1
|
Luo Y, Gadd ME, Qie Y, Otamendi-Lopez A, Sanchez-Garavito JE, Brooks MM, Ulloa Navas MJ, Hundal T, Li S, Jones VK, Lou Y, Patel T, Dronca R, Kharfan-Dabaja MA, Dong H, Quinones-Hinojosa A, Qin H. Solid cancer-directed CAR T cell therapy that attacks both tumor and immunosuppressive cells via targeting PD-L1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200891. [PMID: 39498357 PMCID: PMC11532918 DOI: 10.1016/j.omton.2024.200891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has encountered limited success in solid tumors. The lack of dependable antigens and the immunosuppressive tumor microenvironment (TME) are major challenges. Within the TME, tumor cells along with immunosuppressive cells employ an immune-evasion mechanism that upregulates programmed death ligand 1 (PD-L1) to deactivate effector T cells; this makes PD-L1 a reliable, universal target for solid tumors. We developed a novel PD-L1 CAR (MC9999) using our humanized anti-PD-L1 monoclonal antibody, designed to simultaneously target tumor and immunosuppressive cells. The antigen-specific antitumor effects of MC9999 CAR T cells were observed consistently across four solid tumor models: breast cancer, lung cancer, melanoma, and glioblastoma multiforme (GBM). Notably, intravenous administration of MC9999 CAR T cells eradicated intracranially established LN229 GBM tumors, suggesting penetration of the blood-brain barrier. The proof-of-concept data demonstrate the cytolytic effect of MC9999 CAR T cells against immunosuppressive cells, including microglia HMC3 cells and M2 macrophages. Furthermore, MC9999 CAR T cells elicited cytotoxicity against primary tumor-associated macrophages within GBM tumors. The concept of targeting both tumor and immunosuppressive cells with MC9999 was further validated using CAR T cells derived from cancer patients. These findings establish MC9999 as a foundation for the development of effective CAR T cell therapies against solid tumors.
Collapse
Affiliation(s)
- Yan Luo
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Martha E. Gadd
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | - Yaqing Qie
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mieu M. Brooks
- The Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanya Hundal
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | - Shuhua Li
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yanyan Lou
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Hepatology & Liver Transplantation, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Roxana Dronca
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Mohamed A. Kharfan-Dabaja
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Alfredo Quinones-Hinojosa
- The Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hong Qin
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
2
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
3
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03443-7. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Gujarathi R, Franses JW, Pillai A, Liao CY. Targeted therapies in hepatocellular carcinoma: past, present, and future. Front Oncol 2024; 14:1432423. [PMID: 39267840 PMCID: PMC11390354 DOI: 10.3389/fonc.2024.1432423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted therapies are the mainstay of systemic therapies for patients with advanced, unresectable, or metastatic hepatocellular carcinoma. Several therapeutic targets, such as c-Met, TGF-β, and FGFR, have been evaluated in the past, though results from these clinical studies failed to show clinical benefit. However, these remain important targets for the future with novel targeted agents and strategies. The Wnt/β-catenin signaling pathway, c-Myc oncogene, GPC3, PPT1 are exciting novel targets, among others, currently undergoing evaluation. Through this review, we aim to provide an overview of previously evaluated and potentially novel therapeutic targets and explore their continued relevance in ongoing and future studies for HCC.
Collapse
Affiliation(s)
- Rushabh Gujarathi
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joseph W Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Chicago, Chicago, IL, United States
| | - Chih-Yi Liao
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Yao S, Liu X, Feng Y, Li Y, Xiao X, Han Y, Xia S. Unveiling the Role of HGF/c-Met Signaling in Non-Small Cell Lung Cancer Tumor Microenvironment. Int J Mol Sci 2024; 25:9101. [PMID: 39201787 PMCID: PMC11354629 DOI: 10.3390/ijms25169101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is characterized by several molecular alterations that contribute to its development and progression. These alterations include the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), human epidermal growth factor receptor 2 (HER2), and mesenchymal-epithelial transition factor (c-MET). Among these, the hepatocyte growth factor (HGF)/c-MET signaling pathway plays a crucial role in NSCLC. In spite of this, the involvement of the HGF/c-MET signaling axis in remodeling the tumor microenvironment (TME) remains relatively unexplored. This review explores the biological functions of the HGF/c-MET signaling pathway in both normal and cancerous cells, examining its multifaceted roles in the NSCLC tumor microenvironment, including tumor cell proliferation, migration and invasion, angiogenesis, and immune evasion. Furthermore, we summarize the current progress and clinical applications of MET-targeted therapies in NSCLC and discuss future research directions, such as the development of novel MET inhibitors and the potential of combination immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (S.Y.); (X.L.); (Y.F.); (Y.L.); (X.X.); (Y.H.)
| |
Collapse
|
6
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
7
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lee HJ, Hwang SJ, Jeong EH, Chang MH. Genetically Engineered CLDN18.2 CAR-T Cells Expressing Synthetic PD1/CD28 Fusion Receptors Produced Using a Lentiviral Vector. J Microbiol 2024; 62:555-568. [PMID: 38700775 PMCID: PMC11303488 DOI: 10.1007/s12275-024-00133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 08/07/2024]
Abstract
This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- Cell Line, Tumor
- Claudins/genetics
- Claudins/metabolism
- Cytokines/metabolism
- Genetic Engineering
- Genetic Vectors/genetics
- Immunotherapy, Adoptive/methods
- Interferon-gamma/metabolism
- Lentivirus/genetics
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Stomach Neoplasms/therapy
- Stomach Neoplasms/immunology
- Stomach Neoplasms/genetics
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Heon Ju Lee
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea.
