1
|
Yang Y, Wang S, Jia B, Chen S. Association Between Triglyceride-Glucose Index and Lung Function Parameters in the General Population Undergoing Health Examinations. Diabetes Metab Syndr Obes 2024; 17:4031-4047. [PMID: 39492961 PMCID: PMC11531295 DOI: 10.2147/dmso.s487744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose To investigate the relationship between the triglyceride-glucose (TyG) index and pulmonary function metrics among the general population undergoing health examinations. Materials and Methods The enrollment totaled 696 participants. Fasting triglycerides and glucose levels were used to calculate the TyG index. Participants were divided into two categories according to their median TyG: one with high TyG and the other with low TyG. A portable spirometer was used to assess lung function. Fundamental clinical features and lung function indicators were compared between the two groups, and the relationship between the TyG index and lung function parameters was explored. Results Compared with the low TyG group, the high TyG group exhibited significantly reduced levels of FEV1/FVC, FVC% pred, FEV1% pred, FEV3% pred, FEV3/FVC, FEF75, FEF75% pred, FEF25-75% pred, and MVV% pred, suggesting poor pulmonary function. The TyG index was significantly inversely correlated with multiple pulmonary function metrics, including FVC% pred, FEV1% pred, FEV3% pred, FEV1/FVC, FEV3/FVC, FEF75, FEF75% pred and FEF25-75% pred, which persisted even after accounting for confounding variables. Conclusion In summary, the present study establishes a correlation between the TyG index and some lung function indicators, offering a new indicator of metabolic abnormalities related to lung functionality.
Collapse
Affiliation(s)
- Yu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Shuqi Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Boying Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
2
|
Wang X, Cui X, Fan H, Hu T. Elevated Triglyceride-Glucose (TyG) Index Predicts Poor Clinical Outcomes in Critically Ill AECOPD Patients: A Retrospective Study. Int J Chron Obstruct Pulmon Dis 2024; 19:2217-2228. [PMID: 39371919 PMCID: PMC11453155 DOI: 10.2147/copd.s477268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose The triglyceride-glucose (TyG) index is a surrogate biomarker of insulin resistance which has been widely used in intensive care unit (ICU) to predict prognosis. However, its role in critically ill acute exacerbation of COPD (AECOPD) patients remains largely unknown. Material and methods A total of 645 AECOPD patients were induced in this retrospective cohort study, which extracted data from the eICU Collaborative Research Database (eICU-CRD). The TyG index was calculated as Ln (fasting triglycerides (mg/dL) × fasting plasma glucose (mg/dL)/2). The primary endpoint includes in-hospital mortality and ICU mortality. The secondary endpoint was sepsis, acute kidney injury (AKI), and acute respiratory failure (ARF). Results Multivariable Cox regression analysis revealed that the TyG index was independently associated with an increased risk of in-hospital mortality (hazard ratio, HR: 1.45, 95% CI: 1.04-2.01, P = 0.028) and ICU mortality (HR: 2.13, 95% CI: 1.28-3.54, P = 0.004). Moreover, the TyG index was independently associated with an increased risk of sepsis (odds ratio, OR: 1.54, 95% CI: 1.24-1.93, P < 0.001), AKI (OR: 1.57, 95% CI: 1.26-2.02, P < 0.001) and ARF (OR: 1.50, 95% CI: 1.20-1.87, P < 0.001). Kaplan-Meier survival analysis revealed that higher TyG indexes were also related to increased in-hospital mortality and ICU mortality. In addition, the restricted cubic splines regression model demonstrated that the in-hospital mortality and ICU mortality increased linearly with increasing TyG index (P for non-linearity = 0.897, P for non-linearity = 0.897, respectively). Conclusion Elevated TyG index was independently associated with an increased risk of poor clinical outcomes in critically ill AECOPD patients. A prospective study to define TyG as a biomarker for prognosis prediction in critically ill AECOPD patients is warranted.
