1
|
Mabela CM, Gouws C, Pheiffer W. Overcoming obstacles in three-dimensional cell culture model establishment: Approaches for growing A549 non-small cell lung cancer spheroids using a clinostat system. J Pharmacol Toxicol Methods 2024; 130:107564. [PMID: 39326518 DOI: 10.1016/j.vascn.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) accounts for 80-85 % of lung cancer cases globally. And the A549 cell line is widely used in pharmacological and toxicity screening. Due to its popularity as a NSCLC model, it was inevitable that three-dimensional (3D) cultures of A549 cells would be established. 3D models increase physiological relevance, and their advanced structure allows researchers to obtain more translatable and reliable results. However, establishing this cell line as a 3D model may come with challenges, like clumping. METHODS In this study, A549 spheroids were established using a clinostat-based rotating bioreactor system and were characterised in terms of morphology, planimetry, and viability. RESULTS The main challenge faced included continuous aggregation of the spheroids, which constrained growth and development. This challenge was successfully overcome by supplementation with ascorbic acid, foetal bovine serum coating, and minimising handling, and a NSCLC mini-tumour model was established and semi-characterised. The spheroids survived for 25 days and had a significant increase in growth. CONCLUSION The A549 spheroid model cultured in a clinostat-based microgravity system was shown to be stable, viable, and suitable to be used in pharmacological and toxicological investigations.
Collapse
Affiliation(s)
- Charity M Mabela
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
2
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
3
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
4
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Vladimir A Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| |
Collapse
|
5
|
Marquez J, Dong J, Hayashi J, Serrero G. Prostaglandin F2 Receptor Negative Regulator (PTGFRN) Expression Correlates With a Metastatic-like Phenotype in Epidermoid Carcinoma, Pediatric Medulloblastoma, and Mesothelioma. J Cell Biochem 2024; 125:e30616. [PMID: 38924562 DOI: 10.1002/jcb.30616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin β1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Jorge Marquez
- Department of Pharmaceutical Sciences, Baltimore School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jianping Dong
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jun Hayashi
- Precision Antibody Service, Columbia, Maryland, USA
| | - Ginette Serrero
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
- Precision Antibody Service, Columbia, Maryland, USA
| |
Collapse
|
6
|
Zhang G, Wang Z, Ma L, Li J, Han J, Zhu M, Zhang Z, Zhang S, Zhang X, Wang Z. Identification of Pancreatic Metastasis Cells and Cell Spheroids by the Organelle-Targeting Sensor Array. Adv Healthc Mater 2024; 13:e2400241. [PMID: 38456344 DOI: 10.1002/adhm.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer is a highly malignant and metastatic cancer. Pancreatic cancer can lead to liver metastases, gallbladder metastases, and duodenum metastases. The identification of pancreatic cancer cells is essential for the diagnosis of metastatic cancer and exploration of carcinoma in situ. Organelles play an important role in maintaining the function of cells, the various cells show significant differences in organelle microenvironment. Herein, six probes are synthesized for targeting mitochondria, lysosomes, cell membranes, endoplasmic reticulum, Golgi apparatus, and lipid droplets. The six fluorescent probes form an organelles-targeted sensor array (OT-SA) to image pancreatic metastatic cancer cells and cell spheroids. The homology of metastatic cancer cells brings the challenge for identification of these cells. The residual network (ResNet) model has been proven to automatically extract and select image features, which can figure out a subtle difference among similar samples. Hence, OT-SA is developed to identify pancreatic metastasis cells and cell spheroids in combination with ResNet analysis. The identification accuracy for the pancreatic metastasis cells (> 99%) and pancreatic metastasis cell spheroids (> 99%) in the test set is successfully achieved respectively. The organelles-targeting sensor array provides a method for the identification of pancreatic cancer metastasis in cells and cell spheroids.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zirui Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jiahao Han
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zixuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shilong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Chan SM, Raglow Z, Pal A, Gitlin SD, Legendre M, Thomas D, Mehta RK, Tan M, Nyati MK, Rehemtulla A, Markovitz DM. A molecularly engineered lectin destroys EGFR and inhibits the growth of non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585535. [PMID: 38562773 PMCID: PMC10983887 DOI: 10.1101/2024.03.18.585535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Survival rates for non-small cell lung cancer (NSCLC) remain low despite the advent of novel therapeutics. Tyrosine kinase inhibitors (TKIs) targeting mutant epidermal growth factor receptor (EGFR) in NSCLC have significantly improved mortality but are plagued with challenges--they can only be used in the small fraction of patients who have susceptible driver mutations, and resistance inevitably develops. Aberrant glycosylation on the surface of cancer cells is an attractive therapeutic target as these abnormal glycosylation patterns are typically specific to cancer cells and are not present on healthy cells. H84T BanLec (H84T), a lectin previously engineered by our group to separate its antiviral activity from its mitogenicity, exhibits precision binding of high mannose, an abnormal glycan present on the surface of many cancer cells, including NSCLC. Here, we show that H84T binds to and inhibits the growth of diverse NSCLC cell lines by inducing lysosomal degradation of EGFR and leading to cancer cell death through autophagy. This is a mechanism distinct from EGFR TKIs and is independent of EGFR mutation status; H84T inhibited proliferation of both cell lines expressing wild type EGFR and those expressing mutant EGFR that is resistant to all TKIs. Further, H84T binds strongly to multiple and diverse clinical samples of both pulmonary adenocarcinoma and squamous cell carcinoma. H84T is thus a promising potential therapeutic in NSCLC, with the ability to circumvent the challenges currently faced by EGFR TKIs.