| | - Seo Jin Hwang
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea
| | - Eun Hee Jeong
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea
| | - Mi Hee Chang
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea
| |
Collapse
|
9
|
Lombardi AM, Sangiolo D, Vigna E. MET Oncogene Targeting for Cancer Immunotherapy. Int J Mol Sci 2024; 25:6109. [PMID: 38892318 PMCID: PMC11173045 DOI: 10.3390/ijms25116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The MET receptor is one of the main drivers of 'invasive growth', a multifaceted biological response essential during embryonic development and tissue repair that is usurped by cancer cells to induce and sustain the malignant phenotype. MET stands out as one of the most important oncogenes activated in cancer and its inhibition has been explored since the initial era of cancer-targeted therapy. Different approaches have been developed to hamper MET signaling and/or reduce MET (over)expression as a hallmark of transformation. Considering the great interest gained by cancer immunotherapy, this review evaluates the opportunity of targeting MET within therapeutic approaches based on the exploitation of immune functions, either in those cases where MET impairment is crucial to induce an effective response (i.e., when MET is the driver of the malignancy), or when blocking MET represents a way for potentiating the treatment (i.e., when MET is an adjuvant of tumor fitness).
Collapse
Affiliation(s)
| | | | - Elisa Vigna
- Department of Oncology, University of Torino, 10043 Torino, Italy; (A.M.L.); (D.S.)
| |
Collapse
|
10
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Insights in Molecular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1831. [PMID: 38791911 PMCID: PMC11120383 DOI: 10.3390/cancers16101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data and clinical trials (MEDLINE), as well as published congress contributions and active recruiting clinical trials on targeted therapies in hepatocellular carcinoma. Combinations of different agents and medical therapy along with radiological interventions were analyzed for the setting of advanced HCC. Those settings were also analyzed in combination with adjuvant situations after resection or radiological treatments. We summarized the current knowledge for each therapeutic setting and combination that currently is or has been under clinical evaluation. We further discuss the results in the background of current treatment guidelines. In addition, we review the pathophysiological mechanisms and pathways for each of these investigated targets and drugs to further elucidate the molecular background and underlying mechanisms of action. Established and recommended targeted treatment options that already exist for patients are considered for systemic treatment: atezolizumab/bevacizumab, durvalumab/tremelimumab, sorafenib, lenvatinib, cabozantinib, regorafenib, and ramucirumab. Combination treatment for systemic treatment and local ablative treatment or transarterial chemoembolization and adjuvant and neoadjuvant treatment strategies are under clinical investigation.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| |
Collapse
|
11
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Dougé A, El Ghazzi N, Lemal R, Rouzaire P. Adoptive T Cell Therapy in Solid Tumors: State-of-the Art, Current Challenges, and Upcoming Improvements. Mol Cancer Ther 2024; 23:272-284. [PMID: 37903371 DOI: 10.1158/1535-7163.mct-23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
In solid tumors, three main complementary approaches of adoptive T-cell therapies were successively developed: tumor-infiltrating lymphocytes, chimeric antigen receptor engineered T cells, and high-affinity T-cell receptor engineered T cells. In this review, we summarized rational and main results of these three adoptive T-cell therapies in solid tumors field and gave an overview of encouraging data and their limits. Then, we listed the major remaining challenges (including tumor antigen loss, on-target/off-tumor effect, tumor access difficulties and general/local immunosubversion) and their lines of research. Finally, we gave insight into the ongoing trials in solid tumor.
Collapse
Affiliation(s)
- Aurore Dougé
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
| | - Nathan El Ghazzi
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
| | - Richard Lemal
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| | - Paul Rouzaire
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| |
Collapse
|
13
|
Aggeletopoulou I, Kalafateli M, Triantos C. Chimeric Antigen Receptor T Cell Therapy for Hepatocellular Carcinoma: Where Do We Stand? Int J Mol Sci 2024; 25:2631. [PMID: 38473878 DOI: 10.3390/ijms25052631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge that urgently calls for innovative therapeutic strategies. Chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising avenue for HCC treatment. However, the therapeutic efficacy of CAR T immunotherapy in HCC patients is significantly compromised by some major issues including the immunosuppressive environment within the tumor, antigen heterogeneity, CAR T cell exhaustion, and the advanced risk for on-target/off-tumor toxicity. To overcome these challenges, many ongoing preclinical and clinical trials are underway focusing on the identification of optimal target antigens and the decryption of the immunosuppressive milieu of HCC. Moreover, limited tumor infiltration constitutes a significant obstacle of CAR T cell therapy that should be addressed. The continuous effort to design molecular targets for CAR cells highlights the importance for a more practical approach for CAR-modified cell manufacturing. This review critically examines the current landscape of CAR T cell therapy for HCC, shedding light on the changes in innate and adaptive immune responses in the context of HCC, identifying potential CAR T cell targets, and exploring approaches to overcome inherent challenges. Ongoing advancements in scientific research and convergence of diverse treatment modalities offer the potential to greatly enhance HCC patients' care in the future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
14
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
15
|
Bicer F, Kure C, Ozluk AA, El-Rayes BF, Akce M. Advances in Immunotherapy for Hepatocellular Carcinoma (HCC). Curr Oncol 2023; 30:9789-9812. [PMID: 37999131 PMCID: PMC10670350 DOI: 10.3390/curroncol30110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths in the world. More than half of patients with HCC present with advanced stage, and highly active systemic therapies are crucial for improving outcomes. Immune checkpoint inhibitor (ICI)-based therapies have emerged as novel therapy options for advanced HCC. Only one third of patients achieve an objective response with ICI-based therapies due to primary resistance or acquired resistance. The liver tumor microenvironment is naturally immunosuppressive, and specific mutations in cell signaling pathways allow the tumor to evade the immune response. Next, gene sequencing of the tumor tissue or circulating tumor DNA may delineate resistance mechanisms to ICI-based therapy and provide a rationale for novel combination therapies. In this review, we discuss the results of key clinical trials that have led to approval of ICI-based therapy options in advanced HCC and summarize the ongoing clinical trials. We review resistance mechanisms to ICIs and discuss how immunotherapies may be optimized based on the emerging research of tumor biomarkers and genomic alterations.