Collapse
Affiliation(s)
- Xin Wang
- Department of Respiratory and Critical Care Medicine, Deyang People’s Hospital, Deyang, Sichuan, 618099, People’s Republic of China
| | - Xuerong Cui
- Department of Respiratory Medicine, People’s Hospital of Shizhu Tujia Autonomous County, Chongqing, 409199, People’s Republic of China
| | - Huaping Fan
- Department of Cardiology, 63650 Military Hospital, Urumqi, Xinjiang, 841700, People’s Republic of China
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
3
|
Wang G, Zhu Z, Wang Y, Zhang Q, Sun Y, Pang G, Ge W, Ma Z, Ma H, Gong L, Ma H, Shao F, Zhu M. The association between METS-IR, an indirect index for insulin resistance, and lung cancer risk. Eur J Public Health 2024; 34:800-805. [PMID: 38300233 PMCID: PMC11293818 DOI: 10.1093/eurpub/ckad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Insulin resistance has been reported to increase the risk of breast, prostate and colorectal cancer. However, the role of insulin resistance and its interaction with genetic risk in the development of lung cancer remains controversial. Therefore, we aimed to explore the association between a novel metabolic score for insulin resistance (METS-IR) and lung cancer risk. METHODS A total of 395 304 participants without previous cancer at baseline were included. The Cox proportional hazards regression model was performed to investigate the association between METS-IR and lung cancer risk. In addition, a Mendelian randomization analysis was also performed to explore the causal relationship. The joint effects and additive interactions between METS-IR and polygenetic risk score (PRS) of lung cancer were also investigated. RESULTS During a median follow-up of 11.03 years (Inter-quartile range (IQR): 10.30-11.73), a total of 3161 incident lung cancer cases were diagnosed in 395 304 participants. There was a significant association between METS-IR and lung cancer risk, with an HR of 1.28 (95% CI: 1.17-1.41). Based on the Mendelian randomization analysis, however, no causal associations were observed. We observed a joint effect but no interaction between METS-IR and genetic risk. The lung cancer incidence was estimated to be 100.42 (95% CI: 91.45-109.38) per 100 000 person-year for participants with a high METS-IR and PRS, while only 42.76 (95% CI: 36.94-48.59) with low METS-IR and PRS. CONCLUSIONS High METS-IR was significantly associated with an increased risk of lung cancer. Keeping a low level of METS-IR might help reduce the long-term incident risk of lung cancer.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaopeng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Respiratory Disease, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Yungang Sun
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Guanlian Pang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenjing Ge
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Shao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wang H, Ruan S, Wu Z, Yan Q, Chen Y, Cui J, Zhang Z, Huang S, Hou B, Zhang C. Prognostic significance of glucose-lipid metabolic index in pancreatic cancer patients with diabetes mellitus. Cancer Med 2024; 13:e7108. [PMID: 38523554 PMCID: PMC10961598 DOI: 10.1002/cam4.7108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The incidence of pancreatic cancer (PC) is higher in diabetic patients due to disturbances in glucose and lipid metabolism caused by insulin resistance (IR). However, the effect of diabetes as well as IR on the prognosis of PC patients remains inconclusive. Our study aims to assess the impact of IR on the prognosis of PC patients with diabetes. METHODS We conducted a retrospective analysis of 172 PC patients with diabetes in our institute from 2015 to 2021. Prognostic assessment was performed using univariate/multifactorial analysis and survival analysis. The predictive efficacy of metabolic indices was compared using receiver operator characteristic (ROC) curve analysis. RESULTS One hundred twenty-one of 172 patients died during follow-up, with a median follow-up of 477 days and a median overall survival (OS) of 270 days. Survival analysis showed a significant difference in OS by IR related parameters, which were triglyceride-glucose index (TyG), triglyceride-glucose index-body mass index (TyG-BMI), and triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-c). The ROC curve indicated that TyG, TyG-BMI, and TG/HDL-c had prognostic efficacy for PC with diabetes. We next optimized TyG-BMI and obtained a new parameter, namely glucose-lipid metabolism index (GLMI), and the patients were classified into GLMI low group and high group based on the calculated cutoff value. The GLMI high group had higher TyG, TyG-BMI, TyG/HDL-c, BMI, TG, total cholesterol (TC), TC/HDL-c, fasting plasma glucose, CA199, and more advanced tumor stage compared to low group. Univariate and multivariate analyses showed that GLMI was an independent prognostic factor. Furthermore, the patients of GLMI high group had worse OS compared to low group and the ROC curves showed GLMI had better predictive ability than TyG and TyG-BMI. CONCLUSIONS IR is associated with the outcome of PC patients with diabetes and higher level of IR indicates worse prognosis. GLMI has a good predictive value for PC with diabetes.