1
|
Jagirdar RM, Rouka E, Pitaraki E, Sarrigeorgiou I, Kotsiou OS, Sinis SI, Papazoglou ED, Marnas P, Malami Z, Lymberi P, Giannou AD, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Effects of patient pleural effusion fluids on the BBSome components expression of human benign mesothelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L105-L112. [PMID: 39470611 DOI: 10.1152/ajplung.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Malignant pleural mesothelial cells are affected by the extracellular milieu although such data on benign cells are scarce. Benign cells sense the extracellular environment with the primary cilium (PC) and its molecular complex, the Bardet-Biedl syndrome family of proteins (BBSome), is critical for this process. Here we aimed to assess the changes in BBSome gene expression in ordinary two-dimensional (2-D) and spheroid three-dimensional (3-D) cell cultures after incubation with pleural effusion fluids (PFs) of several etiologies. The benign human mesothelial cells (MeT-5A) were incubated with PF from patients with mesothelioma (Meso-PF), breast cancer (BrCa-PF), hemothorax (Hemo-PF), and congestive heart failure (CHF-PF). Gene expression of BBS1, 2, 4, 5, 7, 9, and 18 was assessed by quantitative real-time PCR (qRT-PCR) to monitor PF-induced gene expression changes. MeT-5A cell migration using the PC-modulating drugs ammonium sulfate (AS) and lithium chloride (LC) during PF incubation was also determined. BBSome gene expression upon influence of BrCa-PF and Hemo-PF was more pronounced in 2-D compared with 3-D, inducing global changes in 2-D. CHF-PF and Meso-PF also induced changes in 2-D but not as many, while in all cases, MeT-5A grown in 3-D were more resistant to the effects of the PF. Meso-PF decreased 2-D cell migration, while the disturbance of PC in all PF cases resulted in decreased cell migration. These data suggest distinct BBSome molecular profile changes in benign mesothelial cells exposed to malignant and benign PF that is different in each case, in both 2-D and 3-D. Cell migration is sensitive to drug disturbance with PC modulators in PF-exposed cells.NEW & NOTEWORTHY Studying mesothelial PC in pleural physiology and pathophysiology is at an early stage. Previously, we have highlighted the role of the PC in mesothelial cell phenotypes as well as the role of BBSome components in the context of benign and malignant mesothelial cell physiology. Here we extended our contributions by providing evidence on the BBSome changes induced in benign mesothelial cells by their exposure to different etiology PFs.
Collapse
Affiliation(s)
- Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Erasmia Rouka
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, Larissa, Greece
| | - Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ioannis Sarrigeorgiou
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Ourania S Kotsiou
- Laboratory of Human Pathophysiology, Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, Larissa, Greece
| | - Sotiris I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Eleftherios D Papazoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Periklis Marnas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Zoi Malami
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Peggy Lymberi
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
2
|
Pardessus Otero A, Rafecas-Codern A, Porcel JM, Serra-Mitjà P, Ferreiro L, Botana-Rial M, Ramos-Hernández C, Brenes JM, Canales L, Camacho V, Romero-Romero B, Trujillo JC, Martinez E, Cases E, Barba A, Majem M, Güell E, Pajares V. Malignant Pleural Effusion: A Multidisciplinary Approach. OPEN RESPIRATORY ARCHIVES 2024; 6:100349. [PMID: 39091982 PMCID: PMC11293617 DOI: 10.1016/j.opresp.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Malignant pleural effusion (MPE) has become an increasingly prevalent complication in oncological patients, negatively impacting their quality of life and casting a shadow over their prognosis. Owing to the pathophysiological mechanisms involved and the heterogeneous nature of the underlying disease, this entity is both a diagnostic and therapeutic challenge. Advances in the understanding of MPE have led to a shift in the treatment paradigm towards a more personalized approach. This article provides a comprehensive review and update on the pathophysiology of MPE and describes the diagnostic tools and the latest advances in the treatment of this complex clinical entity.