Collapse
Affiliation(s)
- Fuat Bicer
- Division of Hematology Oncology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
| | - Catrina Kure
- Department of Medicine, Northside Hospital-Gwinnett, Lawrenceville, GA 30046, USA;
| | - Anil A. Ozluk
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Bassel F. El-Rayes
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Mehmet Akce
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| |
Collapse
|
16
|
Ma H, Wei W, Liang D, Xu X, Yang D, Wang Q, Wang Y, Wei Q, Sun B, Zhao X. HGF-Based CAR-T Cells Target Hepatocellular Carcinoma Cells That Express High Levels of c-Met. Immunol Invest 2023; 52:735-748. [PMID: 37409941 DOI: 10.1080/08820139.2023.2232402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND CAR-T is emerging as an effective treatment strategy for hematologic malignancies, however its effectiveness for treating solid tumors, such as Hepatocellular Carcinoma (HCC) is limited. Here, we screened a variety of CAR-T cells that target c-Met to investigate their potential to induce HCC cell death in vitro. METHODS Human T cells were transduced to express CARs by lentiviral vector transfection. c-Met expression in human HCC cell lines and CARs expression were monitored by flow cytometry. Tumor cell killing was evaluated by Luciferase Assay System Kit. The concentrations of cytokine were tested by Enzyme-linked immunosorbent assays. Knock down and overexpression studies targeting c-Met were conducted to assess the targeting specificity of CARs. RESULTS We found that CAR T cells expressing a minimal amino-terminal polypeptide sequence comprising the first kringle (kringle 1) domain (denoted as NK1 CAR-T cells), efficiently killed HCC cell lines that expressed high levels of the HGF receptor c-Met. Furthermore, we report that while NK1 CAR-T cells were efficient at targeting SMMC7221 cells for destruction, and its potency was significantly attenuated in parallel experiments with cells stably expressing short hairpin RNAs (shRNAs) that suppressed c-Met expression. Correspondingly, overexpression of c-Met in the embryonic kidney cell line HEK293T led to their enhanced killing by NK1 CAR-T cells. CONCLUSION Our studies demonstrate that a minimal amino-terminal polypeptide sequence comprising the kirngle1 domain of HGF is highly relevant to the design of effective CAR-T cell therapies that kill HCC cells expressing high levels of c-Met.
Collapse
Affiliation(s)
- Haiyan Ma
- Department of Rehabilitation Medicine and Laboratory of Animal Tumor Models, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiong Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yun Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Qin A, Qin Y, Lee J, Musket A, Ying M, Krenciute G, Marincola FM, Yao ZQ, Musich PR, Xie Q. Tyrosine kinase signaling-independent MET-targeting with CAR-T cells. J Transl Med 2023; 21:682. [PMID: 37779207 PMCID: PMC10544186 DOI: 10.1186/s12967-023-04521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Recent progress in cancer immunotherapy encourages the expansion of chimeric antigen receptor (CAR) T cell therapy in solid tumors including hepatocellular carcinoma (HCC). Overexpression of MET receptor tyrosine kinase is common in HCC; however, MET inhibitors are effective only when MET is in an active form, making patient stratification difficult. Specific MET-targeting CAR-T cells hold the promise of targeting HCC with MET overexpression regardless of signaling pathway activity. METHODS MET-specific CARs with CD28ζ or 4-1BBζ as co-stimulation domains were constructed. MET-CAR-T cells derived from healthy subjects (HS) and HCC patients were evaluated for their killing activity and cytokine release against HCC cells with various MET activations in vitro, and for their tumor growth inhibition in orthotopic xenograft models in vivo. RESULTS MET-CAR.CD28ζ and MET-CAR.4-1BBζ T cells derived from both HS and HCC patients specifically killed MET-positive HCC cells. When stimulated with MET-positive HCC cells in vitro, MET-CAR.CD28ζ T cells demonstrated a higher level of cytokine release and expression of programmed cell death protein 1 (PD-1) than MET-CAR.4-1BBζ T cells. When analyzed in vivo, MET-CAR.CD28ζ T cells more effectively inhibited HCC orthotopic tumor growth in mice when compared to MET-CAR.4-1BBζ T cells. CONCLUSION We generated and characterized MET-specific CAR-T cells for targeting HCC with MET overexpression regardless of MET activation. Compared with MET-CAR.4-1BBζ, MET-CAR.CD28ζ T cells showed a higher anti-HCC potency but also a higher level of T cell exhaustion. While MET-CAR.CD28ζ is preferred for further development, overcoming the exhaustion of MET-CAR-T cells is necessary to improve their therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Yuan Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Joseph Lee
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Anna Musket
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Mingyao Ying
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Zhi Q Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Qian Xie
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
18
|