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Hepatobiliary SurgeryWeihai Central Hospital, Qingdao UniversityWeihaiChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Zelong Wu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of Medicine South China University of TechnologyGuangzhouChina
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of Medicine South China University of TechnologyGuangzhouChina
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of Medicine South China University of TechnologyGuangzhouChina
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- School of Medicine South China University of TechnologyGuangzhouChina
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- School of Medicine South China University of TechnologyGuangzhouChina
- Department of General SurgeryHeyuan People's HospitalHeyuanChina
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- School of Medicine South China University of TechnologyGuangzhouChina
| |
Collapse
|
5
|
Zhan S, Wang L, Wang W, Li R. Insulin resistance in NSCLC: unraveling the link between development, diagnosis, and treatment. Front Endocrinol (Lausanne) 2024; 15:1328960. [PMID: 38449844 PMCID: PMC10916692 DOI: 10.3389/fendo.2024.1328960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Lung cancer is responsible for the highest number of cancer-related deaths, with non-small cell lung cancer (NSCLC) being the most prevalent subtype. A critical aspect of managing lung cancer is reducing morbidity and mortality rates among NSCLC patients. Identifying high-risk factors for lung cancer and facilitating early diagnosis are invaluable in achieving this objective. Recent research has highlighted the association between insulin resistance and the development of NSCLC, further emphasizing its significance in the context of lung cancer. It has been discovered that improving insulin resistance can potentially inhibit the progression of lung cancer. Consequently, this paper aims to delve into the occurrence of insulin resistance, the mechanisms underlying its involvement in lung cancer development, as well as its potential value in predicting, assessing, and treating lung cancer.
Collapse
Affiliation(s)
- Shizhang Zhan
- Department of Graduate School, Bengbu Medical College, Bengbu, China
| | - Liu Wang
- Department of Respiratory and Critical Care, Xuzhou Central Hospital, Xuzhou, China
| | - Wenping Wang
- Department of Graduate School, Bengbu Medical College, Bengbu, China
| | - Ruoran Li
- Department of Graduate School, Bengbu Medical College, Bengbu, China
- Department of Respiratory and Critical Care, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
6
|
Ruan GT, Deng L, Xie HL, Shi JY, Liu XY, Zheng X, Chen Y, Lin SQ, Zhang HY, Liu CA, Ge YZ, Song MM, Hu CL, Zhang XW, Yang M, Hu W, Cong MH, Zhu LC, Wang KH, Shi HP. Systemic inflammation and insulin resistance-related indicator predicts poor outcome in patients with cancer cachexia. Cancer Metab 2024; 12:3. [PMID: 38273418 PMCID: PMC10809764 DOI: 10.1186/s40170-024-00332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The C-reactive protein (CRP)-triglyceride-glucose (TyG) index (CTI), which is a measure representing the level of inflammation and insulin resistance (IR), is related to poor cancer prognosis; however, the CTI has not been validated in patients with cancer cachexia. Thus, this study aimed to explore the potential clinical value of the CTI in patients with cancer cachexia. METHODS In this study, our prospective multicenter cohort included 1411 patients with cancer cachexia (mean age 59.45 ± 11.38, 63.3% male), which was a combined analysis of multiple cancer types. We randomly selected 30% of the patients for the internal test cohort (mean age 58.90 ± 11.22% 61.4% male). Additionally, we included 307 patients with cancer cachexia in the external validation cohort (mean age 61.16 ± 11, 58.5% male). Receiver operating characteristic (ROC) and calibration curves were performed to investigate the prognostic value of CTI. The prognostic value of the CTI was also investigated performing univariate and multivariate survival analyses. RESULTS The survival curve indicated that the CTI showed a significant