1
|
Di Giovannantonio M, Hartley F, Elshenawy B, Barberis A, Hudson D, Shafique HS, Allott VES, Harris DA, Lord SR, Haider S, Harris AL, Buffa FM, Harris BHL. Defining hypoxia in cancer: A landmark evaluation of hypoxia gene expression signatures. CELL GENOMICS 2025; 5:100764. [PMID: 39892389 DOI: 10.1016/j.xgen.2025.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Tumor hypoxia drives metabolic shifts, cancer progression, and therapeutic resistance. Challenges in quantifying hypoxia have hindered the exploitation of this potential "Achilles' heel." While gene expression signatures have shown promise as surrogate measures of hypoxia, signature usage is heterogeneous and debated. Here, we present a systematic pan-cancer evaluation of 70 hypoxia signatures and 14 summary scores in 104 cell lines and 5,407 tumor samples using 472 million length-matched random gene signatures. Signature and score choice strongly influenced the prediction of hypoxia in vitro and in vivo. In cell lines, the Tardon signature was highly accurate in both bulk and single-cell data (94% accuracy, interquartile mean). In tumors, the Buffa and Ragnum signatures demonstrated superior performance, with Buffa/mean and Ragnum/interquartile mean emerging as the most promising for prospective clinical trials. This work delivers recommendations for experimental hypoxia detection and patient stratification for hypoxia-targeting therapies, alongside a generalizable framework for signature evaluation.
Collapse
Affiliation(s)
- Matteo Di Giovannantonio
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Badran Elshenawy
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandro Barberis
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Dan Hudson
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Didcot, UK
| | | | | | | | - Simon R Lord
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Adrian L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; CompBio Lab, Department of Computing Sciences, Bocconi University, Milan, Italy; AI and Systems Biology Lab, IFOM - Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy.
| | - Benjamin H L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; St. Catherine's College, University of Oxford, Oxford, UK; Cutrale Perioperative and Ageing Group, Imperial College London, London, UK.
| |
Collapse
|
2
|
Pridgeon CS, Airavaara K, Monola J, Jokela A, Palmer D, Yliperttula M, Harjumäki R. Chronic hypoxia for the adaptation of extracellular vesicle phenotype. Sci Rep 2024; 14:25189. [PMID: 39448620 PMCID: PMC11502752 DOI: 10.1038/s41598-024-73453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Variations in oxygen level affect the phenotype of cells and extracellular vesicles (EVs). Depending on the metabolic oxygen demand of cells, hypoxic cell culture can produce conditions more like those found in vivo, and with appropriate oxygen levels, mimic hypoxic tumours. However, most previous experiments studying both EVs and the effects of hypoxia on cells use periods of 72 h or less of hypoxia. We hypothesised that this was insufficient time for adaptation to hypoxic conditions both for EVs and cells which may skew the results of such studies. In this study, the effects of acute (72 h) and chronic hypoxia (> 2 weeks) on the phenotype of HepG2 and PC3 cells and their EVs were examined. Cells could be cultured normally under chronic hypoxic conditions and cryopreserved and recovered. The effects of hypoxia on EV phenotype are slow to establish and dependent on cell line. In PC3 cells, the greatest change in phenotype and increase in EV production occurred only with chronic hypoxic culture. In HepG2 cells, the number of EVs produced was insensitive to hypoxic culture and the greatest changes in protein expression were observed after acute hypoxic culture. Nonetheless, biphasic changes in EV phenotype were detected in both cell types in response to either acute or chronic hypoxia. These results indicate that for cells which do not induce consumptive oxygen depletion, prolonged hypoxic culture is required for complete adaptation.