Yang C, You J, Pan Q, Tang Y, Cai L, Huang Y, Gu J, Wang Y, Yang X, Du Y, Ouyang D, Chen H, Zhong H, Li Y, Yang J, Han Y, Sun F, Chen Y, Wang Q, Weng D, Liu Z, Xiang T, Xia J. Targeted delivery of a PD-1-blocking scFv by CD133-specific CAR-T cells using nonviral Sleeping Beauty transposition shows enhanced antitumour efficacy for advanced hepatocellular carcinoma. BMC Med 2023; 21:327. [PMID: 37635247 PMCID: PMC10464109 DOI: 10.1186/s12916-023-03016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND CD133 is considered a marker for cancer stem cells (CSCs) in several types of tumours, including hepatocellular carcinoma (HCC). Chimeric antigen receptor-specific T (CAR-T) cells targeting CD133-positive CSCs have emerged as a tool for the clinical treatment of HCC, but immunogenicity, the high cost of clinical-grade recombinant viral vectors and potential insertional mutagenesis limit their clinical application. METHODS CD133-specific CAR-T cells secreting PD-1 blocking scFv (CD133 CAR-T and PD-1 s cells) were constructed using a sleeping beauty transposon system from minicircle technology, and the antitumour efficacy of CD133 CAR-T and PD-1 s cells was analysed in vitro and in vivo. RESULTS A univariate analysis showed that CD133 expression in male patients at the late stage (II and III) was significantly associated with worse progression-free survival (PFS) (P = 0.0057) and overall survival (OS) (P = 0.015), and a multivariate analysis showed a trend toward worse OS (P = 0.041). Male patients with advanced HCC exhibited an approximately 20-fold higher PD-L1 combined positive score (CPS) compared with those with HCC at an early stage. We successfully generated CD133 CAR-T and PD-1 s cells that could secrete PD-1 blocking scFv based on a sleeping beauty system involving minicircle vectors. CD133 CAR-T and PD-1 s cells exhibited significant antitumour activity against HCC in vitro and in xenograft mouse models. Thus, CD133 CAR-T and PD-1 s cells may be a therapeutically tractable strategy for targeting CD133-positive CSCs in male patients with advanced HCC. CONCLUSIONS Our study provides a nonviral strategy for constructing CAR-T cells that could also secrete checkpoint blockade inhibitors based on a Sleeping Beauty system from minicircle vectors and revealed a potential benefit of this strategy for male patients with advanced HCC and high CD133 expression (median immunohistochemistry score > 2.284).
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jinqi You
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qiuzhong Pan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yan Tang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Liming Cai
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yue Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jiamei Gu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Molecular Diagnostics, Sun Yat-Sen University, Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yizhi Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Xinyi Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yufei Du
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Dijun Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hao Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Haoran Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yongqiang Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jieying Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yulong Han
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Fengze Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yuanyuan Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qijing Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Desheng Weng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Jianchuan Xia
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
19
|
Shah PD, Huang AC, Xu X, Orlowski R, Amaravadi RK, Schuchter LM, Zhang P, Tchou J, Matlawski T, Cervini A, Shea J, Gilmore J, Lledo L, Dengel K, Marshall A, Wherry EJ, Linette GP, Brennan A, Gonzalez V, Kulikovskaya I, Lacey SF, Plesa G, June CH, Vonderheide RH, Mitchell TC. Phase I Trial of Autologous RNA-electroporated cMET-directed CAR T Cells Administered Intravenously in Patients with Melanoma and Breast Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:821-829. [PMID: 37377890 PMCID: PMC10167933 DOI: 10.1158/2767-9764.crc-22-0486] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/29/2023]
Abstract
Purpose Treatments are limited for metastatic melanoma and metastatic triple-negative breast cancer (mTNBC). This pilot phase I trial (NCT03060356) examined the safety and feasibility of intravenous RNA-electroporated chimeric antigen receptor (CAR) T cells targeting the cell-surface antigen cMET. Experimental Design Metastatic melanoma or mTNBC subjects had at least 30% tumor expression of cMET, measurable disease and progression on prior therapy. Patients received up to six infusions (1 × 10e8 T cells/dose) of CAR T cells without lymphodepleting chemotherapy. Forty-eight percent of prescreened subjects met the cMET expression threshold. Seven (3 metastatic melanoma, 4 mTNBC) were treated. Results Mean age was 50 years (35-64); median Eastern Cooperative Oncology Group 0 (0-1); median prior lines of chemotherapy/immunotherapy were 4/0 for TNBC and 1/3 for melanoma subjects. Six patients experienced grade 1 or 2 toxicity. Toxicities in at least 1 patient included anemia, fatigue, and malaise. One subject had grade 1 cytokine release syndrome. No grade 3 or higher toxicity, neurotoxicity, or treatment discontinuation occurred. Best response was stable disease in 4 and disease progression in 3 subjects. mRNA signals corresponding to CAR T cells were detected by RT-PCR in all patients' blood including in 3 subjects on day +1 (no infusion administered on this day). Five subjects underwent postinfusion biopsy with no CAR T-cell signals seen in tumor. Three subjects had paired tumor tissue; IHC showed increases in CD8 and CD3 and decreases in pS6 and Ki67. Conclusions Intravenous administration of RNA-electroporated cMET-directed CAR T cells is safe and feasible. Significance Data evaluating CAR T therapy in patients with solid tumors are limited. This pilot clinical trial demonstrates that intravenous cMET-directed CAR T-cell therapy is safe and feasible in patients with metastatic melanoma and metastatic breast cancer, supporting the continued evaluation of cellular therapy for patients with these malignancies.