prognostic value in the total, internal, and external validation cohorts. Prognostic ROC curves and calibration curves revealed that the CTI showed good consistency in predicting the survival of patients with cancer cachexia. Multivariate survival analysis showed that an elevated CTI increased the risk of death by 22% (total cohort, 95% confidence interval [CI] = 1.13-1.33), 34% (internal test cohort, 95%CI = 1.11-1.62), and 35% (external validation cohort, 95%CI = 1.14-1.59) for each increase in the standard deviation of CTI. High CTI reliably predicted shorter survival (total cohort, hazard ratio [HR] = 1.45, 95%CI = 1.22-1.71; internal test cohort, HR = 1.62, 95%CI = 1.12-2.36; external validation cohort, HR = 1.61, 95%CI = 1.15-2.26). High CTI significantly predicted shorter survival in different tumor subgroups, such as esophageal [HR = 2.11, 95%CI = 1.05-4.21] and colorectal cancer [HR = 2.29, 95%CI = 1.42-3.71]. The mediating effects analysis found that the mediating proportions of PGSGA, ECOG PS, and EORTC QLQ-C30 on the direct effects of CTI were 21.72%, 19.63%, and 11.61%, respectively We found that there was a significant positive correlation between the CTI and 90-day [HR = 2.48, 95%CI = 1.52-4.14] and 180-day mortality [HR = 1.77,95%CI = 1.24-2.55] in patients with cancer cachexia. CONCLUSION The CTI can predict the short- and long-term survival of patients with cancer cachexia and provide a useful prognostic tool for clinical practice.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Li Deng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Jin-Yu Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Yue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Yue Chen
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - He-Yang Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Chun-Lei Hu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Wen Hu
- Clinical Nutrition Department, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Ming-Hua Cong
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100038, China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Kun-Hua Wang
- Yunnan University, Kunming, 650091, China
- General Surgery Clinical Medical Center of Yunnan Province, Kunming, 650032, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China.
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.
| |
Collapse
|
7
|
Zhou Y, Li T, Muheiyati G, Duan Y, Xiao S, Gao Y, Tao N, An H. Triglyceride-glucose index is a predictor of the risk of prostate cancer: a retrospective study based on a transprostatic aspiration biopsy population. Front Endocrinol (Lausanne) 2024; 14:1280221. [PMID: 38260162 PMCID: PMC10801031 DOI: 10.3389/fendo.2023.1280221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Current research suggests that prostate cancer (PCa), one of the most common cancers in men, may be linked to insulin resistance (IR).Triglyceride-glucose index (TyG index) was made for a marker of insulin resistance. We investigated the relationship between the TyG index and the risk of PCa. Objective To assess the correlation and dose-response relationship between TyG index and prostate cancer. Method Retrospectively, 316 patients who required prostate biopsy puncture in the First Affiliated Hospital of Xinjiang Medical University from March 2017 to July 2021 were collected, and the relationship between factors such as the TyG index and prostate cancer was analyzed by Logistic regression model combined with a restricted cubic spline. Results (1) The differences in age, initial PSA and TyG index between the two groups were statistically significant; (2) Logistic regression results showed that the risk of prostate cancer in the highest quartile of the TyG index (Q4) was 3.387 times higher than that in the lowest quartile (Q1) (OR=3.387,95% CI [1.511,7.593], P=0.003); (3) The interaction results showed a significant interaction between the TyG index Q4 group and age with the risk of developing prostate cancer (P for interaction<0.001). (4) The results of the restricted cubic spline showed a linear dose-response relationship between the TyG index and the risk of prostate cancer; (5) The Receiver operating characteristic (ROC) curve results showed that the area under the curve (AUC) of the TyG index combined with initial PSA and age was 0.840, with a sensitivity and specificity of 62.5% and 93.3%, respectively. Conclusion TyG index and age are risk factors for prostate cancer, and the interaction between the TyG index and different risk factors may increase the risk of prostate cancer. TyG index has some predictive value for the risk of prostate cancer, and the risk of prostate cancer can be reduced by controlling the levels of blood lipids and blood glucose.
