1
|
Sayan M, Tuac Y, Akgul M, Kucukcolak S, Tjio E, Akbulut D, Chen LW, Yang DD, Moningi S, Leeman JE, Orio PF, Nguyen PL, D’Amico AV, Aktan C. Molecular Alterations Associated with Histologically Overt Stromal Response in Patients with Prostate Cancer. Int J Mol Sci 2024; 25:8913. [PMID: 39201599 PMCID: PMC11354361 DOI: 10.3390/ijms25168913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Prostate cancer has substantial heterogeneity in clinical outcomes and therapeutic responses, posing challenges in predicting disease progression and tailoring treatment strategies. Recent studies have highlighted the potential prognostic value of evaluating the tumor microenvironment, including the presence of a histologically overt stromal response (HOST-response) characterized by peri-glandular stromal changes and architectural distortions. This retrospective study examined patient records from The Cancer Genome Atlas database to identify genomic alterations associated with the HOST-response in prostate cancer. Among 348 patients who underwent radical prostatectomy, 160 (45.98%) were identified as having a HOST-response. A gene expression analysis revealed 1263 genes with significantly higher expression in patients with a HOST-response. A protein-protein interaction network analysis identified seven hub genes (KIF2C, CENPA, CDC20, UBE2C, ESPL1, KIF23, and PLK1) highly interconnected in the network. A functional enrichment analysis revealed alterations in the cell division, cytoskeletal organization, cytokinesis, and interleukin-16 signaling pathways in patients with a HOST-response, suggesting dysregulated proliferation and inflammation. The distinct molecular signature associated with the HOST-response provides insights into the tumor-stroma interactions driving adverse outcomes and potential targets for tailored therapeutic interventions in this subset of patients with prostate cancer.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yetkin Tuac
- Department of Statistics, Ankara University, Ankara 06100, Türkiye
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Samet Kucukcolak
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 07102, USA
| | - Elza Tjio
- Histopathology Department, Harrogate District Hospital, Harrogate HG2 7SX, UK
| | - Dilara Akbulut
- Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke W. Chen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David D. Yang
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Peter F. Orio
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Paul L. Nguyen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cagdas Aktan
- Department of Medical Biology, Faculty of Medicine, Bandirma Onyedi Eylul University, Balikesir 10250, Türkiye
| |
Collapse
|
2
|
Ni K, Li ZL, Hu ZY, Hong L. Antitumor Effect of Apcin on Endometrial Carcinoma via p21-Mediated Cell Cycle Arrest and Apoptosis. Curr Med Sci 2024; 44:623-632. [PMID: 38853192 DOI: 10.1007/s11596-024-2877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/27/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Endometrial carcinoma (EC) is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates. This underscores the critical need for novel therapeutic targets. One such potential target is cell division cycle 20 (CDC20), which has been implicated in oncogenesis. This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved. METHODS The effects of Apcin on EC cell proliferation, apoptosis, and the cell cycle were evaluated using CCK8 assays and flow cytometry. RNA sequencing (RNA-seq) was subsequently conducted to explore the underlying molecular mechanism, and Western blotting and coimmunoprecipitation were subsequently performed to validate the results. Animal studies were performed to evaluate the antitumor effects in vivo. Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC. RESULTS Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells, resulting in cell cycle arrest. Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin. Notably, Apcin treatment led to the upregulation of the cell cycle regulator p21, which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells. In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth. Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue, and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval. CONCLUSION CDC20 is a novel molecular target in EC, and Apcin could be developed as a candidate antitumor drug for EC treatment.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Li Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Yong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J, Chang Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig Dis Sci 2024; 69:1583-1592. [PMID: 38526618 DOI: 10.1007/s10620-024-08384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with increasing morbidity and mortality. Exploring the factors affecting colorectal carcinogenesis and controlling its occurrence at its root is as important as studying post-cancer treatment and management. Establishing ideal animal models of CRC is crucial, which can occur through various pathways, such as adenoma-carcinoma sequence, inflammation-induced carcinogenesis, serrated polyp pathway and de-novo pathway. This article aims to categorize the existing well-established CRC animal models based on different carcinogenesis pathways, and to describe their mechanisms, methods, advantages and limitations using domestic and international literature sources. This will provide suggestions for the selection of animal models in early-stage CRC research.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yirong Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhishan Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jiaping Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
