio (AR) and prognosis. An AR-related metabolism gene (ARMG) risk model was constructed and validated in different cohorts. Flow cytometry was applied to validate the effect of all-trans retinoic acid (ATRA) on CD4+ memory T cells. Results Since significantly inverse prognostic value and negative correlation of resting and activated CD4+ memory T cells, high AR level was associated with favorable overall survival (OS) in GC. Meanwhile, 15 metabolism pathways including retinoic acid metabolism pathway were significantly correlated with AR and prognosis. The ARMG risk model could classify GC patients with different outcomes, treatment responses, genomic and immune landscape. The prognostic value of the model was also confirmed in the additional validation, immunotherapy and pan-cancer cohorts. Functional analyses revealed that the ARMG model was positively correlated with pro-tumorigenic pathways. In vitro experiments showed that ATRA could inhibit levels of activated CD4+ memory T cells and AR. Conclusion Our study showed that metabolic reprogramming including retinoic acid metabolism could contribute to transition of activated and resting CD4+ memory T cells, and affect prognosis of GC patients. The ARMG risk model could serve as a new tool for GC patients by accurately predicting prognosis and response to treatment.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Gynecology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Yuanyuan Fu
- Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaoyao Liu
- Department of Translational Medicine, Beijing GenePlus Genomics Institute, Beijing, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Translational Medicine, Shenzhen GenePlus Clinical Laboratory, Shenzhen, China
| | - Xuefeng Xia
- Department of Translational Medicine, Beijing GenePlus Genomics Institute, Beijing, China
| | - Dajian Zhu
- Department of Gastroenterological Surgery, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Xiaping Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
4
|
Xu J, Hu S, Chen Q, Shu L, Wang P, Wang J. Integrated bioinformatics analysis of noncoding RNAs with tumor immune microenvironment in gastric cancer. Sci Rep 2023; 13:15006. [PMID: 37696973 PMCID: PMC10495442 DOI: 10.1038/s41598-023-41444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023] Open
Abstract
In recent years, molecular and genetic research hotspots of gastric cancer have been investigated, including microRNAs, long noncoding RNAs (lncRNAs) and messenger RNA (mRNAs). The study on the role of lncRNAs may help to develop personalized treatment and identify potential prognostic biomarkers in gastric cancer. The RNA-seq and miRNA-seq data of gastric cancer were downloaded from the TCGA database. Differential analysis of RNA expression between gastric cancer samples and normal samples was performed using the edgeR package. The ceRNA regulatory network was visualized using Cytoscape. KEGG pathway analysis of mRNAs in the ceRNA network was performed using the clusterProfiler package. CIBERSORT was used to distinguish 22 immune cell types and the prognosis-related genes and immune cells were determined using Kaplan-Meier and Cox proportional hazard analyses. To estimate these nomograms, we used receiver operating characteristic and calibration curve studies. The ceRNA regulation network of gastric cancer was built in this study, and the genes in the network were analyzed for prognosis. A total of 980 lncRNAs were differentially expressed, of which 774 were upregulated and 206 were downregulated. A survival study identified 15 genes associated with gastric cancer prognosis, including VCAN-AS1, SERPINE1, AL139002.1, LINC00326, AC018781.1, C15orf54, hsa-miR-145. Monocytes and Neutrophils were associated with the survival rate of gastric cancer. Our research uncovers new ceRNA network for the detection, treatment, and monitoring of gastric cancer.
Collapse
Affiliation(s)
- Jun Xu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shengnan Hu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China.