Collapse
Affiliation(s)
- Yijie Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tianqi Li
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guliman Muheiyati
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yajun Duan
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Songtao Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ning Tao
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Epidemiological Statistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hengqing An
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Karadag I, Karakaya S, Akkan T, Demir B, Alkurt EG, Dogan M. The Potential Prognostic Marker TyG Index Predicts Time to Brain Metastasis at HER2 Positive Breast Cancer. Cancer Manag Res 2023; 15:311-317. [PMID: 36994110 PMCID: PMC10042251 DOI: 10.2147/cmar.s403445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Background We aimed to investigate the prognostic significance of insulin resistance (IR) markers fasting triglyceride-glucose (TyG) index and triglyceride high-density lipoprotein cholesterol (TG/HDL-C) ratio in HER2-positive breast cancer (BC) patients with brain metastasis (BM). Methods In this single-center study, 120 patients who met the criteria were included. TyG and TG/HDL-C at the time of diagnosis were computed retrospectively. For TyG and TG/HDL-C, the median values of 9.32 and 2.95 were taken as the cut-off, respectively. TyG values <9.32 and <2.95 were considered low, and TG/HDL-C values ≥9.32 and ≥2.95 were considered high. Results The median overall survival (OS) was 47 months (95% CI: 40.54-53.45). Time to BM was 22 months (95% CI: 17.22-26.73). The median time to BM was 35 months (95% CI: 20.90-49.09) in the low TyG group and 15 months (95% CI: 8.92-21.07) in the high TyG group (p < 0.001). The time to BM was 27 months (95% CI: 20.49-33.50) in the low TG/HDL-C group and 20 months (95% CI: 16.76-23.23) in the high TG/HDL-C group (p=0.084). In the multivariate Cox regression analysis, the TyG index (HR: 20.98, 95% CI: 7.14-61.59, p < 0.001) was an independent risk factor for time to BM. Conclusion These findings suggest that the TyG index could be used as a predictive biomarker at the time of diagnosis for risk of time BM in patients with HER2-positive BC. The TyG index can be used as a standard potential marker with prospective studies confirming these data.
Collapse
Affiliation(s)
- Ibrahim Karadag
- Department of Medical Oncology, Hitit University Erol Olcok Training and Research Hospital, Corum, Turkey
| | - Serdar Karakaya
- Department of Medical Oncology, Health Science University, Atatürk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, Turkey
| | - Tolga Akkan
- Department of Endocrinology, Eskisehir City Hospital, Eskisehir, Turkey
| | - Bilgin Demir
- Department of Medical Oncology, Aydın Atatürk Public Hospital, Aydın, Turkey
| | - Ertugrul Gazi Alkurt
- Department of Surgical Oncology, Hitit University Erol Olcok Training and Research Hospital, Corum, Turkey
| | - Mutlu Dogan
- Department of Medical Oncology, Health Sciences University, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
9
|
Wei Y, Guo J. High Triglyceride-Glucose Index Is Associated with Poor Prognosis in Patients with Acute Pancreatitis. Dig Dis Sci 2023; 68:978-987. [PMID: 35731427 DOI: 10.1007/s10620-022-07567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/16/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is a common gastrointestinal disease worldwide. Severe acute pancreatitis (SAP) is characterized as persistent organ failure with a mortality rate as high as 20-30%. Early assessment of the severity and screening out possible SAP is of great significance. Given that there is still a lack of both convenient and practical tools for evaluating SAP, we conducted this study to explore the association between TyG index and acute pancreatitis prognosis. METHODS A total of 353 in-patients diagnosed with acute pancreatitis in the Second Hospital of Shandong University were retrospectively enrolled from January 2018 to November 2021 in this study. According to the Atlanta Classification, they were divided into two groups based on the AP severity. Demographic information and clinical materials were retrospectively collected. The TyG index calculation formula is as follows: ln [fasting triglycerides (mg/dL) × fasting plasma glucose (mg/dL)/2]. Statistical analyses were performed using SPSS software (IBM version 22.0) and Medcalc software. Multivariable logistic regression analyses were used to investigate independent predictors for SAP. ROC curve was plotted to assess the predictive ability and cutoffs of TyG index. RESULTS A total of 353 AP patients were respectively enrolled in this study, of which 47 suffered from SAP. Compared with the non-SAP group, TyG index was significantly higher in the SAP group (10.44 ± 1.55 vs 9.33 ± 1.44, P < 0.001). Multivariate logistic regression analysis showed that TyG index was an independent risk factor for SAP (OR 1.835, 95% CI 1.380-2.442 P < 0.001), with a cutoff of 8.76 for non-HTG/AAP and 11.81 for HTG/AAP by ROC curve. TyG index of patients who suffered from SIRS, OF, APFC, and ANC was higher than those without (P < 0.05). CONCLUSIONS The triglyceride-glucose index is an independent risk factor for SAP. High TyG index is closely related to SAP and AP-related complications.