Collapse
|
8
|
Roman V, Mihaila M, Radu N, Marineata S, Diaconu CC, Bostan M. Cell Culture Model Evolution and Its Impact on Improving Therapy Efficiency in Lung Cancer. Cancers (Basel) 2023; 15:4996. [PMID: 37894363 PMCID: PMC10605536 DOI: 10.3390/cancers15204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Optimizing cell culture conditions is essential to ensure experimental reproducibility. To improve the accuracy of preclinical predictions about the response of tumor cells to different classes of drugs, researchers have used 2D or 3D cell cultures in vitro to mimic the cellular processes occurring in vivo. While 2D cell culture provides valuable information on how therapeutic agents act on tumor cells, it cannot quantify how the tumor microenvironment influences the response to therapy. This review presents the necessary strategies for transitioning from 2D to 3D cell cultures, which have facilitated the rapid evolution of bioengineering techniques, leading to the development of microfluidic technology, including organ-on-chip and tumor-on-chip devices. Additionally, the study aims to highlight the impact of the advent of 3D bioprinting and microfluidic technology and their implications for improving cancer treatment and approaching personalized therapy, especially for lung cancer. Furthermore, implementing microfluidic technology in cancer studies can generate a series of challenges and future perspectives that lead to the discovery of new predictive markers or targets for antitumor treatment.
Collapse
Affiliation(s)
- Viviana Roman
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Stefania Marineata
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania;
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
9
|
Paudel KR, Rajput R, De Rubis G, Raju Allam VSR, Williams KA, Singh SK, Gupta G, Salunke P, Hansbro PM, Gerlach J, Dua K. In vitro anti-cancer activity of a polyherbal preparation, VEDICINALS®9, against A549 human lung adenocarcinoma cells. Pathol Res Pract 2023; 250:154832. [PMID: 37774532 DOI: 10.1016/j.prp.2023.154832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is among the leading causes of morbidity and mortality worldwide. Despite the availability of several treatment options, the five-year survival rate of NSCLC is extremely low (<20%). This underlines the necessity of more effective therapeutic alternatives. In this context, plant-derived extracts and bioactive molecules extracted from plants, known collectively as phytoceuticals, represent an extremely variegated source of bioactive compounds with potent anticancer potential. In the present study, we tested the in vitro anticancer activity of a polyherbal preparation, VEDICINALS®9, containing nine different bioactive principles extracted by medicinal plants. METHODS The anticancer activity of VEDICINALS®9 was investigated by measuring its impact on A549 human NSCLC cell proliferation (MTT assay and trypan blue staining), migration (wound healing assay and transwell chamber assay) and by measuring the impact on the expression of cancer-related proteins (Human XL Oncology Protein Array). RESULTS We show that VEDICINALS®9 at a concentration of 0.2% v/v has potent anticancer effect, significantly inhibiting A549 cell proliferation and migration. Mechanistically, this was achieved by downregulating the expression of proteins involved in cancer cell proliferation (Axl, FGF basic, enolase 2, progranulin, survivin) and migration (Dkk-1, cathepsins B and D, BCL-x, amphiregulin, CapG, u-plasminogen activator). Furthermore, treatment with VEDICINALS®9 resulted in increased expression of the oncosuppressor protein p53 and of the angiogenesis inhibitor endostatin. CONCLUSIONS Taken together, our results provide proof of principle of the potent anticancer activity of the polyherbal preparation VEDICINALS®9, highlighting its enormous potential as an alternative or adjuvant therapy for lung cancer.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Kylie Anne Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
10
|
Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, Almurshedi AS, Alsharidah M, Rugaie OA, Davies MPA, Liloglou T, Ross K, Saleem I. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf B Biointerfaces 2023; 229:113466. [PMID: 37515959 DOI: 10.1016/j.colsurfb.2023.113466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Giulia Scagnetti
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Medical Clinic, Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, Al Qassim 51911, Saudi Arabia
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | | | - Kehinde Ross
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
11
|