4
|
Radak M, Fallahi H. Unraveling molecular similarities between colorectal polyps and colorectal cancer: a systems biology approach. Intest Res 2024; 22:199-207. [PMID: 38311712 PMCID: PMC11079511 DOI: 10.5217/ir.2023.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND/AIMS Colorectal cancer (CRC) and colorectal polyps are intimately linked, with polyps acting as precursors to CRC. Understanding the molecular mechanisms governing their development is crucial for advancing diagnosis and treatment. Employing a systems biology approach, we investigated the molecular similarities between polyp and CRC. METHODS We analyzed gene expression profiles, protein-protein interactions, transcription factors, and gene ontology to identify common differentially expressed genes (DEGs) and unravel shared molecular pathways. RESULTS Our analysis revealed 520 commonly dysregulated genes in polyps and CRC, serving as potential biomarkers and pivotal contributors to disease progression. Gene ontology analysis elucidated distinct biological processes associated with upregulated and downregulated DEGs in both conditions, highlighting common pathways, including signal transduction, cell adhesion, and positive regulation of cell proliferation. Moreover, protein-protein interaction networks shed light on subnetworks involved in rRNA processing, positive regulation of cell proliferation, mRNA splicing, and cell division. Transcription factor analysis identified major regulators and differentially expressed transcription factors in polyp and CRC. Notably, we identified common differentially expressed transcription factors, including ZNF217, NR3C1, KLF5, GATA6, and STAT3, with STAT3 and NR3C1 exhibiting increased expression. CONCLUSIONS This comprehensive analysis enriches our understanding of the molecular mechanisms underlying polyp formation and CRC development, providing potential targets for further investigation and therapeutic intervention. Our findings contribute substantively to crafting personalized strategies for refining the diagnosis and treatment of polyps and CRC.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Kermanshah, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Islamic Republic of Iran
| |
Collapse
|
5
|
Filippi A, Aurelian J, Mocanu MM. Analysis of the Gene Networks and Pathways Correlated with Tissue Differentiation in Prostate Cancer. Int J Mol Sci 2024; 25:3626. [PMID: 38612439 PMCID: PMC11011430 DOI: 10.3390/ijms25073626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent non-cutaneous cancer in men. Early PCa detection has been made possible by the adoption of screening methods based on the serum prostate-specific antigen and Gleason score (GS). The aim of this study was to correlate gene expression with the differentiation level of prostate adenocarcinomas, as indicated by GS. We used data from The Cancer Genome Atlas (TCGA) and included 497 prostate cancer patients, 52 of which also had normal tissue sample sequencing data. Gene ontology analysis revealed that higher GSs were associated with greater responses to DNA damage, telomere lengthening, and cell division. Positive correlation was found with transcription factor activator of the adenovirus gene E2 (E2F) and avian myelocytomatosis viral homolog (MYC) targets, G2M checkpoints, DNA repair, and mitotic spindles. Immune cell deconvolution revealed high M0 macrophage counts and an increase in M2 macrophages dependent on the GS. The molecular pathways most correlated with GSs were cell cycle, RNA transport, and calcium signaling (depleted). A combinatorial approach identified a set of eight genes able to differentiate by k-Nearest Neighbors (kNN) between normal tissues, low-Gleason tissues, and high-Gleason tissues with high accuracy. In conclusion, our study could be a step forward to better understanding the link between gene expression and PCa progression and aggressiveness.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Justin Aurelian
- Department of Specific Disciplines, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
6
|
Yang C, Ge Y, Zang Y, Xu M, Jin L, Wang Y, Xu X, Xue B, Wang Z, Wang L. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 2023; 28:1584-1595. [PMID: 37535214 DOI: 10.1007/s10495-023-01877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.
Collapse
Affiliation(s)
- Chuanlai Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuegang Ge
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xinyu Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, 233003, Anhui, China.