Collapse
Affiliation(s)
- Ana Pardessus Otero
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Albert Rafecas-Codern
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
- Chronic Respiratory Disease Group (GREC), Institut de Recerca Sant Pau (IR SANT PAU), Spain
| | - José M. Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, IRBLleida, University of Lleida, Lleida, Spain
| | - Pere Serra-Mitjà
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Lucía Ferreiro
- Pulmonology Department, University Clinical Hospital of Santiago, Interdisciplinary Research Group in Pulmonology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maribel Botana-Rial
- Broncopleural Unit, Pulmonary Deparment, Hospital Álvaro Cunqueiro, EOXI Vigo, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), Vigo, Spain
- CIBER de Enfermedades Respiratorias, Spain
| | - Cristina Ramos-Hernández
- Pulmonary Deparment, Hospital Álvaro Cunqueiro, EOXI Vigo, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - José Manuel Brenes
- Radiology Department, Hospital Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Lydia Canales
- Radiology Department, Hospital Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Juan Carlos Trujillo
- Department of Thoracic Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elisabeth Martinez
- Department of Thoracic Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Cases
- Interventional Pulmonology, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Andrés Barba
- Medical Oncology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Margarita Majem
- Medical Oncology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Ernest Güell
- Palliative Care Unit, Oncology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona (UAB), Barcelona, Spain
| | - Virginia Pajares
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
- Chronic Respiratory Disease Group (GREC), Institut de Recerca Sant Pau (IR SANT PAU), Spain
| |
Collapse
|
3
|
Blyth KG, Adusumilli PS, Astoul P, Darlison L, Lee YCG, Mansfield AS, Marciniak SJ, Maskell N, Panou V, Peikert T, Rahman NM, Zauderer MG, Sterman D, Fennell DA. Leveraging the pleural space for anticancer therapies in pleural mesothelioma. THE LANCET. RESPIRATORY MEDICINE 2024; 12:476-483. [PMID: 38740045 DOI: 10.1016/s2213-2600(24)00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Most patients with pleural mesothelioma (PM) present with symptomatic pleural effusion. In some patients, PM is only detectable on the pleural surfaces, providing a strong rationale for intrapleural anticancer therapy. In modern prospective studies involving expert radiological staging and specialist multidisciplinary teams, the population incidence of stage I PM (an approximate surrogate of pleura-only PM) is higher than in historical retrospective series. In this Viewpoint, we advocate for the expansion of intrapleural trials to serve these patients, given the paucity of data supporting licensed systemic therapies in this setting and the uncertainties involved in surgical therapy. We begin by reviewing the unique anatomical and physiological features of the PM-bearing pleural space, before critically appraising the evidence for systemic therapies in stage I PM and previous intrapleural PM trials. We conclude with a summary of key challenges and potential solutions, including optimal trial designs, repurposing of indwelling pleural catheters, and new technologies.
Collapse
Affiliation(s)
- Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Queen Elizabeth University Hospital, Glasgow, UK; Cancer Research UK Scotland Centre, Glasgow, UK.
| | - Prasad S Adusumilli
- Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cellular Therapeutics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philippe Astoul
- Thoracic Oncology Department, Hôpital NORD, Aix-Marseille University, Marseille, France
| | | | - Y C Gary Lee
- University of Western Australia, Perth, WA, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, UK; Department of Respiratory Medicine, Southmead Hospital, Bristol, UK
| | - Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Odense Respiratory Research Unit, University of Southern Denmark, Odense, Denmark; Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marjorie G Zauderer
- Cellular Therapeutics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Sterman
- New York University School of Medicine, New York, NY, USA
| | - Dean A Fennell
- University of Leicester, Leicester, UK; University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
4
|
Hocking AJ, Mortimer LA, Farrall AL, Russell PA, Klebe S. Establishing mesothelioma patient-derived organoid models from malignant pleural effusions. Lung Cancer 2024; 191:107542. [PMID: 38555809 DOI: 10.1016/j.lungcan.2024.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Pleural mesothelioma is a cancer arising in the cells that line the lungs and chest wall with poor survival and poor response to first-line therapy. Organoid models of cancer can faithfully recapitulate the genetic and histopathological characteristics of individualized tumors and have potential to be used for precision medicine, however methods of establishing patient-derived mesothelioma organoids have not been well established in the published literature. MATERIALS AND METHODS Long-term mesothelioma patient-derived organoids were established from ten malignant pleural effusion fluids. Mesothelioma patient-derived organoids were compared to the corresponding biopsy tissue specimens using immunohistochemistry labelling for select diagnostic markers and the TruSight Oncology-500 sequencing assay. Cell viability in response to the chemotherapeutic drug cisplatin was assessed. RESULTS We established five mesothelioma patient-derived organoid cultures from ten malignant pleural effusion fluids collected from nine individuals with pleural mesothelioma. Mesothelioma patient-derived organoids typically reflected the histopathological and genomic features of patients' matched biopsy specimens and displayed cytotoxic sensitivity to cisplatin in vitro. CONCLUSION This is the first study of its kind to establish long-term mesothelioma organoid cultures from malignant pleural effusions and report on their utility to test individuals' chemotherapeutic sensitivities ex vivo.