| | - Jianjiang Wang
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
5
|
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M, Badou A. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol 2023; 14:1201632. [PMID: 37753093 PMCID: PMC10518422 DOI: 10.3389/fimmu.2023.1201632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The crosstalk between the immune system and cancer cells has aroused considerable interest over the past decades. To escape immune surveillance cancer cells evolve various strategies orchestrating tumor microenvironment. The discovery of the inhibitory immune checkpoints was a major breakthrough due to their crucial contribution to immune evasion. The A2AR receptor represents one of the most essential pathways within the TME. It is involved in several processes such as hypoxia, tumor progression, and chemoresistance. However, its clinical and immunological significance in human breast cancer remains elusive. Methods The mRNA expression and protein analysis were performed by RT-qPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray data (METABRIC), digital cytometry was conducted to estimate cell abundance. Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC, CIBERSORT, and ImmuneCellAI algorithms. Tumor purity, stromal and immune scores were calculated using the ESTIMATE computational method. Finally, analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database were carried out. Results Gene and protein analysis showed that A2AR was overexpressed in breast tumors and was significantly associated with high grade, elevated Ki-67, aggressive molecular and histological subtypes, as well as poor survival. On tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1 and negatively with CTLA-4. On the other hand, our findings disclosed more profuse infiltration of protumoral cells such as M0 and M2 macrophages, Tregs, endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to the Single-Cell database, A2AR is expressed in malignant, stromal and immune cells. Moreover, it is related to tumor purity, stromal and immune scores. Our results also revealed that CD8+T cells from A2ARhigh patients exhibited an exhausted functional profile. Finally, GSEA analysis highlighted the association of A2AR with biological mechanisms involved in tumor escape and progression. Conclusion The present study is the first to elucidate the clinical and immunological relevance of A2AR in breast cancer patients. In light of these findings, A2AR could be deemed a promising therapeutic target to overcome immune evasion prevailing within the TME of breast cancer patients.
Collapse
Affiliation(s)
- Basma Zohair
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Ibtissam Rezouki
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Mohamed VI Oncology Center, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
6
|
Zheng H, Li Y, Zhao Y, Jiang A. Single-cell and bulk RNA sequencing identifies T cell marker genes score to predict the prognosis of pancreatic ductal adenocarcinoma. Sci Rep 2023; 13:3684. [PMID: 36878969 PMCID: PMC9988929 DOI: 10.1038/s41598-023-30972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies, with limited biomarkers identified to predict its prognosis and treatment response of immune checkpoint blockade (ICB). This study aimed to explore the predictive ability of T cell marker genes score (TMGS) to predict their overall survival (OS) and treatment response to ICB by integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Multi-omics data of PDAC were applied in this study. The uniform manifold approximation and projection (UMAP) was utilized for dimensionality reduction and cluster identification. The non-negative matrix factorization (NMF) algorithm was applied to molecular subtypes clustering. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was adopted for TMGS construction. The prognosis, biological characteristics, mutation profile, and immune function status between different groups were compared. Two molecular subtypes were identified via NMF: proliferative PDAC (C1) and immune PDAC (C2). Distinct prognoses and biological characteristics were observed between them. TMGS was developed based on 10 T cell marker genes (TMGs) through LASSO-Cox regression. TMGS is an independent prognostic factor of OS in PDAC. Enrichment analysis indicated that cell cycle and cell proliferation-related pathways are significantly enriched in the high-TMGS group. Besides, high-TMGS is related to more frequent KRAS, TP53, and CDKN2A germline mutations than the low-TMGS group. Furthermore, high-TMGS is significantly associated with attenuated antitumor immunity and reduced immune cell infiltration compared to the low-TMGS group. However, high TMGS is correlated to higher tumor mutation burden (TMB), a low expression level of inhibitory immune checkpoint molecules, and a low immune dysfunction score, thus having a higher ICB response rate. On the contrary, low TMGS is related to a favorable response rate to chemotherapeutic agents and targeted therapy. By combining scRNA-seq and bulk RNA-seq data, we identified a novel biomarker, TMGS, which has remarkable performance in predicting the prognosis and guiding the treatment pattern for patients with PDAC.
Collapse
Affiliation(s)
- Haoran Zheng
- Department of Medical Oncology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 711018, Shaanxi, People's Republic of China.
| | - Yimeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yujia Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
8
|
Dong H, Zhao S, Zhang C, Wang X. Identification of cuproptosis related subtypes and construction of prognostic signature in gastric cancer. Front Surg 2023; 9:991624. [PMID: 36684237 PMCID: PMC9852337 DOI: 10.3389/fsurg.2022.991624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/24/2022] [Indexed: 01/09/2023] Open
Abstract
Cuprotosis is a novel mechanism of cell death that differs from known mechanisms, which depends on mitochondrial respiration and is closely related to lipoylated components of the tricarboxylic acid (TCA) cycle. However, it is unclear whether cuprotosis-related genes (CRGs) affect the tumor microenvironment (TME) and prognosis of patients with gastric cancer. In this study, the genetic and transcriptional characteristics of CRGs in gastric cancer (GC) were analyzed, and five CRGs that were differentially expressed and correlated with the survival of patients were obtained. Two different molecular subtypes were identified according to the five CRGs. Then, we constructed a CRG_score applied to patients of any age, gender, and stage. Subsequently, we found that cluster B and a high CRG_score had a worse prognosis, fewer immune checkpoints, and higher tumor immune dysfunction and exclusion (TIDE) compared to cluster A and a low CRG_score. In addition, two subtypes and the CRG_score were closely associated with clinicopathological characteristics, human leukocyte antigens (HLAs) and TME cell infiltration. A high CRG_score was featured with decreased microsatellite instability-high (MSI-H) and mutational burden. Meanwhile, the CRG_score was significantly related to the cancer stem cell (CSC) index and chemotherapeutic response. Moreover, we developed a nomogram to predict the survival probability of patients. Our study explained the role of CRGs in GC, and the prognostic signature could potentially provide an approach for personalized tumor therapy.
Collapse
|
9
|
Koh YW, Park B, Jung SH, Han JH, Haam S, Lee HW. Immune profiles according to EGFR mutant subtypes and correlation with PD-1/PD-L1 inhibitor therapies in lung adenocarcinoma. Front Immunol 2023; 14:1137880. [PMID: 37033978 PMCID: PMC10079979 DOI: 10.3389/fimmu.2023.1137880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background We examined the distributions of 22 immune cell types and the responses to PD-1/PD-L1 inhibitors according to EGFR mutation profile, in three independent datasets of lung adenocarcinoma (LUAD). Methods We used CIBERSORTx to analyze the distributions of immune cells, and tumor immune dysfunction and exclusion (TIDE) or tumor mutation burden (TMB) to analyze responses to anti-PD-1/PD-L1 therapy, in two public LUAD datasets. The results were verified with a validation set that included patients treated with PD-1/PD-L1 inhibitors. Results Compared to EGFR mutants, EGFR wild-type carcinomas had higher numbers of CD8+ T cells, CD4 memory activated T cells and neutrophils, and lower numbers of resting dendritic cells and resting mast cells, in two of the datasets. In our subgroup analyses, CD8+ T cells and CD4 memory activated T cells were more numerous in EGFR rare variants than in wild-types, L858R mutants, and exon 19 deletion mutants. In our TIDE or TMB analyses, EGFR rare variants were predicted to respond better to PD-1/PD-L1 inhibitors than wild-types, L858R mutants, and exon 19 deletion mutants. In the validation set verified by immunohistochemical staining, levels of CD8+ T cells in the EGFR rare variant or wild-type groups were significantly higher than in the EGFR L858R and exon 19 deletion groups. In patients treated with PD-1/PD-L1 inhibitors, the survival rates of patients with EGFR wild-type and rare mutant carcinomas were higher than those with L858R and exon 19 deletion carcinomas. Conclusion The EGFR rare mutation form of LUAD shows a higher immune activation state compared to wild-type, L858R, and exon 19 deletion variants, indicating it as a potential target for PD-1/PD-L1 inhibitor therapy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon-si, Republic of Korea
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon-si, Republic of Korea
| | - Se Hee Jung
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon-si, Republic of Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| |
Collapse
|
10
|
Xu L, Ye Y, Sun Y, Zhong W, Chi L, Lin Y, Liu H, Li S, Chen H, Li C, Lin Y, Wang Q, Xue F, Lin Y. Low FNDC5/Irisin expression is associated with aggressive phenotypes in gastric cancer. Front Pharmacol 2022; 13:981201. [PMID: 36386179 PMCID: PMC9649517 DOI: 10.3389/fphar.2022.981201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/17/2022] [Indexed: 08/27/2023] Open
Abstract