Collapse
Affiliation(s)
- Payal D. Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander C. Huang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Orlowski
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K. Amaravadi
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M. Schuchter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Zhang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Tchou
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tina Matlawski
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanda Cervini
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanne Shea
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan Gilmore
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen Dengel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - E. John Wherry
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Institute of Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gerald P. Linette
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Brennan
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vanessa Gonzalez
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irina Kulikovskaya
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon F. Lacey
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriela Plesa
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Vonderheide
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C. Mitchell
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Li D, Qin J, Zhou T, Li Y, Cheng X, Chen Z, Chen J, Zheng WV. Bispecific GPC3/PD‑1 CAR‑T cells for the treatment of HCC. Int J Oncol 2023; 62:53. [PMID: 36896779 PMCID: PMC10019756 DOI: 10.3892/ijo.2023.5501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/06/2022] [Indexed: 03/11/2023] Open
Abstract
Constantly stimulated by the tumor microenvironment (TME), programmed death 1 (PD‑1) is elevated, and it interacts with PD ligand 1 (PD‑L1), rendering chimeric antigen receptor (CAR)‑T cells dysfunctional. Hence, CAR‑T cells immune to PD‑1‑induced immunosuppression were constructed to improve the function of CAR‑T cells in hepatocellular carcinoma (HCC). Double‑target CAR‑T cells, targeting glypican‑3 (GPC3) [a tumour-associated antigen (TAA)] and hindering PD‑1‑PD‑L1 binding, were established. The expression of GPC3, PD‑L1, and inhibitory receptors was measured using flow cytometry. The cytotoxicity, cytokine release, and differentiation level of CAR‑T cells were determined using lactate dehydrogenase release assay, enzyme‑linked immunosorbent assay, and flow cytometry, respectively. HCC cells were targeted and eliminated by double‑target CAR‑T cells. These double‑target CAR‑T cells limit PD‑1‑PD‑L1 binding and sustain cytotoxicity to PD‑L1+ HCC cells. The relatively low IR expression and differentiation level in double‑target CAR‑T cells in tumour tissues induced tumour‑suppression and extended survival in PD‑L1+ HCC TX models, as opposed to their single‑target counterparts. The results of the present study suggested that the newly constructed double‑target CAR‑T cells exhibit stronger tumour‑suppressing effects in HCC than their single‑target counterparts, which are common, suggesting the potential of strengthening CAR‑T cell activity in HCC treatment.
Collapse
Affiliation(s)
- Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jie Qin
- Department of Scientific and Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Dr Junhui Chen or Dr Wei V. Zheng, Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail: , E-mail:
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Dr Junhui Chen or Dr Wei V. Zheng, Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail: , E-mail:
| |
Collapse
|
21
|
Mandlik DS, Mandlik SK, Choudhary HB. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol 2023; 29:1054-1075. [PMID: 36844141 PMCID: PMC9950866 DOI: 10.3748/wjg.v29.i6.1054] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the world’s deadliest and fastest-growing tumors, with a poor prognosis. HCC develops in the context of chronic liver disease. Curative resection, surgery (liver transplantation), trans-arterial chemoembolization, radioembolization, radiofrequency ablation and chemotherapy are common treatment options for HCC, however, they will only assist a limited percentage of patients. Current treatments for advanced HCC are ineffective and aggravate the underlying liver condition. Despite promising preclinical and early-phase clinical trials for some drugs, existing systemic therapeutic methods for advanced tumor stages remain limited, underlining an unmet clinical need. In current years, cancer immunotherapy has made significant progress, opening up new treatment options for HCC. HCC, on the other hand, has a variety of causes and can affects the body’s immune system via a variety of mechanisms. With the speedy advancement of synthetic biology and genetic engineering, a range of innovative immunotherapies, such as immune checkpoint inhibitors [anti-programmed cell death-1 (PD-1), anti-cytotoxic T lymphocyte antigen-4, and anti-PD ligand 1 cell death antibodies], therapeutic cancer vaccines, engineered cytokines, and adoptive cell therapy have all been used for the treatment of advanced HCC. In this review, we summarize the present clinical and preclinical landscape of immunotherapies in HCC, critically discuss recent clinical trial outcomes, and address future perspectives in the field of liver cancer.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
22
|
Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol 2023; 12:14. [PMID: 36707873 PMCID: PMC9883880 DOI: 10.1186/s40164-023-00373-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The past decade has witnessed ongoing progress in immune therapy to ameliorate human health. As an emerging technique, chimeric antigen receptor (CAR) T-cell therapy has the advantages of specific killing of cancer cells, a high remission rate of cancer-induced symptoms, rapid tumor eradication, and long-lasting tumor immunity, opening a new window for tumor treatment. However, challenges remain in CAR T-cell therapy for solid tumors due to target diversity, tumor heterogeneity, and the complex microenvironment. In this review, we have outlined the development of the CAR T-cell technique, summarized the current advances in tumor-associated antigens (TAAs), and highlighted the importance of tumor-specific antigens (TSAs) or neoantigens for solid tumors. We also addressed the challenge of the TAA binding domain in CARs to overcome off-tumor toxicity. Moreover, we illustrated the dominant tumor microenvironment (TME)-induced challenges and new strategies based on TME-associated antigens (TMAs) for solid tumor CAR T-cell therapy.
Collapse
Affiliation(s)
- Ting Yan
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Lingfeng Zhu
- grid.443397.e0000 0004 0368 7493Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Jin Chen
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China ,grid.443397.e0000 0004 0368 7493Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| |
Collapse
|
23
|
El Ghazzi N, Italiano A, Bay JO, Dougé A. [CAR-T cells development in solid tumors]. Bull Cancer 2023; 110:32-41. [PMID: 36543680 DOI: 10.1016/j.bulcan.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
CAR-T cells have produced very promising results in the field of onco-hematology and have been rapidly approved for marketing in France for several years now. In solid tumors, current results are more disappointing. Indeed, many hurdles come in the way. Tumor vascularization, the strongly immunosuppressive microenvironment, the loss of the target antigen as well as T cell exhaustion are part of the explanation of those results. Hence many researchers are working to develop strategies to counteract these resistance mechanisms. Arming CAR-T cells with BiTEs, with immune checkpoint inhibitors or with interleukins seem to be effective ways to improve antitumor efficacy. Other strategies including vaccines association or local delivery of the CAR-T cells look very promising. Many Phase I studies are investigating these new strategies and are expected to improve the previous results obtained to date in this area.