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
7
|
Wang XX, Wu HY, Yang Y, Ma MM, Zhang YW, Huang HZ, Li SH, Pan SL, Tang J, Peng JH. CCNB1 is involved in bladder cancer pathogenesis and silencing CCNB1 decelerates tumor growth and improves prognosis of bladder cancer. Exp Ther Med 2023; 26:382. [PMID: 37456156 PMCID: PMC10347295 DOI: 10.3892/etm.2023.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
In search of an effective therapeutic target for bladder urothelial carcinoma (BLCA), the present study aimed to investigate the expression of cyclin B1 (CCNB1) and its putative mechanism in BLCA. BLCA sequencing data from Gene Expression Omnibus and The Cancer Genome Atlas were used to analyze expression of CCNB1 mRNA and high CCNB1 expression had a poorer prognosis compared with those with low expression. Immunohistochemistry (IHC) samples collected from the Human Protein Atlas database were analyzed for CCNB1 protein expression. Short hairpin (sh) CCNB1-transfected BLCA T24 and 5637 cells were used to investigate the effects of CCNB1 and inhibit the proliferation, migration and invasion of BLCA cells, affect the cell cycle distribution and promote apoptosis of 5637 cells. A sh-CCNB1 BLCA chicken embryo chorioallantoic membrane (CAM) transplantation model was established to observe the impacts of sh-CCNB1 on the tumorigenesis of BLCA in vivo. Analysis of sequencing data showed that CCNB1 mRNA was significantly elevated in tumor and BLCA compared with normal tissues [standardized mean difference (SMD)=1.21; 95% CI: 0.26-2.15; I²=95.9%]. IHC indicated that CCNB1 protein was localized in the nucleus and cytoplasm and was significantly increased in BLCA tumor tissues. The in vitro tests demonstrated that proliferation of T24 and 5637 cells transfected with sh-CCNB1 was significantly inhibited and cell migration and invasion ability were significantly decreased. sh-CCNB1 decreased the percentage of T24 cells in G0/G1, 5637 cells in the G0/G1 phase and S phase and increased percentage of 5637 cells in the G2/M phase and increased early apoptosis of 5637 cells. The in vivo experiments demonstrated that the mass of transplanted tumors was significantly decreased compared with the control group following silencing of CCNB1. The present results suggested that CCNB1 was involve in the development and prognosis of BLCA and silencing of CCNB1 may be a promising targeted therapy for BLCA.
Collapse
Affiliation(s)
- Xue-Xuan Wang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Hua-Yu Wu
- Medical Experimental Center, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Ying Yang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Miao-Miao Ma
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Wei Zhang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hai-Zhen Huang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Jun Tang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
8
|
Wu F, Wang M, Zhong T, Xiao C, Chen X, Huang Y, Wu M, Yu J, Chen D. Inhibition of CDC20 potentiates anti-tumor immunity through facilitating GSDME-mediated pyroptosis in prostate cancer. Exp Hematol Oncol 2023; 12:67. [PMID: 37528490 PMCID: PMC10391908 DOI: 10.1186/s40164-023-00428-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that immunotherapy, especially immune checkpoint inhibitors (ICIs), has the potential to facilitate long-term survival in various cancer besides prostate cancer. Emerging evidence indicated that pyroptosis, an immunogenic form of cell death, could trigger an anti-tumor immune microenvironment and enhance the effectiveness of immunotherapy. Nevertheless, the mechanism underlying the regulation of pyroptosis signaling in prostate cancer remains unclear. METHODS The differential expression of human E3 ligases in prostate cancer was integratedly analyzed from five independent public datasets. Moreover, the immunohistochemistry analysis of a tissue microarray derived from prostate cancer patients confirmed the results from the bioinformatic analysis. Furthermore, prostate cancer cell lines were evaluated via the next-generation RNA sequencing to assess transcriptomic profile upon CDC20 depletion. Next, qRT-PCR, Western blotting, cycloheximide assay, immunoprecipitation, and ubiquitination assay were employed to explore the correlation and interaction between CDC20 and GSDME. Both immune-deficient and immune-competent murine models were utilized to examine the anti-tumor efficacy of CDC20 inhibition with or without the anti-PD1 antibodies, respectively. To analyze the immune microenvironment of the xenografts, the tumor tissues were examined by immunohistochemistry and flow cytometry. RESULTS The analysis of multiple prostate cancer cohorts suggested that CDC20 was the most significantly over-expressed E3 ligase. In addition, CDC20 exerted a negative regulatory effect on the pyroptosis pathway by targeting GSDME for ubiquitination-mediated proteolysis in a degron-dependent manner. Knockdown of CDC20 leads to increased GSDME abundance and a transition from apoptosis to pyroptosis in response to death signals. Furthermore, in our syngeneic murine models, we found that depletion of CDC20 significantly enhances the anti-tumor immunity by promoting the infiltration of CD8+ T lymphocytes dependent on the existence of GSDME, as well as reducing myeloid immune cells. More importantly, Apcin, a small molecular inhibitor that targets CDC20, exhibited synergistic effects with anti-PD1-based immunotherapy in murine models of prostate cancer. CONCLUSIONS Overall, these findings provide new insights into the upstream regulation of GSDME-mediated pyroptosis by CDC20, which specifically interacts with GSDME and facilitates its ubiquitination in a degron-dependent manner. Importantly, our data highlight novel molecular pathways for targeting cellular pyroptosis and enhancing the effectiveness of anti-PD1-based immunotherapy.