Background: FNDC5 belongs to the family of proteins called fibronectin type III domain-containing which carry out a variety of functions. The expression of FNDC5 is associated with the occurrence and development of tumors. However, the role of FNDC5 in gastric cancer remains relatively unknown. Methods: In the research, the expression of FNDC5 and its value for the prognosis of gastric cancer patients were observed with the TCGA database and GEO datasets of gastric cancer patients. The role of FNDC5 in the regulation of gastric cancer cells proliferation, invasion, and migration was determined. WGCNA and Enrichment analysis was performed on genes co-expressed with FNDC5 to identify potential FNDC5-related signaling pathways. Meanwhile, the LASSO Cox regression analysis based on FNDC5-related genes develops a risk score to predict the survival of gastric cancer patients. Results: The expression of FNDC5 was decreased in gastric cancer tissues compared to normal gastric tissues. However, survival analysis indicated that lower FNDC5 mRNA levels were associated with better overall survival and disease-free survival in gastric cancer patients. Meanwhile, a significant negative correlation was found between FNDC5 and the abundance of CD4+ memory T cells in gastric cancer. In vitro overexpression of FNDC5 inhibits the migration and invasion of gastric cancer cells, without affecting proliferation. Finally, A two-gene risk score module based on FNDC5 co-expressed gene was built to predict the overall clinical ending of patients. Conclusion: FNDC5 is low expressed in gastric cancer and low FNDC5 predicts a better prognosis. The better prognosis of low FNDC5 expression may be attributed to the increased number of CD4+ memory activated T-cell infiltration in tumors, but the exact mechanism of the effect needs to be further explored. Overexpressing FNDC5 inhibits the invasion and migration of gastric cancer but does not affect proliferation. At last, we constructed a clinical risk score model composed of two FNDC5-related genes, and this model may help lay the foundation for further in-depth research on the individualized treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Luyun Xu
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Ye
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuqin Sun
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Wenting Zhong
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Youyu Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongxia Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - ShengZhao Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hui Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chengcheng Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou, China
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Hu B, Meng Y, Qu C, Wang BY, Xiu DR. Combining single-cell sequencing data to construct a prognostic signature to predict survival, immune microenvironment, and immunotherapy response in gastric cancer patients. Front Immunol 2022; 13:1018413. [PMID: 36300104 PMCID: PMC9589350 DOI: 10.3389/fimmu.2022.1018413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background and objective Gastric cancer (GC) represents a major factor inducing global cancer-associated deaths, but specific biomarkers and therapeutic targets for GC are lacking at present. Therefore, the present work focused on developing an immune-related genetic signature at the single-cell level for categorizing GC cases and predicting patient prognostic outcome, immune status as well as treatment response. Methods Single-cell RNA-sequencing (scRNA-seq) data were combined with bulk RNA-seq data in GC patients for subsequent analyses. Differences in overall survival (OS), genomic alterations, immune status, together with estimated immunotherapeutic outcomes were measured between different groups. Results Nine cell types were identified by analyzing scRNA-seq data from GC patients, and marker genes of immune cells were also selected for subsequent analysis. In addition, an immune-related signature was established to predict OS while validating the prediction power for GC patients. Afterwards, a nomogram with high accuracy was constructed for improving our constructed signature’s clinical utility. The low-risk group was featured by high tumor mutation burden (TMB), increased immune activation, and microsatellite instability-high (MSI-H), which were related to the prolonged OS and used in immunotherapy. By contrast, high-risk group was associated with microsatellite stability (MSS), low TMB and immunosuppression, which might be more suitable for targeted therapy. Meanwhile, the risk score generated by our signature was markedly related to the cancer stem cell (CSC) index. In addition, the immunotherapeutic response prediction accuracy of our signature was validated in an external dataset IMvigor210 cohort. Conclusion A signature was constructed according to scRNA-seq data analysis. The signature-screened low- and high-risk patients had different prognoses, immune statuses and enriched functions and pathways. Such results shed more lights on immune status of GC, prognosis assessment, and development of efficient immunotherapeutic treatments.