Collapse
Affiliation(s)
- Chris S Pridgeon
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kerttu Airavaara
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Monola
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alisa Jokela
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, University of Rostock, Rostock, Germany
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Riina Harjumäki
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Rojas MG, Pereira-Simon S, Zigmond ZM, Varona Santos J, Perla M, Santos Falcon N, Stoyell-Conti FF, Salama A, Yang X, Long X, Duque JC, Salman LH, Tabbara M, Martinez L, Vazquez-Padron RI. Single-Cell Analyses Offer Insights into the Different Remodeling Programs of Arteries and Veins. Cells 2024; 13:793. [PMID: 38786017 PMCID: PMC11119253 DOI: 10.3390/cells13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Arteries and veins develop different types of occlusive diseases and respond differently to injury. The biological reasons for this discrepancy are not well understood, which is a limiting factor for the development of vein-targeted therapies. This study contrasts human peripheral arteries and veins at the single-cell level, with a focus on cell populations with remodeling potential. Upper arm arteries (brachial) and veins (basilic/cephalic) from 30 organ donors were compared using a combination of bulk and single-cell RNA sequencing, proteomics, flow cytometry, and histology. The cellular atlases of six arteries and veins demonstrated a 7.8× higher proportion of contractile smooth muscle cells (SMCs) in arteries and a trend toward more modulated SMCs. In contrast, veins showed a higher abundance of endothelial cells, pericytes, and macrophages, as well as an increasing trend in fibroblasts. Activated fibroblasts had similar proportions in both types of vessels but with significant differences in gene expression. Modulated SMCs and activated fibroblasts were characterized by the upregulation of MYH10, FN1, COL8A1, and ITGA10. Activated fibroblasts also expressed F2R, POSTN, and COMP and were confirmed by F2R/CD90 flow cytometry. Activated fibroblasts from veins were the top producers of collagens among all fibroblast populations from both types of vessels. Venous fibroblasts were also highly angiogenic, proinflammatory, and hyper-responders to reactive oxygen species. Differences in wall structure further explain the significant contribution of fibroblast populations to remodeling in veins. Fibroblasts are almost exclusively located outside the external elastic lamina in arteries, while widely distributed throughout the venous wall. In line with the above, ECM-targeted proteomics confirmed a higher abundance of fibrillar collagens in veins vs. more basement ECM components in arteries. The distinct cellular compositions and transcriptional programs of reparative populations in arteries and veins may explain differences in acute and chronic wall remodeling between vessels. This information may be relevant for the development of antistenotic therapies.
Collapse
Affiliation(s)
- Miguel G. Rojas
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | | | - Javier Varona Santos
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Mikael Perla
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Nieves Santos Falcon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Filipe F. Stoyell-Conti
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Alghidak Salama
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaochun Long
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Juan C. Duque
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Loay H. Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY 12208, USA
| | - Marwan Tabbara
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Laisel Martinez
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Roberto I. Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
- Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA;
| |
Collapse
|
4
|