Collapse
Affiliation(s)
- Fei Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Minglei Wang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Tao Zhong
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Changyan Xiao
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Xiaozheng Chen
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Yiheng Huang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Alebady ZAH, Azizyan M, Nakjang S, Lishman-Walker E, Al-Kharaif D, Walker S, Choo HX, Garnham R, Scott E, Johnson KL, Robson CN, Coffey K. CDC20 Is Regulated by the Histone Methyltransferase, KMT5A, in Castration-Resistant Prostate Cancer. Cancers (Basel) 2023; 15:3597. [PMID: 37509260 PMCID: PMC10377584 DOI: 10.3390/cancers15143597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The methyltransferase KMT5A has been proposed as an oncogene in prostate cancer and therefore represents a putative therapeutic target. To confirm this hypothesis, we have performed a microarray study on a prostate cancer cell line model of androgen independence following KMT5A knockdown in the presence of the transcriptionally active androgen receptor (AR) to understand which genes and cellular processes are regulated by KMT5A in the presence of an active AR. We observed that 301 genes were down-regulated whilst 408 were up-regulated when KMT5A expression was reduced. KEGG pathway and gene ontology analysis revealed that apoptosis and DNA damage signalling were up-regulated in response to KMT5A knockdown whilst protein folding and RNA splicing were down-regulated. Under these conditions, the top non-AR regulated gene was found to be CDC20, a key regulator of the spindle assembly checkpoint with an oncogenic role in several cancer types. Further investigation revealed that KMT5A regulates CDC20 in a methyltransferase-dependent manner to modulate histone H4K20 methylation within its promoter region and indirectly via the p53 signalling pathway. A positive correlation between KMT5A and CDC20 expression was also observed in clinical prostate cancer samples, further supporting this association. Therefore, we conclude that KMT5A is a valid therapeutic target for the treatment of prostate cancer and CDC20 could potentially be utilised as a biomarker for effective therapeutic targeting.
Collapse
Affiliation(s)
- Zainab A H Alebady
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Laboratory and Clinical Science, College of Pharmacy, University of AL-Qadisiyah, Al-Diwaniya 58002, Iraq
| | - Mahsa Azizyan
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Newcastle University, Newcastle NE2 4HH, UK
| | - Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dhuha Al-Kharaif
- Medical Laboratory Technology Department, College of Health Sciences, Public Authority of Applied Education and Training, Safat 13092, Kuwait
| | - Scott Walker
- School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hui Xian Choo
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rebecca Garnham
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emma Scott
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katya L Johnson
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Translational and Clinical Research Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Sawant M, Wilson A, Sridaran D, Mahajan K, O'Conor CJ, Hagemann IS, Luo J, Weimholt C, Li T, Roa JC, Pandey A, Wu X, Mahajan NP. Epigenetic reprogramming of cell cycle genes by ACK1 promotes breast cancer resistance to CDK4/6 inhibitor. Oncogene 2023; 42:2263-2277. [PMID: 37330596 PMCID: PMC10348910 DOI: 10.1038/s41388-023-02747-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Hormone receptor-positive, HER2-negative advanced breast cancers exhibit high sensitivity to CDK4/6 inhibitors such as palbociclib. However, most patients inevitably develop resistance, thus identification of new actionable therapeutic targets to overcome the recurrent disease is an urgent need. Immunohistochemical studies of tissue microarray revealed increased activation of non-receptor tyrosine kinase, ACK1 (also known as TNK2) in most of the breast cancer subtypes, independent of their hormone receptor status. Chromatin immunoprecipitation studies demonstrated that the nuclear target of activated ACK1, pY88-H4 epigenetic marks, were deposited at cell cycle genes, CCNB1, CCNB2 and CDC20, which in turn initiated their efficient transcription. Pharmacological inhibition of ACK1 using its inhibitor, (R)-9b dampened CCNB1, CCNB2 and CDC20 expression, caused G2/M arrest, culminating in regression of palbociclib-resistant breast tumor growth. Further, (R)-9b suppressed expression of CXCR4 receptor, which resulted in significant impairment of metastasis of breast cancer cells to lung. Overall, our pre-clinical data identifies activated ACK1 as an oncogene that epigenetically controls the cell cycle genes governing the G2/M transition in breast cancer cells. ACK1 inhibitor, (R)-9b could be a novel therapeutic option for the breast cancer patients that have developed resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Mithila Sawant
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Audrey Wilson
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Christopher J O'Conor
