1
|
Cherkasova EA, Chen L, Childs RW. Mechanistic regulation of HERV activation in tumors and implications for translational research in oncology. Front Cell Infect Microbiol 2024; 14:1358470. [PMID: 38379771 PMCID: PMC10877039 DOI: 10.3389/fcimb.2024.1358470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Transcription of distinct loci of human endogenous retroviruses (HERVs) and in some cases, translation of these transcripts have been consistently observed in many types of cancer. It is still debated whether HERV activation serves as a trigger for carcinogenesis or rather occurs as a consequence of epigenetic alterations and other molecular sequelae that characterize cellular transformation. Here we review the known molecular and epigenetic mechanisms of HERV activation in cancer cells as well as its potential contribution to carcinogenesis. Further, we describe the use of HERV expression in cancer diagnostic and characterize the potential of HERV-derived antigens to serve as novel targets for cancer immunotherapy. We believe this review, which summarizes both what is known as well as unknown in this rapidly developing field, will boost interest in research on the therapeutic potential of targeting HERV elements in tumors and the impact of HERV activation in oncogenesis.
Collapse
Affiliation(s)
| | | | - Richard W. Childs
- Laboratory of Transplantation Immunotherapy, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Costa B, Vale N. Exploring HERV-K (HML-2) Influence in Cancer and Prospects for Therapeutic Interventions. Int J Mol Sci 2023; 24:14631. [PMID: 37834078 PMCID: PMC10572383 DOI: 10.3390/ijms241914631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
This review investigates the intricate role of human endogenous retroviruses (HERVs) in cancer development and progression, explicitly focusing on HERV-K (HML-2). This paper sheds light on the latest research advancements and potential treatment strategies by examining the historical context of HERVs and their involvement in critical biological processes such as embryonic development, immune response, and disease progression. This review covers computational modeling for drug-target binding assessment, systems biology modeling for simulating HERV-K viral cargo dynamics, and using antiviral drugs to combat HERV-induced diseases. The findings presented in this review contribute to our understanding of HERV-mediated disease mechanisms and provide insights into future therapeutic approaches. They emphasize why HERV-K holds significant promise as a biomarker and a target.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
3
|
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, Muegge K, Boulard M, Weill JC, Reynaud CA, Storck S. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun 2023; 14:5695. [PMID: 37709749 PMCID: PMC10502085 DOI: 10.1038/s41467-023-41317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.
Collapse
Affiliation(s)
- Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Eléonore Mulot
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Annie De Smet
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Damiana Lecoeuche
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Jianke Ren
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- NHC Key Lab of Reproduction Regulation,Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
| | - Jean-Claude Weill
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
4
|
Wen X, Shen J, De Miglio MR, Zeng D, Sechi LA. Endogenous retrovirus group FRD member 1 is a potential biomarker for prognosis and immunotherapy for kidney renal clear cell carcinoma. Front Cell Infect Microbiol 2023; 13:1252905. [PMID: 37780849 PMCID: PMC10534008 DOI: 10.3389/fcimb.2023.1252905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The activation of endogenous retroviral (ERV) genes in kidney renal clear cell carcinoma (KIRC) suggests the necessity for further research on their functions. Methods In this study, KIRC and healthy cohorts were obtained from TGGA and GEO datasets. Subsequently, differential analysis and functional annotation were conducted using GO, KEGG, and GSEA. Clinical outcomes were then observed and utilized in the development of a nomogram. Results We observed the general low expression of ERVFRD-1 in KIRC tumors compared to normal tissue (P < 0.001) across multiple cohorts. Differential analysis and functional annotation using GO, KEGG, GSEA analysis revealed significant involvement of ERVFRD-1 in tumor immunoregulation: a close relation to the infiltration levels of mast cells and Treg cell (P < 0.001) and occurrence with a variety of immune markers. Methylation status was then applied to uncover potential mechanisms of ERVFRD-1 in KIRC. Notably, higher expression levels of ERVFRD-1 were associated with extended overall survival, disease-specific survival, and progression-free survival. Finally, based on Cox regression analysis, we constructed a nomogram incorporating ERVFRD-1, pathologic T, and age, which exhibited promising predictive power in assessing the survival outcomes of KIRC patients. Discussion To sum up, our study suggests that ERVFRD-1 plays a role in regulating immunological activity within the tumor microenvironment and is associated with overall survival in KIRC patients. ERVFRD-1 may therefore be a sensitive biomarker for diagnosis, immunotherapy, and prognosis assessment of KIRC.