Collapse
Affiliation(s)
- Nathan El Ghazzi
- CHU Gabriel Montpied, service d'oncologie médicale, Clermont-Ferrand, France; Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Italiano
- Institut Bergonié, unité de phases précoces, Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Jacques-Olivier Bay
- CHU Gabriel Montpied, service d'oncologie médicale, Clermont-Ferrand, France; Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aurore Dougé
- CHU Gabriel Montpied, service d'oncologie médicale, Clermont-Ferrand, France; Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
24
|
Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol 2023; 13:1071030. [PMID: 36959792 PMCID: PMC10028134 DOI: 10.3389/fonc.2023.1071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
At present, studies have found that c-Met is mainly involved in epithelial-mesenchymal transition (EMT) of tumor tissues in urologic neoplasms. Hepatocyte growth factor (HGF) combined with c-Met promotes the mitosis of tumor cells, and then induces motility, angiogenesis, migration, invasion and drug resistance. Therefore, c-Met targeting therapy may have great potential in urologic neoplasms. Many strategies targeting c-Met have been widely used in the study of urologic neoplasms. Although the use of targeting c-Met therapy has a strong biological basis for the treatment of urologic neoplasms, the results of current clinical trials have not yielded significant results. To promote the application of c-Met targeting drugs in the clinical treatment of urologic neoplasms, it is very important to study the detailed mechanism of c-Met in urologic neoplasms and innovate c-Met targeted drugs. This paper firstly discussed the value of c-Met targeted therapy in urologic neoplasms, then summarized the related research progress, and finally explored the potential targets related to the HGF/c-Met signaling pathway. It may provide a new concept for the treatment of middle and late urologic neoplasms.
Collapse
|
25
|
Khanam A, Kottilil S. New Therapeutics for HCC: Does Tumor Immune Microenvironment Matter? Int J Mol Sci 2022; 24:ijms24010437. [PMID: 36613878 PMCID: PMC9820509 DOI: 10.3390/ijms24010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The incidence of liver cancer is continuously rising where hepatocellular carcinoma (HCC) remains the most common form of liver cancer accounting for approximately 80-90% of the cases. HCC is strongly prejudiced by the tumor microenvironment and being an inflammation-associated condition, the contribution of various immune mechanisms is critical in its development, progression, and metastasis. The tumor immune microenvironment is initially inflammatory which is subsequently replenished by the immunosuppressive cells contributing to tumor immune escape. Regardless of substantial advancement in systemic therapy, HCC has poor prognosis and outcomes attributed to the drug resistance, recurrence, and its metastatic behavior. Therefore, currently, new immunotherapeutic strategies are extensively targeted in preclinical and clinical settings in order to elicit robust HCC-specific immune responses and appear to be quite effective, extending current treatment alternatives. Understanding the complex interplay between the tumor and the immune cells and its microenvironment will provide new insights into designing novel immunotherapeutics to overcome existing treatment hurdles. In this review, we have provided a recent update on immunological mechanisms associated with HCC and discussed potential advancement in immunotherapies for HCC treatment.
Collapse
|
26
|
Fanti S, Stephenson E, Rocha-Vieira E, Protonotarios A, Kanoni S, Shahaj E, Longhi MP, Vyas VS, Dyer C, Pontarini E, Asimaki A, Bueno-Beti C, De Gaspari M, Rizzo S, Basso C, Bombardieri M, Coe D, Wang G, Harding D, Gallagher I, Solito E, Elliott P, Heymans S, Sikking M, Savvatis K, Mohiddin SA, Marelli-Berg FM. Circulating c-Met-Expressing Memory T Cells Define Cardiac Autoimmunity. Circulation 2022; 146:1930-1945. [PMID: 36417924 PMCID: PMC9770129 DOI: 10.1161/circulationaha.121.055610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.
Collapse
Affiliation(s)
- Silvia Fanti
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Edward Stephenson
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Etel Rocha-Vieira
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil (E.R.-V.)
| | - Alexandros Protonotarios
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - M. Paula Longhi
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Vishal S. Vyas
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Carlene Dyer
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Elena Pontarini
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Angeliki Asimaki
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Carlos Bueno-Beti
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Monica De Gaspari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - David Coe
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Guosu Wang
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Iain Gallagher
- Faculty of Health Sciences & Sport, University of Stirling, UK (I.G.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II,” Italy (E. Solito)
| | - Perry Elliott
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stephane Heymans
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
- Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Belgium (S.H.)
| | - Maurits Sikking
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
| | - Konstantinos Savvatis
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Saidi A. Mohiddin
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Centre for Inflammation and Therapeutic Innovation (F.M.M.-B.), Queen Mary University of London, UK
| |
Collapse
|
27
|
Abplanalp WT, Merten M, Dimmeler S. Straight to the Heart: T Cells That Specifically Target Cardiac Tissue. Circulation 2022; 146:1946-1949. [PMID: 36534731 DOI: 10.1161/circulationaha.122.061324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wesley T Abplanalp
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (W.T.A., M.M., S.D.).,Cardiopulmonary Institute (W.T.A., M.M., S.D.).,Goethe University Frankfurt, Germany (W.T.A., M.M., S.D.).,German Center for Cardiovascular Research DZHK, Partner site Frankfurt Rhine-Main, Berlin, Germany (W.T.A., M.M., S.D.)