Collapse
Affiliation(s)
- Ashleigh J Hocking
- College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Lauren A Mortimer
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alexandra L Farrall
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Prudence A Russell
- LifeStrands Genomics and TissuPath Pathology, Mount Waverley, Victoria, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
5
|
Gonnelli F, Hassan W, Bonifazi M, Pinelli V, Bedawi EO, Porcel JM, Rahman NM, Mei F. Malignant pleural effusion: current understanding and therapeutic approach. Respir Res 2024; 25:47. [PMID: 38243259 PMCID: PMC10797757 DOI: 10.1186/s12931-024-02684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
Malignant pleural effusion (MPE) is a common complication of thoracic and extrathoracic malignancies and is associated with high mortality and elevated costs to healthcare systems. Over the last decades the understanding of pathophysiology mechanisms, diagnostic techniques and optimal treatment intervention in MPE have been greatly advanced by recent high-quality research, leading to an ever less invasive diagnostic approach and more personalized management. Despite a number of management options, including talc pleurodesis, indwelling pleural catheters and combinations of the two, treatment for MPE remains symptom directed and centered around drainage strategy. In the next future, because of a better understanding of underlying tumor biology together with more sensitive molecular diagnostic techniques, it is likely that combined diagnostic and therapeutic procedures allowing near total outpatient management of MPE will become popular. This article provides a review of the current advances, new discoveries and future directions in the pathophysiology, diagnosis and management of MPE.
Collapse
Affiliation(s)
- Francesca Gonnelli
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona Via Conca 71, Ancona, 60126, Italy
| | - Wafa Hassan
- Department of Respiratory Medicine, Sheffield Teaching Hospitals, University of Sheffield, Sheffield, UK
| | - Martina Bonifazi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona Via Conca 71, Ancona, 60126, Italy
| | | | - Eihab O Bedawi
- Department of Respiratory Medicine, Sheffield Teaching Hospitals, University of Sheffield, Sheffield, UK
| | - José M Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova, University Hospital, Lleida, Spain
| | - Najib M Rahman
- Oxford Pleural Unit, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Unit, Oxford, UK
- Chinese Academy of Medicine Oxford Institute, Oxford, UK
| | - Federico Mei
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona Via Conca 71, Ancona, 60126, Italy.
| |
Collapse
|
6
|
Jiao Y, Peng X, Wang Y, Hao Z, Chen L, Wu M, Zhang Y, Li J, Li W, Zhan X. Malignant ascites supernatant enhances the proliferation of gastric cancer cells partially via the upregulation of asparagine synthetase. Oncol Lett 2023; 26:418. [PMID: 37664666 PMCID: PMC10472050 DOI: 10.3892/ol.2023.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/09/2023] [Indexed: 09/05/2023] Open
Abstract
Malignant ascites (MA) is a common manifestation of advanced gastric cancer (GC) with peritoneal metastasis (PM), which usually indicates a poor prognosis. The present study aimed to explore the effects of MA, a unique microenvironment of PM, on the proliferation of cancer cells and investigate the underlying mechanisms. Ex vivo experiments demonstrated that GC cells treated with MA exhibited enhanced proliferation. RNA sequencing indicated that asparagine synthetase (ASNS) was one of the differentially expressed genes in GC cells following incubation with MAs. Furthermore, the present study suggested that MA induced an upregulation of ASNS expression and the stimulatory effect of MA on cancer cell proliferation was alleviated upon ASNS downregulation. Activating transcription factor 4 (ATF4), a pivotal transcription factor regulating ASNS, was upregulated when cells were treated with MA supernatant. After ATF4 knockdown, the proliferation of MA-treated GC cells and the expression of ASNS decreased. In addition, the decline in the proliferation of the ATF4-downregulated AGS GC cell line was rescued by ASNS upregulation. The findings indicated that MA could promote the proliferation of GC cells via activation of the ATF4-ASNS axis. Hence, it may be a potential target for treating GC with PM and MA.