Collapse
Affiliation(s)
- Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiaxin Shen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Struttura Complessa (SC) Microbiologia e Virologia, Azienda Ospedaliera Universitaria, Sassari, Italy
| |
Collapse
|
5
|
Kobayashi S, Tokita S, Moniwa K, Kitahara K, Iuchi H, Matsuo K, Kakizaki H, Kanaseki T, Torigoe T. Proteogenomic identification of an immunogenic antigen derived from human endogenous retrovirus in renal cell carcinoma. JCI Insight 2023; 8:e167712. [PMID: 37606040 PMCID: PMC10543709 DOI: 10.1172/jci.insight.167712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
CD8+ T cells can recognize tumor antigens displayed by HLA class I molecules and eliminate tumor cells. Despite their low tumor mutation burden, immune checkpoint blockade (ICB) is often beneficial in patients with renal cell carcinoma (RCC). Here, using a proteogenomic approach, we directly and comprehensively explored the HLA class I-presenting peptidome of RCC tissues and demonstrated that the immunopeptidomes contain a small subset of peptides derived from human endogenous retroviruses (hERV). A comparison between tumor and normal kidney tissues revealed tumor-associated hERV antigens, one of which was immunogenic and recognized by host tumor-infiltrating lymphocytes (TIL). Stimulation with the hERV antigen induced reactive CD8+ T cells in healthy donor-derived (HD-derived) peripheral blood mononuclear cells (PBMC). These results highlight the presence of antitumor CD8+ T cell surveillance against hERV3895 antigens, suggesting their clinical applications in patients with RCC.
Collapse
Affiliation(s)
- Shin Kobayashi
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Joint Research Center for Immunoproteogenomics and
| | - Keigo Moniwa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | | | | | | | - Hidehiro Kakizaki
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Joint Research Center for Immunoproteogenomics and
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Joint Research Center for Immunoproteogenomics and
| |
Collapse
|
6
|
Wolf MM, Rathmell WK, de Cubas AA. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat Rev Nephrol 2023; 19:440-450. [PMID: 36973495 PMCID: PMC10801831 DOI: 10.1038/s41581-023-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Melissa M Wolf
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
7
|
Czajka-Francuz P, Prendes MJ, Mankan A, Quintana Á, Pabla S, Ramkissoon S, Jensen TJ, Peiró S, Severson EA, Achyut BR, Vidal L, Poelman M, Saini KS. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Front Oncol 2023; 13:1200646. [PMID: 37427115 PMCID: PMC10325690 DOI: 10.3389/fonc.2023.1200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The efficacy of cancer therapies is limited to a great extent by immunosuppressive mechanisms within the tumor microenvironment (TME). Numerous immune escape mechanisms have been identified. These include not only processes associated with tumor, immune or stromal cells, but also humoral, metabolic, genetic and epigenetic factors within the TME. The identification of immune escape mechanisms has enabled the development of small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell and epigenetic therapies that can reprogram the TME and shift the host immune response towards promoting an antitumor effect. These approaches have translated into series of breakthroughs in cancer therapies, some of which have already been implemented in clinical practice. In the present article the authors provide an overview of some of the most important mechanisms of immunosuppression within the TME and the implications for targeted therapies against different cancers.