| | - Maximilian Merten
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (W.T.A., M.M., S.D.).,Cardiopulmonary Institute (W.T.A., M.M., S.D.).,Goethe University Frankfurt, Germany (W.T.A., M.M., S.D.).,German Center for Cardiovascular Research DZHK, Partner site Frankfurt Rhine-Main, Berlin, Germany (W.T.A., M.M., S.D.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (W.T.A., M.M., S.D.).,Cardiopulmonary Institute (W.T.A., M.M., S.D.).,Goethe University Frankfurt, Germany (W.T.A., M.M., S.D.).,German Center for Cardiovascular Research DZHK, Partner site Frankfurt Rhine-Main, Berlin, Germany (W.T.A., M.M., S.D.)
| |
Collapse
|
28
|
Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, Proment A, Vitali L, Fontani L, Casucci M, Comoglio PM, Giordano S, Sangiolo D, Leuci V, Vigna E. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:309. [PMID: 36271379 PMCID: PMC9585715 DOI: 10.1186/s13046-022-02479-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Background Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. Methods Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. Results We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. Conclusions We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02479-y.
Collapse
Affiliation(s)
- Cristina Chiriaco
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,Present address: Anemocyte S.r.l., 21040 Gerenzano, VA Italy
| | - Chiara Donini
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Marco Cortese
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Stefano Ughetto
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,Present address: Bios-Therapy, Physiological System for Health S.p.A, 52037 Sansepolcro, AR Italy
| | - Chiara Modica
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.10776.370000 0004 1762 5517Present address: Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Ilaria Martinelli
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Alessia Proment
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Letizia Vitali
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Lara Fontani
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Monica Casucci
- grid.18887.3e0000000417581884Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Maria Comoglio
- grid.7678.e0000 0004 1757 7797IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Giordano
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Dario Sangiolo
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Leuci
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Elisa Vigna
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
29
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
30
|
Abstract
ABSTRACT Despite a dearth of activating driver mutations in head and neck squamous cell carcinoma (HNSCC), aberrant activation of the oncogenes, epidermal growth factor receptor (EGFR), and c-Met is near-universal in human papillomavirus (HPV)-negative disease. Although EGFR activation drove the successful development of the anti-EGFR monoclonal antibody cetuximab in HNSCC, no c-Met-targeting therapy has gained regulatory approval. Inhibition of the c-Met pathway may subvert oncogenesis within the tumor-intrinsic compartment, blocking tumoral proliferation, invasion, migration, and metastasis, or the tumor-extrinsic compartment, modulating the immunosuppressive tumor microenvironment. This review discusses the rationale and current drug development strategies for targeting c-Met or its exclusive ligand hepatocyte growth factor (HGF) in HNSCC.
Collapse
|
31
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
32
|
Immunotherapy for hepatocellular carcinoma. Clin Exp Med 2022:10.1007/s10238-022-00874-5. [PMID: 36001163 DOI: 10.1007/s10238-022-00874-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is a threat to the health of all humans as a prevalent malignancy and is the sixth most common cancer worldwide. It is difficult to diagnose because symptoms do not show up until late in the disease, and patients often progress to the point where transplantation, resection, or even local treatment cannot be performed. The progression of HCC is regulated by the immune system, and immunotherapy enables the body's immune system's defenses to target liver cancer cells; therefore, immunotherapy has brought a new hope for the treatment of HCC. Currently, the main types of immunotherapies for liver cancer are: immune checkpoint inhibitors, liver cancer vaccines and cellular therapies. In this review, the progress of immunotherapy for the treatment of HCC is summarized.
Collapse
|
33
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
34
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
35
|
Jiang Y, Wen W, Yang F, Han D, Zhang W, Qin W. Prospect of Prostate Cancer Treatment: Armed CAR-T or Combination Therapy. Cancers (Basel) 2022; 14:cancers14040967. [PMID: 35205714 PMCID: PMC8869943 DOI: 10.3390/cancers14040967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence rate of prostate cancer is higher in male cancers. With a hidden initiation of disease and long duration, prostate cancer seriously affects men's physical and mental health. Prostate cancer is initially androgen-dependent, and endocrine therapy can achieve good results. However, after 18-24 months of endocrine therapy, most patients eventually develop castration-resistant prostate cancer (CRPC), which becomes metastatic castration resistant prostate cancer (mCRPC) that is difficult to treat. Chimeric Antigen Receptor T cell (CAR-T) therapy is an emerging immune cell therapy that brings hope to cancer patients. CAR-T has shown considerable advantages in the treatment of hematologic tumors. However, there are still obstacles to CAR-T treatment of solid tumors because the physical barrier and the tumor microenvironment inhibit the function of CAR-T cells. In this article, we review the progress of CAR-T therapy in the treatment of prostate cancer and discuss the prospects and challenges of armed CAR-T and combined treatment strategies. At present, there are still many obstacles in the treatment of prostate cancer with CAR-T, but when these obstacles are solved, CAR-T cells can become a favorable weapon for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Weihong Wen
- Department of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (W.W.); (W.Q.)
| | - Fa Yang
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Donghui Han
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Wuhe Zhang
- Department of Urology, Air Force 986 Hospital, Xi’an 710054, China;
| | - Weijun Qin
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
- Correspondence: (W.W.); (W.Q.)
| |
Collapse
|
36
|
Roddy H, Meyer T, Roddie C. Novel Cellular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:504. [PMID: 35158772 PMCID: PMC8833505 DOI: 10.3390/cancers14030504] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Most patients present with advanced disease, and current gold-standard management using tyrosine kinase inhibitors or immune checkpoint inhibitors (ICIs) offers modest clinical benefit. Cellular immune therapies targeting HCC are currently being tested in the laboratory and in clinical trials. Here, we review the landscape of cellular immunotherapy for HCC, defining antigenic targets, outlining the range of cell therapy products being applied in HCC (such as CAR-T and TCR-T), and exploring how advanced engineering solutions may further enhance this therapeutic approach.