Wang T, Desmet J, Pérez-Albaladejo E, Porte C. Development of fish liver PLHC-1 spheroids and its applicability to investigate the toxicity of plastic additives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115016. [PMID: 37196525 DOI: 10.1016/j.ecoenv.2023.115016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Fish liver cell lines are valuable tools to understand the toxicity of chemicals in aquatic vertebrates. While conventional 2D cell cultures grown in monolayers are well established, they fail to emulate toxic gradients and cellular functions as in in-vivo conditions. To overcome these limitations, this work focuses on the development of Poeciliopsis lucida (PLHC-1) spheroids as a testing platform to evaluate the toxicity of a mixture of plastic additives. The growth of spheroids was monitored over a period of 30 days, and spheroids 2-8 days old and sized between 150 and 250 µm were considered optimal for conducting toxicity tests due to their excellent viability and metabolic activity. Eight-day-old spheroids were selected for lipidomic characterization. Compared to 2D-cells, the lipidome of spheroids was relatively enriched in highly unsaturated phosphatidylcholines (PCs), sphingosines (SPBs), sphingomyelins (SMs) and cholesterol esters (CEs). When exposed to a mixture of plastic additives, spheroids were less responsive in terms of decreased cell viability and generation of reactive oxygen species (ROS), but were more sensitive than cells growing in monolayers for lipidomic responses. The lipid profile of 3D-spheroids was similar to a liver-like phenotype and it was strongly modulated by exposure to plastic additives. The development of PLHC-1 spheroids represents an important step towards the application of more realistic in-vitro methods in aquatic toxicity studies.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Judith Desmet
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | | | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
12
|
Surina, Tanggis, Suzuki T, Hisata S, Fujita K, Fujiwara S, Liu F, Fukushima N, Suzuki T, Mato N, Hagiwara K. Patient-derived spheroids and patient-derived organoids simulate evolutions of lung cancer. Heliyon 2023; 9:e13829. [PMID: 36895411 PMCID: PMC9988482 DOI: 10.1016/j.heliyon.2023.e13829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer cells harbor many genetic mutations and gene expression profiles different from normal cells. Patient-derived cancer cells (PDCC) are preferred materials in cancer study. We established patient-derived spheroids (PDSs) and patient-derived organoids (PDOs) from PDCCs isolated from the malignant pleural effusion in 8 patients. The morphologies suggested that PDSs may be a model of local cancer extensions, while PDOs may be a model of distant cancer metastases. The gene expression profiles differed between PDSs and PDOs: Gene sets related to inflammatory responses and EMT were antithetically regulated in PDSs or in PDOs. PDSs demonstrated an attenuation of the pathways that contribute to the enhancement of transforming growth factor beta (TGF-β) induced epithelial mesenchymal transition (EMT), while PDOs demonstrated an attenuation of it. Taken together, PDSs and PDOs have differences in both the interaction to the immune systems and to the stroma. PDSs and PDOs will provide a model system that enable intimate investigation of the behavior of cancer cells in the body.
Collapse
Affiliation(s)
- Surina
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
| | - Tanggis
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Tomoko Suzuki
- Department of Pathology, Jichi Medical University Hospital, Tochigi, Japan
| | - Shu Hisata
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazutaka Fujita
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Satomi Fujiwara
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Fangyuan Liu
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia, China
| | | | - Takuji Suzuki
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoko Mato
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Koichi Hagiwara
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
13
|
Worsley CM, Veale RB, Mayne ES. The effect of acute acid exposure on immunomodulatory protein secretion, cell survival, and cell cycle progression in tumour cell lines. Cytokine 2023; 162:156118. [PMID: 36584453 DOI: 10.1016/j.cyto.2022.156118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Cancer develops when multiple systems fail to suppress uncontrolled cell proliferation. Breast cancers and oesophageal squamous cell carcinoma (OSCC) are common cancers prone to genetic instability. They typically occur in acidic microenvironments which impacts on cell proliferation, apoptosis, and their influence on surrounding cells to support tumour growth and immune evasion. This study aimed to evaluate the impact of the acidic tumour microenvironment on the production of pro-tumorigenic and immunomodulatory factors in cancer cell lines. Multiple factors that may mediate immune evasion were secreted including IL-6, IL-8, G-CSF, IP-10, GDF-15, Lipocalin-2, sICAM-1, and myoglobin. Others, such as VEGF, FGF, and EGF that are essential for tumour cell survival were also detected. Treatment with moderate acidity did not significantly affect secretion of most proteins, whereas very low pH did. Distinct differences in apoptosis were noted between the cell lines, with WHCO6 being better adapted to survive at moderate acid levels. Conditioned medium from acid-treated cells stimulated increased cell viability and proliferation in WHCO6, but increased cell death in MCF-7. This study highlights the importance of acidic tumour microenvironment in controlling apoptosis, cell proliferation, and immune evasion which may be different at different anatomical sites. Immunomodulatory molecules and growth factors provide therapeutic targets to improve the prognosis of individuals with cancer.