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Jingqin Luo
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Chen R, Wang Z, Lu T, Liu Y, Ji Y, Yu Y, Tou F, Guo S. Budding uninhibited by benzimidazoles 1 overexpression is associated with poor prognosis and malignant phenotype: A promising therapeutic target for lung adenocarcinoma. Thorac Cancer 2023; 14:893-912. [PMID: 36825773 PMCID: PMC10067360 DOI: 10.1111/1759-7714.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The budding uninhibited by benzimidazoles (BUB) family is involved in the cell cycle process as mitotic checkpoint components. Abnormal proliferation is a vital process in the development of lung adenocarcinoma (LUAD). Nevertheless, the roles of BUB1 in LUAD remain unclear. In this study, we evaluated the prognostic value and biological functions of BUB1 in LUAD using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), clinical LUAD samples, and in vitro experiments. METHODS The expression, prognostic significance, functions, immune infiltration, and methylation of BUB1 in LUAD were comprehensively analyzed using TCGA, GEO, Gene Expression Profiling Interactive Analysis, Metascape, cBioPortal, MethSurv, and cancerSEA databases. Furthermore, we performed a battery of in vitro experiments and immunohistochemistry (IHC) to verify the bioinformatics results. RESULTS Multivariate analysis revealed that BUB1 overexpression was an independent prognostic factor (hazard ratio = 1.499, p = 0.013). Functional enrichment analysis showed that BUB1 was correlated with cell cycle, proliferation, DNA repair, DNA damage, and invasion (p < 0.05). Finally, in vitro experiments showed that downregulation of BUB1 inhibited the proliferation, migration, and invasion of LUAD cells and promoted LUAD cell apoptosis. IHC also showed that BUB1 was overexpressed in LUAD (p < 0.001) and was significantly associated with poor prognosis (p < 0.001). CONCLUSIONS Our bioinformatics and IHC analyses revealed that BUB1 overexpression was an adverse prognostic factor in LUAD. In vitro experiments demonstrated that BUB1 promoted tumor cell proliferation, migration, and invasion in LUAD. These results indicated that BUB1 was a promising biomarker and potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Rui Chen
- Graduate School, Medical College of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | | | - Tianzhu Lu
- Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuzhen Liu
- Graduate School, Medical College of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yulong Ji
- Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yilin Yu
- Fujian Medical University, Fuzhou, China
| | - Fangfang Tou
- Graduate School, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Shanxian Guo
- Graduate School, Medical College of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
12
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
13
|
Liu L, Hu Q, Zhang Y, Sun X, Sun R, Ren Z. Classification molecular subtypes of hepatocellular carcinoma based on PRMT-related genes. Front Pharmacol 2023; 14:1145408. [PMID: 36909154 PMCID: PMC9992644 DOI: 10.3389/fphar.2023.1145408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Recent studies highlighted the functional role of protein arginine methyltransferases (PRMTs) catalyzing the methylation of protein arginine in malignant progression of various tumors. Stratification the subtypes of hepatocellular carcinoma (HCC) is fundamental for exploring effective treatment strategies. Here, we aim to conduct a comprehensive analysis of PRMTs with bioinformatic tools to identify novel biomarkers for HCC subtypes classification and prognosis prediction, which may be potential ideal targets for therapeutic intervention. Methods: The expression profiling of PRMTs in HCC tissues was evaluated based on the data of TCGA-LIHC cohort, and further validated in HCC TMA cohort and HCC cell lines. HCC was systematically classified based on PRMT family related genes. Subsequently, the differentially expressed genes (DEGs) between molecular subtypes were identified, and prognostic risk model were constructed using least absolute shrinkage and selection operator (LASSO) and Cox regression analysis to evaluate the prognosis, gene mutation, clinical features, immunophenotype, immunotherapeutic effect and antineoplastic drug sensitivity of HCC. Results: PRMTs expression was markedly altered both in HCC tissues and HCC cell lines. Three molecular subtypes with distinct immunophenotype were generated. 11 PRMT-related genes were enrolled to establish prognostic model, which presented with high accuracy in predicting the prognosis of two risk groups in the training, validation, and immunotherapy cohort, respectively. Additionally, the two risk groups showed significant difference in immunotherapeutic efficacy. Further, the sensitivity of 72 anticancer drugs was identified using prognostic risk model. Conclusion: In summary, our findings stratified HCC into three subtypes based on the PRMT-related genes. The prognostic model established in this work provide novel insights into the exploration of related therapeutic approaches in treating HCC.