Collapse
Affiliation(s)
| | | | | | - Ángela Quintana
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | - Sandra Peiró
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Kamal S. Saini
- Fortrea, Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
8
|
Kitsou K, Lagiou P, Magiorkinis G. Human endogenous retroviruses in cancer: Oncogenesis mechanisms and clinical implications. J Med Virol 2023; 95:e28350. [PMID: 36428242 PMCID: PMC10108094 DOI: 10.1002/jmv.28350] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Human Endogenous Retroviruses (HERVs) are viral sequences integrated into the human genome, resulting from the infection of human germ-line cells by ancient exogenous retroviruses. Despite losing their replication and retrotransposition abilities, HERVs appear to have been co-opted in human physiological functions while their aberrant expression is linked to human disease. The role of HERVs in multiple malignancies has been demonstrated, however, the extent to which HERV activation and expression participate in the development of cancer is not yet fully comprehended. In this review article, we discuss the presumed role of HERVs in carcinogenesis and their promising diagnostic and prognostic implications. Additionally, we explore recent data on the HERVs in cancer therapeutics, either through the manipulation of their expression, to induce antitumor innate immunity responses or as cancer immunotherapy targets. Finally, more precise and higher resolution high-throughput sequencing approaches will further elucidate HERV participation in human physiological and pathological processes.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| |
Collapse
|
9
|
Sahu S, Singh B, Kumar Rai A. Human endogenous retrovirus regulates the initiation and progression of cancers (Review). Mol Clin Oncol 2022; 17:143. [PMID: 36157315 PMCID: PMC9468830 DOI: 10.3892/mco.2022.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022] Open
Abstract
The expression of genes is altered in various diseases and is responsible for the disease's initiation, progression and pathology. Several other genes, predominantly inactivated, may become activated in a given condition and contribute to the initiation and progression of the disease. Similarly, human endogenous viruses (HERVs) are an incomplete, non-productive and inactive viral sequence present in the heterochromatin of the human genome, and are often referred to as junk DNA. HERVs were inserted into the host genome millions of years ago. However, they were silenced due to multiple mutations and recombination that occurred over time. However, their expression is increased in cancers due to either epigenetic or transcriptional dysregulation. Some of the HERVs having intact open reading frames have been reported to express virus-like particles, functional peptides and proteins involved in tumorigenesis. To summarize, there is involvement of different HERVs in the initiation and progression of several cancers. The present review aims to provide concise information on HERV and its involvement in the initiation and progression of multiple types of cancer.
Collapse
Affiliation(s)
- Srishti Sahu
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| |
Collapse
|
10
|
Transcriptome Analysis of Human Endogenous Retroviruses at Locus-Specific Resolution in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14184433. [PMID: 36139593 PMCID: PMC9497127 DOI: 10.3390/cancers14184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths worldwide. Among its subtypes, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the most common, accounting for more than 85% of lung cancer diagnoses. Despite the incredible efforts and recent advances in lung cancer treatments, patients affected by this condition still have a poor prognosis. Therefore, novel diagnostic biomarkers are needed. Recently, a class of transposable elements called human endogenous retroviruses (HERVs) has been found to be implicated in cancer development and later employed as novel biomarkers for several tumor types. In this study, we first ever characterized the expression of HERVs at genomic locus-specific resolution in both LUAD and LUSC cohorts available in The Cancer Genome Atlas (TCGA). Precisely, (i) we profiled the expression of HERVs in TCGA-LUAD and TCGA-LUSC cohorts; (ii) we identified the dysregulated HERVs in both lung cancer subtypes; (iii) we evaluated the impact of the dysregulated HERVs on signaling pathways using neural network-based predictions; and (iv) we assessed their association with overall survival (OS) and relapse-free survival (RFS). In conclusion, we believe this study may help elucidate another layer of dysregulation that occurs in lung cancer involving HERVs, paving the way for identifying novel lung cancer biomarkers.
Collapse
|
11
|
Köhler SA, Brandl L, Strissel PL, Gloßner L, Ekici AB, Angeloni M, Ferrazzi F, Bahlinger V, Hartmann A, Beckmann MW, Eckstein M, Strick R. Improved Bladder Tumor RNA Isolation from Archived Tissues Using Methylene Blue for Normalization, Multiplex RNA Hybridization, Sequencing and Subtyping. Int J Mol Sci 2022; 23:ijms231810267. [PMID: 36142180 PMCID: PMC9499321 DOI: 10.3390/ijms231810267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Methylene blue (MB) is a dye used for histology with clinical importance and intercalates into nucleic acids. After MB staining of formalin fixed paraffin embedded (FFPE) muscle invasive bladder cancer (MIBC) and normal urothelium, specific regions could be microdissected. It is not known if MB influences RNA used for gene expression studies. Therefore, we analyzed MIBC using five different RNA isolation methods comparing patient matched FFPE and fresh frozen (FF) tissues pre-stained with or without MB. We demonstrate a positive impact of MB on RNA integrity with FF tissues using real time PCR with no interference of its chemical properties. FFPE tissues showed no improvement of RNA integrity, which we propose is due to formalin induced nucleotide crosslinks. Using direct multiplex RNA hybridization the best genes for normalization of MIBC and control tissues were identified from 34 reference genes. In addition, 5SrRNA and 5.8SrRNA were distinctive reference genes detecting <200 bp fragments important for mRNA analyses. Using these normalized RNAs from MB stained MIBC and applying multiplex RNA hybridization and mRNA sequencing, a minimal gene expression panel precisely identified luminal and basal MIBC tumor subtypes, important for diagnosis, prognosis and chemotherapy response.