Collapse
Affiliation(s)
- Harriet Roddy
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
| | - Tim Meyer
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Claire Roddie
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
| |
Collapse
|
37
|
Huang X, Guo J, Li T, Jia L, Tang X, Zhu J, Tang Q, Feng Z. c-Met-targeted chimeric antigen receptor T cells inhibit hepatocellular carcinoma cells in vitro and in vivo. J Biomed Res 2021; 36:10-21. [PMID: 35403606 PMCID: PMC8894281 DOI: 10.7555/jbr.35.20200207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma (HCC). Therefore, c-Met may serve as a promising target for HCC immunotherapy. Modifying T cells to express c-Met-specific chimeric antigen receptor (CAR) is an attractive strategy in treating c-Met-positive HCC. This study aimed to systematically evaluate the inhibitory effects of 2nd- and 3rd-generation c-Met CAR-T cells on hepatocellular carcinoma (HCC) cells. Here, 2nd- and 3rd-generation c-Met CARs containing an anti-c-Met single-chain variable fragment (scFv) as well as the CD28 signaling domain and CD3ζ (c-Met-28-3ζ), the CD137 signaling domain and CD3ζ (c-Met-137-3ζ), or the CD28 and CD137 signaling domains and CD3ζ (c-Met-28-137-3ζ) were constructed, and their abilities to target c-Met-positive HCC cells were evaluated in vitro and in vivo. All c-Met CARs were stably expressed on T cell membrane, and c-Met CAR-T cells aggregated around c-Met-positive HCC cells and specifically killed them in vitro. c-Met-28-137-3ζ CAR-T cells secreted more interferon-gamma (IFN-γ) and interleukin 2 (IL-2) than c-Met-28-3ζ CAR-T cells and c-Met-137-3ζ CAR-T cells. Compared with c-Met low-expressed cells, c-Met CAR-T cells secreted more cytokines when co-cultured with c-Met high-expressed cells. Moreover, c-Met-28-137-3ζ CAR-T cells eradicated HCC more effectively in xenograft tumor models compared with the control groups. This study suggests that 3rd-generation c-Met CAR-T cells are more effective in inhibiting c-Met-positive HCC cells than 2nd-generation c-Met CAR-T cells, thereby providing a promising therapeutic intervention for c-Met-positive HCC.
Collapse
Affiliation(s)
- Xiaochen Huang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Departments of Pathology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Jiangsu Province Institute of Cancer, Nanjing, Jiangsu 210009, China
| | - Jiaojiao Guo
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tao Li
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lizhou Jia
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaojun Tang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| | - Qi Tang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhenqing Feng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
38
|
Liu Z, Liu X, Liang J, Liu Y, Hou X, Zhang M, Li Y, Jiang X. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Front Immunol 2021; 12:765101. [PMID: 34675942 PMCID: PMC8524467 DOI: 10.3389/fimmu.2021.765101] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with poor prognosis. Surgery, chemotherapy, and radiofrequency ablation are three conventional therapeutic options that will help only a limited percentage of HCC patients. Cancer immunotherapy has achieved dramatic advances in recent years and provides new opportunities to treat HCC. However, HCC has various etiologies and can evade the immune system through multiple mechanisms. With the rapid development of genetic engineering and synthetic biology, a variety of novel immunotherapies have been employed to treat advanced HCC, including immune checkpoint inhibitors, adoptive cell therapy, engineered cytokines, and therapeutic cancer vaccines. In this review, we summarize the current landscape and research progress of different immunotherapy strategies in the treatment of HCC. The challenges and opportunities of this research field are also discussed.
Collapse
Affiliation(s)
- Zhuoyan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Liang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yixin Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meichuan Zhang
- R&D Department, Caleb BioMedical Technology Co. Ltd, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol 2021; 18:2083-2100. [PMID: 34267335 PMCID: PMC8429625 DOI: 10.1038/s41423-021-00732-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T-cell (CAR-T) therapy has demonstrated impressive therapeutic efficacy against hematological malignancies, but multiple challenges have hindered its application, particularly for the eradication of solid tumors. Innate killer cells (IKCs), particularly NK cells, NKT cells, and γδ T cells, employ specific antigen-independent innate tumor recognition and cytotoxic mechanisms that simultaneously display high antitumor efficacy and prevent tumor escape caused by antigen loss or modulation. IKCs are associated with a low risk of developing GVHD, thus offering new opportunities for allogeneic "off-the-shelf" cellular therapeutic products. The unique innate features, wide tumor recognition range, and potent antitumor functions of IKCs make them potentially excellent candidates for cancer immunotherapy, particularly serving as platforms for CAR development. In this review, we first provide a brief summary of the challenges hampering CAR-T-cell therapy applications and then discuss the latest CAR-NK-cell research, covering the advantages, applications, and clinical translation of CAR- and NK-cell receptor (NKR)-engineered IKCs. Advances in synthetic biology and the development of novel genetic engineering techniques, such as gene-editing and cellular reprogramming, will enable the further optimization of IKC-based anticancer therapies.
Collapse
|