Collapse
Affiliation(s)
- Yimin Wei
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jianqiang Guo
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
10
|
Lyu J, Yang N, Guan W, Xiao L, Nie X, Liang L, Bai H, Li C, Kuang H, Wang X, Li T. Post-treatment serum triglyceride: An effective biomarker for body fat mass and overall survival in esophageal squamous cell cancer patients treated with chemoradiotherapy. Front Nutr 2022; 9:1050643. [PMID: 36532533 PMCID: PMC9755343 DOI: 10.3389/fnut.2022.1050643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/16/2022] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVES Although lipids have been assessed for their possible roles in cancer survival prediction, studies on the association between serum triglyceride (TG) levels and the prognosis of esophageal squamous cell carcinoma (ESCC) patients are limited. This study aimed to evaluate whether serum TG is associated with outcomes in patients with ESCC and investigate any interaction between serum TG and clinical parameters, especially body fat mass. MATERIALS AND METHODS We conducted a prospective case study on patients diagnosed with ESCC between March 2012 and November 2018. We measured patients' serum TG levels before and after treatment. The association between serum TG and overall survival (OS) was evaluated using hazard ratios. We sought to determine a threshold point using optimal stratification. Survival analysis was performed using Kaplan-Meier curves and a Cox proportional hazards model. RESULTS Of the 257 participants diagnosed with ESCC, 200 (77.8%) were men. Median follow-up time was 22.4 months (range 3.3-92.4 months). Using univariate Cox proportional hazard analysis and subsequent multivariate analysis, post-TG levels, Karnofsky performance scores, T stages, and chemotherapy cycles were shown to be independent prognostic factors for OS (p < 0.05). The post-TG cut-off point to best classify patients with respect to time to mortality was 1.47 mmol/L. A post-TG level of ≥ 1.47 mmol/L could independently predict a better OS (hazard ratio: 0.55, 95% confidence interval: 0.37-0.79). The associations were consistent across the subtypes of clinical parameters. Furthermore, the post-body mass index, post-subcutaneous adipose tissue area, post-visceral adipose tissue area, post-total adiposity tissue area, and post-total adipose density exhibited a strong positive association with post-TG levels. CONCLUSION Post-TG levels were found to be a significant positive prognostic biomarker for body fat mass and OS in ESCC patients.
Collapse
Affiliation(s)
- Jiahua Lyu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ningjing Yang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang Guan
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Nie
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Long Liang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hansong Bai
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Churong Li
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Kuang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Wang F, He T, Wang G, Han T, Yao Z. Association of triglyceride glucose-body mass index with non-small cell lung cancer risk: A case-control study on Chinese adults. Front Nutr 2022; 9:1004179. [PMID: 36313086 PMCID: PMC9614218 DOI: 10.3389/fnut.2022.1004179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Insulin resistance (IR) is closely related to non-small-cell lung cancer (NSCLC) risk. Recently, triglyceride glucose-body mass index (TyG-BMI) has been recognized as one of the simple indexes of insulin resistance (IR). However, there are limited data on the relationship between TyG-BMI and NSCLC. Here, we investigated the association of TyG-BMI with NSCLC risk in Chinese adults. Methods This study consisted of 477 NSCLC cases and 954 healthy subjects. All participants were enrolled from 3201 Hospital affiliated to the Medical Department of Xi'an Jiaotong University. TyG-BMI was calculated based on the values of fasting blood glucose, triglyceride, and BMI. The association of TyG-BMI with NSCLC risk was estimated by logistic regression analysis. Results The mean value of TyG-BMI was statistically increased in patients with NSCLC compared to the control group (201.11 ± 28.18 vs. 174 ± 23.78, P < 0.01). There was a significant positive association between TyG-BMI and NSCLC (OR = 1.014; 95% CI 1.007-1.021; P < 0.001) after controlling for confounding factors. Moreover, the prevalence of NSCLC was significantly elevated in participants in the high TyG-BMI tertiles than those in the intermediate and low TyG-BMI tertiles (60.46% vs. 12.61% vs. 26.83%, P < 0.01). Importantly, TyG-BMI achieved a significant diagnostic accuracy for NSCLC, with an AUC (area under the curve) of 0.769 and a cutoff value of 184.87. Conclusion The findings suggest that TyG-BMI is a useful tool for assessing NSCLC risk. Thus, it is essential to follow up on high TyG-BMI, and lifestyle modification is needed to prevent NSCLC in people with high TyG-BMI.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Ting He
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Guoliang Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Tuo Han