Collapse
Affiliation(s)
- Stefanie A. Köhler
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
| | - Lisa Brandl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Laura Gloßner
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Miriam Angeloni
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Fulvia Ferrazzi
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Veronika Bahlinger
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Reiner Strick
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-91318536671
| |
Collapse
|
12
|
Chen Z, Zhang M, Lu Y, Ding T, Liu Z, Liu Y, Zhou Z, Wang L. Overexpressed lncRNA FTX promotes the cell viability, proliferation, migration and invasion of renal cell carcinoma via FTX/miR‑4429/UBE2C axis. Oncol Rep 2022; 48:163. [PMID: 35866591 PMCID: PMC9350997 DOI: 10.3892/or.2022.8378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/17/2022] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore the role of long non‑coding (lnc)RNA FTX and ubiquitin‑conjugating enzyme E2C (UBE2C) in promoting the progression of renal cell carcinoma (RCC) and the underlying regulatory mechanism. Relative levels of lncRNA FTX, UBE2C, AKT, CDK1 and CDK6 in RCC cell lines were detected by reverse transcription‑quantitative (RT‑q). Expression levels of UBE2C, phosphorylated (p)‑AKT/AKT, p‑CDK1/CDK1 and p‑CDK6/CDK6 in RCC and paracancerous specimens and RCC cells were measured by western blot or immunohistochemistry assay. In addition, the proliferative rate, cell viability, cell cycle progression, migratory rate and invasive rate of RCC cells overexpressing lncRNA FTX by lentivirus transfection were determined by a series of functional experiments, including the colony formation assay, MTT assay, flow cytometry, Transwell assay and wound healing assay. The targeted binding relationship in the lncRNA FTX/miR‑4429/UBE2C axis was validated by dual‑luciferase reporter assay. By intervening microRNA (miR)‑4492 and UBE2C by the transfection of miR‑4429‑mimics or short interfering UBE2C‑2, the regulatory effect of lncRNA FTX/miR‑4429/UBE2C axis on the progression of RCC was evaluated. Finally, a xenograft model of RCC in nude mice was established by subcutaneous implantation, thus evaluating the in vivo function of lncRNA FTX in the progression of RCC. The results showed that lncRNA FTX and UBE2C were upregulated in RCC specimens and cell lines. The overexpression of lncRNA FTX in RCC cells upregulated UBE2C. In addition, the overexpression of lncRNA FTX promoted the cell viability and proliferative, migratory and invasive capacities of RCC cells and accelerated the cell cycle progression. A dual‑luciferase reporter assay validated that lncRNA FTX exerted the miRNA sponge effect on miR‑4429, which was bound to UBE2C 3'UTR. Knockdown of UBE2C effectively reversed the regulatory effects of overexpressed lncRNA FTX on the abovementioned phenotypes of RCC cells. In the xenograft model of RCC, the mice implanted with RCC cells overexpressing lncRNA FTX showed a larger tumor size and higher tumor weight than those of controls, while the in vivo knockdown of UBE2C significantly reduced the size of RCC lesions, indicating the reversed cancer‑promoting effect of lncRNA FTX. Overall, the present study showed that lncRNA FTX was upregulated in RCC and could significantly promote the proliferative, migratory and invasive capacities, enhancing the viability and accelerating the cell cycle progression of RCC cells by exerting the miRNA sponge effect on miR‑4429 and thus upregulating UBE2C. lncRNA FTX and UBE2C are potential molecular biomarkers and therapeutic targets of RCC.
Collapse
Affiliation(s)
- Zhiping Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Mengting Zhang
- Department of The First Clinical Medical College, Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Yukang Lu
- Department of The First Clinical Medical College, Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Tao Ding
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhanyu Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Yanmei Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhaoling Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Zhanggong, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
13
|
Müller MD, Holst PJ, Nielsen KN. A Systematic Review of Expression and Immunogenicity of Human Endogenous Retroviral Proteins in Cancer and Discussion of Therapeutic Approaches. Int J Mol Sci 2022; 23:1330. [PMID: 35163254 PMCID: PMC8836156 DOI: 10.3390/ijms23031330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.
Collapse
Affiliation(s)
- Mikkel Dons Müller
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark;
| | | | | |
Collapse
|
14
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|