Xie S, Li X, Yan J, Yu H, Chen S, Chen K. Knockdown of liver cancer cell-secreted exosomal PSMA5 controls macrophage polarization to restrain cancer progression by blocking JAK2/STAT3 signaling. Immun Inflamm Dis 2024; 12:e1146. [PMID: 38415977 PMCID: PMC10836037 DOI: 10.1002/iid3.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION Tumor-associated macrophages, a major component of the tumor microenvironment, undergo polarization into M2 macrophages (M2), and thereby exert an immunosuppressive effect to induce cancer metastasis. This study strives to uncover a molecular mechanism underlying this event in hepatocellular carcinoma (HCC). METHODS Proteasome subunit alpha 5 (PSMA5) expression in liver hepatocellular carcinoma (LIHC) tissues and its association with LIHC patients were predicted using StarBase. PSMA5 level in human HCC cells was manipulated via transfection. Exosomes were isolated from HCC cells, and internalized into macrophages which were cocultured with HCC cells. Exosome internalization was observed after fluorescence labeling. HCC cell migration and invasion were evaluated by wound healing and Transwell assays. Xenograft assay was performed to investigate the role of PSMA5 in in vitro tumorigenesis. M2 polarization was assessed by enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. PSMA5 expression in exosomes and Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) activation in macrophages and tumors were detected by Western blot analysis. RESULTS High PSMA5 expression was observed in LIHC tissues and associated with compromised survival of LIHC patients. PSMA5 knockdown inhibited HCC cell migration and invasion. PSMA5 knockdown in HCC cells downregulated PSMA5 level in exosomes from these HCC cells. HCC cell-isolated exosomes were successfully internalized into macrophages, and facilitated M2 polarization and JAK2/STAT3 pathway activation. HCC cell-secreted exosomal PSMA5 knockdown inhibited the exosome-induced effect on macrophages, and attenuated the promotion induced by exosome-treated macrophages on HCC cell migration/invasion and tumorigenesis along with in vivo M2 polarization and JAK2/STAT3 pathway activation. CONCLUSION HCC cell-secreted exosomal PSMA5 knockdown hinders M2 polarization to suppress cancer progression by restraining JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Shujie Xie
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Xiang Li
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Jia Yan
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Hua Yu
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Shuhuai Chen
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Kana Chen
- Department of Plastic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| |
Collapse
|
5
|
Zhu S, Kong W, Zhu J, Huang L, Wang S, Bi S, Xie Z. The genetic algorithm-aided three-stage ensemble learning method identified a robust survival risk score in patients with glioma. Brief Bioinform 2022; 23:6694808. [DOI: 10.1093/bib/bbac344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Ensemble learning is a kind of machine learning method which can integrate multiple basic learners together and achieve higher accuracy. Recently, single machine learning methods have been established to predict survival for patients with cancer. However, it still lacked a robust ensemble learning model with high accuracy to pick out patients with high risks. To achieve this, we proposed a novel genetic algorithm-aided three-stage ensemble learning method (3S score) for survival prediction. During the process of constructing the 3S score, double training sets were used to avoid over-fitting; the gene-pairing method was applied to reduce batch effect; a genetic algorithm was employed to select the best basic learner combination. When used to predict the survival state of glioma patients, this model achieved the highest C-index (0.697) as well as area under the receiver operating characteristic curve (ROC-AUCs) (first year = 0.705, third year = 0.825 and fifth year = 0.839) in the combined test set (n = 1191), compared with 12 other baseline models. Furthermore, the 3S score can distinguish survival significantly in eight cohorts among the total of nine independent test cohorts (P < 0.05), achieving significant improvement of ROC-AUCs. Notably, ablation experiments demonstrated that the gene-pairing method, double training sets and genetic algorithm make sure the robustness and effectiveness of the 3S score. The performance exploration on pan-cancer showed that the 3S score has excellent ability on survival prediction in five kinds of cancers, which was verified by Cox regression, survival curves and ROC curves together. To enable its clinical adoption, we implemented the 3S score and other two clinical factors as an easy-to-use web tool for risk scoring and therapy stratification in glioma patients.