Collapse
Affiliation(s)
- Yuan Jiao
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yujie Wang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhibin Hao
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai 200433, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
7
|
Marqués M, Pont M, Hidalgo I, Sorolla MA, Parisi E, Salud A, Sorolla A, Porcel JM. MicroRNAs Present in Malignant Pleural Fluid Increase the Migration of Normal Mesothelial Cells In Vitro and May Help Discriminate between Benign and Malignant Effusions. Int J Mol Sci 2023; 24:14022. [PMID: 37762343 PMCID: PMC10531386 DOI: 10.3390/ijms241814022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The sensitivity of pleural fluid (PF) analyses for the diagnosis of malignant pleural effusions (MPEs) is low to moderate. Knowledge about the pathobiology and molecular characteristics of this condition is limited. In this study, the crosstalk between stromal cells and tumor cells was investigated in vitro in order to reveal factors that are present in PF which can mediate MPE formation and aid in discriminating between benign and malignant etiologies. Eighteen PF samples, in different proportions, were exposed in vitro to mesothelial MeT-5A cells to determine the biological effects on these cells. Treatment of normal mesothelial MeT-5A cells with malignant PF increased cell viability, proliferation, and migration, and activated different survival-related signaling pathways. We identified differentially expressed miRNAs in PF samples that could be responsible for these changes. Consistently, bioinformatics analysis revealed an enrichment of the discovered miRNAs in migration-related processes. Notably, the abundance of three miRNAs (miR-141-3p, miR-203a-3, and miR-200c-3p) correctly classified MPEs with false-negative cytological examination results, indicating the potential of these molecules for improving diagnosis. Malignant PF produces phenotypic and functional changes in normal mesothelial cells. These changes are partly mediated by certain miRNAs, which, in turn, could serve to differentiate malignant from benign effusions.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - José M. Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
8
|
Aujayeb A. Timing of Indwelling Pleural Catheters in Malignant Pleural Effusion-Do Not Delay! Arch Bronconeumol 2023; 59:552. [PMID: 37516560 DOI: 10.1016/j.arbres.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/31/2023]
Affiliation(s)
- Avinash Aujayeb
- Respiratory Department, Northumbria Healthcare NHS Foundation Trust, Newcastle, United Kingdom.
| |
Collapse
|
9
|
Schukfeh N, Liu B, DeLuca DS, Tumpara S, Nikolin C, Immenschuh S, Ure BM, Kuebler JF, Welte T, Viemann D, Janciauskiene SM, Vieten G. Pleural CD14 + monocytes/macrophages of healthy adolescents show a high expression of metallothionein family genes. Eur J Immunol 2023; 53:e2250019. [PMID: 36321537 DOI: 10.1002/eji.202250019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Nowadays laparoscopic interventions enable the collection of resident macrophage populations out of the human cavities. We employed this technique to isolate pleural monocytes/macrophages from healthy young adults who underwent a correction of pectus excavatum. High quality CD14+ monocytes/macrophages (plMo/Mφ) were used for RNA-sequencing (RNA-seq) in comparison with human monocyte-derived macrophages (MDM) natural (MDM-0) or IL-4-polarized (MDM-IL4). Transcriptome analysis revealed 7166 and 7076 differentially expressed genes (DEGs) in plMo/Mφ relative to natural MDM-0 and polarized MDM-IL4, respectively. The gene set enrichment analysis, which was used to compare RNA-seq data from plMo/Mφ with single-cell (scRNA-seq) data online from human bronchial lavage macrophages, showed that plMo/Mφs are characterized by a high expression of genes belonging to the metallothionein (MT) family, and that the expression of these genes is significantly higher in plMo/Mφ than in MDM-0 or MDM-IL4. Our results provide additional insights on high MTs-expressing macrophage subsets, which seem to be present not only in bronchial lavage of healthy adults or in pleural exudates of lung cancer patients but also in pleural fluid of healthy young adults. Macrophage subsets expressing high MTs may have specific roles in lung defense, repair, and homeostasis, and require further investigations.