Collapse
Affiliation(s)
- Catherine M Worsley
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; National Health Laboratory Service, South Africa.
| | - Rob B Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| | - Elizabeth S Mayne
- National Health Laboratory Service, South Africa; Department of Immunology Faculty of Health Sciences, University of the Witwatersrand, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
14
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
15
|
Comparison of EMT-Related and Multi-Drug Resistant Gene Expression, Extracellular Matrix Production, and Drug Sensitivity in NSCLC Spheroids Generated by Scaffold-Free and Scaffold-Based Methods. Int J Mol Sci 2022; 23:ijms232113306. [PMID: 36362093 PMCID: PMC9657250 DOI: 10.3390/ijms232113306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Multicellular 3D tumor models are becoming a powerful tool for testing of novel drug products and personalized anticancer therapy. Tumor spheroids, a commonly used 3D multicellular tumor model, more closely reproduce the tumor microenvironment than conventional 2D cell cultures. It should be noted that spheroids can be produced using different techniques, which can be subdivided into scaffold-free (SF) and scaffold-based (SB) methods. However, it remains unclear, to what extent spheroid properties depend on the method of their generation. In this study, we aimed to carry out a head-to-head comparison of drug sensitivity and molecular expression profile in SF and SB spheroids along with a monolayer (2D) cell culture. Here, we produced non-small cell lung cancer (NSCLC) spheroids based on human lung adenocarcinoma cell line A549. Drug sensitivity analysis of the tested cell cultures to five different chemotherapeutics resulted in IC50 (A549-SB) > IC50 (A549-SF) > IC50 (A549-2D) trend. It was found that SF and SB A549 spheroids displayed elevated expression levels of epithelial-to-mesenchymal transition (EMT) markers and proteins associated with drug resistance compared with the monolayer A549 cell culture. Enhanced drug resistance of A549-SB spheroids can be a result of larger diameters and elevated deposition of extracellular matrix (ECM) that impairs drug penetration into spheroids. Thus, the choice of the spheroid production method can influence the properties of the generated 3D cell culture and their drug resistance. This fact should be considered for correct interpretation of drug testing results.
Collapse
|
16
|
Rossi R, De Angelis ML, Xhelili E, Sette G, Eramo A, De Maria R, Cesta Incani U, Francescangeli F, Zeuner A. Lung Cancer Organoids: The Rough Path to Personalized Medicine. Cancers (Basel) 2022; 14:3703. [PMID: 35954367 PMCID: PMC9367558 DOI: 10.3390/cancers14153703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.
Collapse
Affiliation(s)
- Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Eljona Xhelili
- Department of Surgical Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ursula Cesta Incani
- Division of Oncology, University and Hospital Trust of Verona (AOUI), Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| |
Collapse
|
17
|
Nicoś M, Krawczyk P. Genetic Clonality as the Hallmark Driving Evolution of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:1813. [PMID: 35406585 PMCID: PMC8998004 DOI: 10.3390/cancers14071813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Data indicate that many driver alterations from the primary tumor of non-small cell lung cancer (NSCLC) are predominantly shared across all metastases; however, disseminating cells may also acquire a new genetic landscape across their journey. By comparing the constituent subclonal mutations between pairs of primary and metastatic samples, it is possible to derive the ancestral relationships between tumor clones, rather than between tumor samples. Current treatment strategies mostly rely on the theory that metastases are genetically similar to the primary lesions from which they arise. However, intratumor heterogeneity (ITH) affects accurate diagnosis and treatment decisions and it is considered the main hallmark of anticancer therapy failure. Understanding the genetic changes that drive the metastatic process is critical for improving the treatment strategies of this deadly condition. Application of next generation sequencing (NGS) techniques has already created knowledge about tumorigenesis and cancer evolution; however, further NGS implementation may also allow to reconstruct phylogenetic clonal lineages and clonal expansion. In this review, we discuss how the clonality of genetic alterations influence the seeding of primary and metastatic lesions of NSCLC. We highlight that wide genetic analyses may reveal the phylogenetic trajectories of NSCLC evolution, and may pave the way to better management of follow-up and treatment.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland;
| | | |
Collapse
|