Collapse
Affiliation(s)
- Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuyue Hu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yize Zhang
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Wavelet-Vermuse C, Odnokoz O, Xue Y, Lu X, Cristofanilli M, Wan Y. CDC20-Mediated hnRNPU Ubiquitination Regulates Chromatin Condensation and Anti-Cancer Drug Response. Cancers (Basel) 2022; 14:3732. [PMID: 35954396 PMCID: PMC9367339 DOI: 10.3390/cancers14153732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cell division cycle 20 (CDC20) functions as a critical cell cycle regulator. It plays an important role in cancer development and drug resistance. However, the molecular mechanisms by which CDC20 regulates cellular drug response remain poorly understood. Chromatin-associated CDC20 interactome in breast cancer cells was analyzed by using affinity purification coupled with mass spectrometry. hnRNPU as a CDC20 binding partner was validated by co-immunoprecipitation and immunostaining. The molecular domain, comprising amino acid residues 461-653, on hnRNPU required for its interaction with CDC20 was identified by mapping of interactions. Co-immunoprecipitation showed that CDC20-mediated hnRNPU ubiquitination promotes its interaction with the CTCF and cohesin complex. The effects of CDC20-hnRNPU on nuclear size and chromatin condensation were investigated by analyzing DAPI and H2B-mCherry staining, respectively. The role of CDC20-hnRNPU in tumor progression and drug resistance was examined by CCK-8 cell survival and clonogenic assays. Our study indicates that CDC20-mediated ubiquitination of hnRNPU modulates chromatin condensation by regulating the interaction between hnRNPU and the CTCF-cohesin complex. Dysregulation of the CDC20-hnRNPU axis contributes to tumor progression and drug resistance.
Collapse
Affiliation(s)
- Cindy Wavelet-Vermuse
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; (C.W.-V.); (O.O.)
| | - Olena Odnokoz
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; (C.W.-V.); (O.O.)
| | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA; (Y.X.); (X.L.)
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA; (Y.X.); (X.L.)
| | | | - Yong Wan
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; (C.W.-V.); (O.O.)
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Li L, Xu H, Qu L, Xu K, Liu X. Daidzin inhibits hepatocellular carcinoma survival by interfering with the glycolytic/gluconeogenic pathway through downregulation of TPI1. Biofactors 2022; 48:883-896. [PMID: 35118741 DOI: 10.1002/biof.1826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023]
Abstract
Daidzin (DDZ) is a natural brassin-like compound extracted from the soybean, and has been found to have therapeutic potential against tumors in recent years. This study investigates the therapeutic effect of DDZ on hepatocellular carcinoma cells and elucidates the possible mechanisms of action. The viability of HCCLM3 and Hep3B cells was detected by MTT assay. Western blots and qPCR were used to detect the protein and mRNA levels of proliferation and apoptosis related genes. Gas chromatography-mass spectrometry (GC-MS) was used for metabolome analysis. In vivo antitumor effects were assessed in nude mice engrafted with HCC cell lines. Our results show that DDZ treatment dose-dependently inhibited cell viability, migration, and survival. The expressions of CDK1, BCL2, MYC, and survivin were reduced, while the expressions of BAX and PARP were increased in DDZ treated cells. The differentially expressed metabolites detected in DDZ treated cultures are associated with glycolysis/gluconeogenesis pathways. Bioinformatic analysis identified TPI1, a gene in the glycolysis pathway with prognostic value for hepatocellular carcinoma (HCC), and DDZ treatment downregulated this gene. In vivo experiments show that DDZ significantly reduced the tumor volume and weight, and inhibited Ki67 expression within tumors. This study shows that DDZ interfered with the survival and migration of hepatocellular carcinoma cells, likely via TPI1 and the gluconeogenesis pathway.
Collapse
Affiliation(s)
- Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
16
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|