- Department of Oncology Surgery, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Zhongqiang Yao
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China,*Correspondence: Zhongqiang Yao,
| |
Collapse
|
12
|
Cai Y, Xue S, Li J, Xiao H, Lan T, Wu H. A novel nutritional score based on serum triglyceride and protein levels predicts outcomes of intrahepatic cholangiocarcinoma after curative hepatectomy: A multi-center study of 631 patients. Front Nutr 2022; 9:964591. [PMID: 36211491 PMCID: PMC9533229 DOI: 10.3389/fnut.2022.964591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHigh serum triglyceride (STG) level is a well-established pathogenic factor for cardiovascular diseases and is associated with the risk of various malignancies. Nevertheless, the role of STG level in intrahepatic cholangiocarcinoma (ICC) remains uncertain.MethodsA total of 631 ICC patients treated with curative hepatectomy in two centers (517 in the discovery set and 114 in the validation set) were retrospectively analyzed. Kaplan–Meier survival analysis was used to assess the outcomes of the patients with different STG levels. Time-dependent receiver operating characteristic (ROC) analysis was conducted to compare the prognostic value of STG with other established indexes. The Triglyceride-Albumin-Globulin (TAG) grade was introduced and evaluated using the time-dependent area under curves (AUC) analysis and decision curve analysis (DCA).ResultsPatients with increased STG levels and decreased albumin-globulin score (AGS) were correlated with improved overall survival (OS) and recurrence-free survival (RFS). STG level ≥ 1 mmol/L was an independent protective factor for surgically treated ICC patients. The predictive value of the TAG grade was superior to the STG or the AGS alone. In decision curve analysis, the net benefits of the TAG grade in the discovery and validation set were higher than STG and AGS.ConclusionThe current study presented strong evidence that ICC patients with higher preoperative STG levels had preferred long-term surgical outcomes. The novel nutritional score based on serum triglyceride, albumin and globulin levels was inextricably linked to the prognosis of the surgically treated ICC patients. Evaluation of the TAG grade before curative hepatectomy may be beneficial for risk stratification and clinical decision support.
Collapse
Affiliation(s)
- Yunshi Cai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shuai Xue
- State Key Laboratory of Biotherapy and Cancer Center, Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiaxin Li
- State Key Laboratory of Biotherapy and Cancer Center, Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Lan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Hong Wu,
| | - Hong Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Tian Lan,
| |
Collapse
|
13
|
Ruan GT, Xie HL, Zhang HY, Liu CA, Ge YZ, Zhang Q, Wang ZW, Zhang X, Tang M, Song MM, Zhang XW, Yang M, Chen YB, Yu KY, Deng L, Gong YZ, Hu W, Wang KH, Cong MH, Shi HP. A Novel Inflammation and Insulin Resistance Related Indicator to Predict the Survival of Patients With Cancer. Front Endocrinol (Lausanne) 2022; 13:905266. [PMID: 35795140 PMCID: PMC9252441 DOI: 10.3389/fendo.2022.905266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic inflammation and insulin resistance (IR) are closely related in patients with cancer. However, there is no relevant indicator that combines inflammation and IR to predict patient prognosis. Therefore, this study aimed to develop and validate a novel inflammation- and IR-related marker in patients with cancer. METHODS The total cohort of this study included 5221 patients with cancer, and the training and validation cohorts were randomized in a 7:3 ratio. C-reactive protein (CRP) and fasting triglyceride glucose (TyG) were used to reflect patients' inflammation and IR status, respectively. The CRP-TyG index (CTI) was composed of CRP and TyG. The concordance (C)-index, receiver operator characteristic (ROC) curve, and calibration curve reflected the prognostic predictive power of CTI. Univariate and multivariate survival analyses predicted the prognostic value of CTI in patients with cancer. RESULTS The C-indices of CTI in patients with cancer were 0.636, 0.617, and 0.631 in the total, training, and validation cohorts, respectively. The 1-, 3-, and 5-year ROC and calibration curves showed that CTI had a good predictive ability of survival in patients with cancer. Meanwhile, patients with high CTI had a worse prognosis compared to patients with low CTI (total cohort: hazard ratio [HR] = 1.46, 95% confidence interval [95% CI] = 1.33-1.59; training cohort: HR = 1.36, 95% CI = 1.22-1.52; validation cohort: HR = 1.73, 95% CI = 1.47-2.04]. CONCLUSION The CTI is a useful prognostic indicator of poor prognosis and a promising tool for treatment strategy decision-making in patients with cancer.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - He-Yang Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Qi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Zi-Wen Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Xi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Meng Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Ming Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Yong-Bing Chen