Collapse
Affiliation(s)
- Sujie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University , Qingdao, China
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki , Finland
- Institute Sanqu Technology (Hangzhou) Co., Ltd. , Hangzhou, China
| | - Jie Zhu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki , Finland
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University , Qingdao, China
| | - Shixin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University , Qingdao, China
| | - Suzhen Bi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University , Qingdao, China
| | - Zhengwei Xie
- Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University , Beijing, China
| |
Collapse
|
6
|
Ren P, Wang JY, Zeng ZR, Li NX, Chen HL, Peng XG, Bhawal UK, Guo WZ. A novel hypoxia-driven gene signature that can predict the prognosis and drug resistance of gliomas. Front Genet 2022; 13:976356. [PMID: 36118887 PMCID: PMC9478203 DOI: 10.3389/fgene.2022.976356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia spontaneously forms in the interior of glioma tissues and regulates the expression of various genes. However, the status of hypoxia-driven genes in glioma tissues is not completely known. In the current study, RNA-seq data of 695 glioma tissues in The Cancer Genome Atlas (TCGA) were set as a discovery cohort and were used to identify hypoxia-driven genes and construct a novel gene signature. The prognostic values of that signature were verified in data from the TCGA and the Chinese Glioma Genome Atlas (CGGA). The expression and diagnostic values of hypoxia-driven genes were analyzed using immunohistochemistry and receiver operator characteristic curves. Finally, the effects of hypoxia-driven genes on temozolomide (TMZ) resistance were analyzed by western blot, CCK-8 and colony formation assay. A total of 169 hypoxia-driven genes were identified, which were associated with a poor outcome in glioma patients. Among them, 22 genes had a degree score ≥10 and 6 genes (WT1, HOXA2, HOXC6, MMP9, SHOX2 and MYOD1) were selected to construct a signature to classify glioma patients into low- or high-risk groups. That signature had a remarkable prognostic value for glioma patients in TCGA and CGGA. The expression of HOXC6, MMP9, SHOX2 and MYOD1 was associated with hypoxia degree in glioma tissues and in recurrent cases, had a remarkable diagnostic value and a significant relationship with disease free survival in glioma patients. Moreover, SHOX2 was highly expressed in glioma tissues with O-6-methylguanine-DNA methyltransferase (MGMT)-unmethylation and temozolomide (TMZ) resistant glioma cell lines, and associated with MGMT expression. Knockdown the expression of SHOX2 significantly reduced the TMZ-resistance induced by hypoxia in glioma cells. Ultimately, we identified six novel hypoxia-driven genes for reliable prognostic prediction in gliomas and found that SHOX2 might be a potential target to overcome the TMZ resistance induced by hypoxia.
Collapse
Affiliation(s)
- Peng Ren
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing-Ya Wang
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
| | - Nan-Xi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Lei Chen
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xin-Ge Peng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- *Correspondence: Ujjal K. Bhawal, ; Wen-Zhi Guo,
| | - Wen-Zhi Guo
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ujjal K. Bhawal, ; Wen-Zhi Guo,
| |
Collapse
|
7
|
Hu T, Wang Y, Wang X, Wang R, Song Y, Zhang L, Han S. Construction and validation of an angiogenesis-related gene expression signature associated with clinical outcome and tumor immune microenvironment in glioma. Front Genet 2022; 13:934683. [PMID: 36035133 PMCID: PMC9403517 DOI: 10.3389/fgene.2022.934683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Glioma is the most prevalent malignant intracranial tumor. Many studies have shown that angiogenesis plays a crucial role in glioma tumorigenesis, metastasis, and prognosis. In this study, we conducted a comprehensive analysis of angiogenesis-related genes (ARGs) in glioma. Methods: RNA-sequencing data of glioma patients were obtained from TCGA and CGGA databases. Via consensus clustering analysis, ARGs in the sequencing data were distinctly classified into two subgroups. We performed univariate Cox regression analysis to determine prognostic differentially expressed ARGs and least absolute shrinkage and selection operator Cox regression to construct a 14-ARG risk signature. The CIBERSORT algorithm was used to explore immune cell infiltration, and the ESTIMATE algorithm was applied to calculate immune and stromal scores. Results: We found that the 14-ARG signature reflected the infiltration characteristics of different immune cells in the tumor immune microenvironment. Additionally, total tumor mutational burden increased significantly in the high-risk group. We combined the 14-ARG signature with patient clinicopathological data to construct a nomogram for predicting 1-, 3-, and 5-year overall survival with good accuracy. The predictive value of the prognostic model was verified in the CGGA cohort. SPP1 was a potential biomarker of glioma risk and was involved in the proliferation, invasion, and angiogenesis of glioma cells. Conclusion: In conclusion, we established and validated a novel ARG risk signature that independently predicted the clinical outcomes of glioma patients and was associated with the tumor immune microenvironment.
Collapse
Affiliation(s)
- Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Li Zhang, ; Sheng Han,
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Li Zhang, ; Sheng Han,
| |
Collapse
|