Collapse
Affiliation(s)
- Nagoud Schukfeh
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Bin Liu
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Srinu Tumpara
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Benno M Ure
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim F Kuebler
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Sabina M Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Gertrud Vieten
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Yang L, Wang Y. Malignant pleural effusion diagnosis and therapy. Open Life Sci 2023; 18:20220575. [PMID: 36874629 PMCID: PMC9975958 DOI: 10.1515/biol-2022-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 03/06/2023] Open
Abstract
Malignant pleural effusion (MPE) is a serious complication of advanced tumor, with relatively high morbidity and mortality rates, and can severely affect the quality of life and survival of patients. The mechanisms of MPE development are not well defined, but much research has been conducted to gain a deeper understanding of this process. In recent decades, although great progress has been made in the management of MPE, the diagnosis and treatment of MPE are still major challenges for clinicians. In this article, we provide a review of the research advances in the mechanisms of MPE development, diagnosis and treatment approaches. We aim to offer clinicians an overview of the latest evidence on the management of MPE, which should be individualized to provide comprehensive interventions for patients in accordance with their wishes, health status, prognosis and other factors.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Erdao District, Changchun 130033, China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Erdao District, Changchun 130033, China
| |
Collapse
|
11
|
Gao Y, Kruithof-de Julio M, Peng RW, Dorn P. Organoids as a Model for Precision Medicine in Malignant Pleural Mesothelioma: Where Are We Today? Cancers (Basel) 2022; 14:3758. [PMID: 35954422 PMCID: PMC9367391 DOI: 10.3390/cancers14153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro 'organ-like' 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model. Although organoids have been successfully produced and used in many cancers, the development of MPM organoids is still in its infancy. Here, we provide an overview of recent advances in cancer organoids, focusing on the progress and challenges in MPM organoid development. We also elaborate the potential of MPM organoids for understanding MPM pathobiology, discovering new therapeutic targets, and developing personalized treatments for MPM patients.
Collapse
Affiliation(s)
- Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department for BioMedical Research (DBMR), Translation Organoid Research, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
12
|
Karpathiou G, Péoc’h M, Sundaralingam A, Rahman N, Froudarakis ME. Inflammation of the Pleural Cavity: A Review on Pathogenesis, Diagnosis and Implications in Tumor Pathophysiology. Cancers (Basel) 2022; 14:1415. [PMID: 35326567 PMCID: PMC8946533 DOI: 10.3390/cancers14061415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pleural effusions are a common respiratory condition with many etiologies. Nonmalignant etiologies explain most pleural effusions and despite being nonmalignant, they can be associated with poor survival; thus, it is important to understand their pathophysiology. Furthermore, diagnosing a benign pleural pathology always harbors the uncertainty of a false-negative diagnosis for physicians and pathologists, especially for the group of non-specific pleuritis. This review aims to present the role of the inflammation in the development of benign pleural effusions, with a special interest in their pathophysiology and their association with malignancy.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Michel Péoc’h
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Anand Sundaralingam
- Oxford Centre for Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; (A.S.); (N.R.)
| | - Najib Rahman
- Oxford Centre for Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; (A.S.); (N.R.)
| | - Marios E. Froudarakis
- Pneumonology and Thoracic Oncology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
13
|
Addala DN, Kanellakis NI, Bedawi EO, Dong T, Rahman NM. Malignant pleural effusion: Updates in diagnosis, management and current challenges. Front Oncol 2022; 12:1053574. [PMID: 36465336 PMCID: PMC9712949 DOI: 10.3389/fonc.2022.1053574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common condition which often causes significant symptoms to patients and costs to healthcare systems. Over the past decade, the management of MPE has progressed enormously with large scale, randomised trials answering key questions regarding optimal diagnostic strategies and effective management strategies. Despite a number of management options, including talc pleurodesis, indwelling pleural catheters and combinations of the two, treatment for MPE remains symptom directed and centered around drainage strategy. The future goals for providing improved care for patients lies in changing the treatment paradigm from a generic pathway to personalised care, based on probability of malignancy type and survival. This article reviews the current evidence base, new discoveries and future directions in the diagnosis and management of MPE.
Collapse
Affiliation(s)
- Dinesh Narayan Addala
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Pleural Unit, Oxford University Hospitals, Oxford, United Kingdom
| | - Nikolaos I Kanellakis
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, United Kingdom.,Nuffield Department of Medicine, Medical Sciences Division, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Eihab O Bedawi
- Oxford Pleural Unit, Oxford University Hospitals, Oxford, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tao Dong
- Nuffield Department of Medicine, Medical Sciences Division, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom.,Medical Research Council (MRC) Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Pleural Unit, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, United Kingdom.,Nuffield Department of Medicine, Medical Sciences Division, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|