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Kai-Ying Yu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Li Deng
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Yi-Zhen Gong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Wen Hu
- Clinical Nutrition Department, Sichuan University West China Hospital, Chengdu, China
| | - Kun-Hua Wang
- Yunnan University, Kunming, China
- General Surgery Clinical Medical Center of Yunnan Province, Kunming, China
- *Correspondence: Han-Ping Shi, ; Kun-Hua Wang, ; Ming-Hua Cong,
| | - Ming-Hua Cong
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Han-Ping Shi, ; Kun-Hua Wang, ; Ming-Hua Cong,
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- *Correspondence: Han-Ping Shi, ; Kun-Hua Wang, ; Ming-Hua Cong,
| |
Collapse
|
14
|
Wang H, Yan F, Cui Y, Chen F, Wang G, Cui W. Association between triglyceride glucose index and risk of cancer: A meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1098492. [PMID: 36714554 PMCID: PMC9877418 DOI: 10.3389/fendo.2022.1098492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Triglyceride glucose (TyG) index as a more convenient and reliable predictor of insulin resistance (IR) is thought to be associated with many diseases, but its relationship with cancer remains unclear. METHODS The meta-analysis was conducted to evaluate the effects of TyG index on cancer risk utilizing the available evidence. PubMed, EMBASE, Medline, Cochrane Library and Web of Science were searched from their inception up to July 2022. A random-effects model was used to calculate the effect estimates and 95% confidence intervals (CIs). RESULTS A total of 6 observational studies met our inclusion criteria, which including 992292 participants. The meta-analysis indicated that the higher TyG index increased cancer risk compared to the lower TyG index group (total effect size =1.14, 95% CI [1.08, 1.20], P<0.001). CONCLUSIONS Our meta-analysis found that higher TyG index may increase the risk of cancer. More prospective cohort studies and basic research are warranted to verify the relationship.
Collapse
Affiliation(s)
- Huan Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Feifei Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yani Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Feinan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
- *Correspondence: Guixia Wang, ; Weiwei Cui,
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Guixia Wang, ; Weiwei Cui,
| |
Collapse
|
15
|
Sharshar R, Elseady S, Abdelnaby A, AbdElla A. Study of the diagnostic utility of paraoxonase enzyme in serum and bronchoalveolar lavage in patients with lung cancer. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2022. [DOI: 10.4103/ecdt.ecdt_11_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Wang L, Si S, Li J, Li Y, Chen X, Xue F, Ren W. Triglyceride-Glucose Index Is Not Associated With Lung Cancer Risk: A Prospective Cohort Study in the UK Biobank. Front Oncol 2021; 11:774937. [PMID: 34869022 PMCID: PMC8635521 DOI: 10.3389/fonc.2021.774937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index is a practical substitute measure for insulin resistance (IR). The relationship between IR and lung cancer has been examined in previous studies; however, the findings have been controversial. In addition, previous studies had small sample sizes. Thus, we systematically examined the association between IR and lung cancer risk based on the UK Biobank with IR measured by the TyG index and further examined the interactions and joint effects for lung cancer. METHODS A total of 324,334 individuals free from any type of cancer at recruitment from the UK Biobank prospective cohort were included. The participants were predominantly between 40 and 70 years old. After adjusting for relevant confounders, multivariable Cox regression models were constructed to examine the relationship between the TyG index and the risk of lung cancer. We also checked the interactions and joint effects using a polygenic risk score (PRS) for lung cancer. RESULTS During a median follow-up of 9 years, 1,593 individuals were diagnosed with lung cancer. No association was found between the TyG index and lung cancer risk after multivariate Cox regression analysis adjusted for risk factors (hazard ratio: 0.91; 95% confidence interval: 0.64-1.18). No interaction or joint effects for genetic risk and the TyG index were observed. CONCLUSION The TyG index was not associated with the risk of lung cancer. Our results provide limited evidence that IR is not correlated with the risk of lung cancer.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Shucheng Si
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Jiqing Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Yunxia Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Xiaolu Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Fuzhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Wangang Ren
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|