Collapse
|
12
|
Luo L, Wei Q, Xu C, Dong M, Zhao W. Immune landscape and risk prediction based on pyroptosis-related molecular subtypes in triple-negative breast cancer. Front Immunol 2022; 13:933703. [PMID: 36189269 PMCID: PMC9524227 DOI: 10.3389/fimmu.2022.933703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The survival outcome of triple-negative breast cancer (TNBC) remains poor, with difficulties still existing in prognosis assessment and patient stratification. Pyroptosis, a newly discovered form of programmed cell death, is involved in cancer pathogenesis and progression. The role of pyroptosis in the tumor microenvironment (TME) of TNBC has not been fully elucidated. In this study, we disclosed global alterations in 58 pyroptosis-related genes at somatic mutation and transcriptional levels in TNBC samples collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Based on the expression patterns of genes related to pyroptosis, we identified two molecular subtypes that harbored different TME characteristics and survival outcomes. Then, based on differentially expressed genes between two subtypes, we established a 12-gene score with robust efficacy in predicting short- and long-term overall survival of TNBC. Patients at low risk exhibited a significantly better prognosis, more antitumor immune cell infiltration, and higher expression of immune checkpoints including PD-1, PD-L1, CTLA-4, and LAG3. The comprehensive analysis of the immune landscape in TNBC indicated that alterations in pyroptosis-related genes were closely related to the formation of the immune microenvironment and the intensity of the anticancer response. The 12-gene score provided new information on the risk stratification and immunotherapy strategy for highly heterogeneous patients with TNBC.
Collapse
|
13
|
Tang L, Yu S, Zhang Q, Cai Y, Li W, Yao S, Cheng H. Identification of hub genes related to CD4 + memory T cell infiltration with gene co-expression network predicts prognosis and immunotherapy effect in colon adenocarcinoma. Front Genet 2022; 13:915282. [PMID: 36105107 PMCID: PMC9465611 DOI: 10.3389/fgene.2022.915282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: CD4+ memory T cells (CD4+ MTCs), as an important part of the microenvironment affecting tumorigenesis and progression, have rarely been systematically analyzed. Our purpose was to comprehensively analyze the effect of CD4+ MTC infiltration on the prognosis of colon adenocarcinoma (COAD). Methods: Based on RNA-Seq data, weighted gene co-expression network analysis (WGCNA) was used to screen the CD4+ MTC infiltration genes most associated with colon cancer and then identify hub genes and construct a prognostic model using the least absolute shrinkage and selection operator algorithm (LASSO). Finally, survival analysis, immune efficacy analysis, and drug sensitivity analysis were performed to evaluate the role of the prognostic model in COAD. Results: We identified 929 differentially expressed genes (DEGs) associated with CD4+ MTCs and constructed a prognosis model based on five hub genes (F2RL2, TGFB2, DTNA, S1PR5, and MPP2) to predict overall survival (OS) in COAD. Kaplan-Meier analysis showed poor prognosis in the high-risk group, and the analysis of the hub gene showed that overexpression of TGFB2, DTNA, S1PR5, or MPP2 was associated with poor prognosis. Clinical prediction nomograms combining CD4+ MTC-related DEGs and clinical features were constructed to accurately predict OS and had high clinical application value. Immune efficacy and drug sensitivity analysis provide new insights for individualized treatment. Conclusion: We constructed a prognostic risk model to predict OS in COAD and analyzed the effects of risk score on immunotherapy efficacy or drug sensitivity. These studies have important clinical significance for individualized targeted therapy and prognosis.
Collapse
Affiliation(s)
- Lingxue Tang
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Sheng Yu
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Qianqian Zhang
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Yinlian Cai
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Wen Li
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Senbang Yao
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Huaidong Cheng
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Du F, Zheng F, Han Y, Zhao J, Yuan P. Novel Immune-Related Gene Signature for Risk Stratification and Prognosis of Survival in ER (+) and/or PR (+) and HER2 (-) Breast Cancer. Front Pharmacol 2022; 13:820437. [PMID: 35721151 PMCID: PMC9201983 DOI: 10.3389/fphar.2022.820437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Although intrinsic molecular subtype has been widely used, there remains great clinical heterogeneity of prognosis in the estrogen receptor (ER)- and/or progesterone receptor (PR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer (BC). Methods: The transcriptome expression data of messenger RNA (mRNA) were downloaded from The Cancer Genome Atlas (TCGA), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), and the Gene Expression Omnibus (GEO) databases. Immune-related genes were acquired from the ImmPort database and additional literature search. Univariate Cox, LASSO regression, and multivariate Cox regression were used to screen prognostic immune-related genes and establish the risk signature. The correlation between the risk signature and clinical characteristics, the abundances of immune cells within the tumor microenvironment, and cancer phenotypes were further assessed. Results: Of note, 102 immune-related prognostic genes were identified in the METABRIC dataset by univariate Cox analysis. Consecutively, 7 immune-related genes (SHMT2, AGA, COL17A1, FLT3, SLC7A2, ATP6AP1, and CCL19) were selected to establish the risk signature by LASSO regression and multivariate Cox analysis. Its performance was further verified in TCGA and GSE21653 datasets. Multivariate Cox analysis showed that the risk signature was an independent prognostic factor. The 7-gene signature showed a significant correlation with intrinsic molecular subtypes and 70-gene signature. Furthermore, the CD4+ memory T cells were significantly higher in the low-risk group while a significantly higher proportion of M0-type macrophages was found in the high-risk group in both METABRIC and TCGA cohorts, which may have an influence on the prognosis. Furthermore, we found that the low-risk group may be associated with the immune-related pathway and the high-risk group was with the cell cycle-related pathway, which also showed an impact on the prognosis. Conclusion: These seven immune-related gene risk signatures provided an effective method for prognostic stratification in ER (+) and/or PR (+) and HER2 (−) BC.
Collapse
Affiliation(s)
- Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fangchao Zheng
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Department of Palliative Care, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Identification of AKIRIN2 as a potential biomarker and correlation with immunotherapy in gastric adenocarcinoma by integrated bioinformatics analysis. Sci Rep 2022; 12:8400. [PMID: 35589807 PMCID: PMC9120157 DOI: 10.1038/s41598-022-12531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 12/07/2022] Open
Abstract
Gastric adenocarcinoma is major type of gastric cancer that endangers human health. AKIRIN2 has been shown to be associated with cholangiocarcinoma promoting invasion and angiogenesis. In this study, AKIRIN2 is highly expressed in Gastric adenocarcinoma through bioinformatics analysis based on Stomach adenocarcinoma samples data from The Cancer Genome Atlas. Correlation analysis showed that the high-expression of AKIRIN2 was associated with poor survival rate compared to the low-expression group. Univariate and multivariate Cox regression analyses determined the correlation between clinical characteristics and overall survival. Next, the correlation between AKIRIN2 and immune infiltration was evaluated. The distribution of 24 immune cells and their correlation with the expression of AKIRIN2 were explored using the immune cell database. In addition, three Immune cell methods were used to verify the positive correlation between immune cells and AKIRIN2. Also, Genomics of Drug Sensitivity in Cancer database was utilized to verify the correlation between AKIRIN2 expression level and the efficacy of chemotherapy and immunotherapy. The results showed that AKIRIN2 is an effective biomarker of Gastric adenocarcinoma prognosis, which can guide chemotherapy and immunotherapy and clarify the progress of Gastric adenocarcinoma promoted by immune microenvironment.
Collapse
|
16
|
Jeong H, Lee SY, Seo H, Kim DH, Lee D, Kim BJ. Potential of Mycobacterium tuberculosis chorismate mutase (Rv1885c) as a novel TLR4-mediated adjuvant for dendritic cell-based cancer immunotherapy. Oncoimmunology 2022; 11:2023340. [PMID: 35083095 PMCID: PMC8786331 DOI: 10.1080/2162402x.2021.2023340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For clinical application by dendritic cell (DC)-based cancer immunotherapy, a proper adjuvant system to elicit a strong anticancer immune response is needed. Here, we investigated the potential of chorismate mutase (TBCM, Rv1885c), a putative Mycobacterium tuberculosis (TB) virulence factor, as an immunoadjuvant in DC-based tumor immunotherapy. First, we found that TBCM functionally activated DCs by upregulating costimulatory molecules, increasing the secretion of proinflammatory cytokines, enhancing migration and inducing the Th1-type immune response in a dose-dependent manner via TLR4-mediated signaling. In addition, subcutaneous injection of TBCM-activated DCs loaded with cell lysates led to reduced tumor mass, enhanced mouse survival and lowered tumor incidence in lung carcinoma (LLC) cell-bearing mice. This is mainly mediated by functional cytotoxic T lymphocyte-mediated oncolytic activity and inhibition of cancer proliferation- and metastasis-related genes. Moreover, TBCM-induced DCs can also generate memory CD4 T cells and exert long-term tumor prevention effects. In conclusion, our findings suggest that TBCM (Rv1885c), a novel TLR4 agonist, could be used as an immunoadjuvant for DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hyein Jeong
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 Four Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 Four Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Duhyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| |
Collapse
|