1
|
Li H, Niu X, Cheng R. Prevalence, prognostic and clinicopathological value of HIF-1α in glioblastoma patients: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:860. [PMID: 39562395 DOI: 10.1007/s10143-024-03087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024]
Abstract
Several studies have investigated the role of HIF-1α in predicting the prognosis of patients with glioblastoma, yielding contradictory results. Therefore, we performed a meta-analysis to document the correlation between HIF-1α and glioblastoma in individuals diagnosed with glioblastoma. We searched the PubMed, Cochrane Library, EMBASE, and Web of Science by January 25, 2024. Hazard Ratio (HR) was used to evaluate the relationship between HIF-1α and survival outcome, and Odds Ratio (OR) was adopted for tumor features.There was incorporation of nine observational studies with 607 individuals. The total prevalence of HIF-1α (higher than cut-off values) among individuals with glioblastoma was 0.72 (95% confidence interval (CI) = 0.68-0.75, I2 = 95.1%). There is a strong association between increased levels of HIF-1α in tumour tissues and shorter Overall Survival (OS) (HR = 1.82, 95% CI = 1.41-2.34, I2 = 13.7%). Subgroup analysis also indicated a correlation between higher levels of HIF-1α and reduced OS, specifically in the Asian population (HR = 1.48, 95% CI = 1.13-1.83, I2 = 41.5%). In addition, there was a correlation between HIF-1α and age (older vs. younger, OR = 2.19, 95% CI = 1.25-3.86, P = 0.260). High levels of HIF-1α expression were associated with poorer survival outcomes and other clinicopathological characteristics of glioblastoma. Integrating HIF-1α into prognostic tools for glioblastoma aids in predicting survival, categorising risk, and advising patients on suitable treatment regimens.
Collapse
Affiliation(s)
- Hao Li
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China.
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China.
| |
Collapse
|
2
|
Burgess ER, Praditi C, Phillips E, Vissers MCM, Robinson BA, Dachs GU, Wiggins GAR. Role of Sodium-Dependent Vitamin C Transporter-2 and Ascorbate in Regulating the Hypoxic Pathway in Cultured Glioblastoma Cells. J Cell Biochem 2024:e30658. [PMID: 39382087 DOI: 10.1002/jcb.30658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The most common and aggressive brain cancer, glioblastoma, is characterized by hypoxia and poor survival. The pro-tumour transcription factor, hypoxia-inducible factor (HIF), is regulated via HIF-hydroxylases that require ascorbate as cofactor. Decreased HIF-hydroxylase activity triggers the hypoxic pathway driving cancer progression. Tissue ascorbate accumulates via the sodium-dependent vitamin C transporter-2 (SVCT2). We hypothesize that glioblastoma cells rely on SVCT2 for ascorbate accumulation, and that knockout of this transporter would disrupt the regulation of the hypoxic pathway by ascorbate. Ascorbate uptake was measured in glioblastoma cell lines (U87MG, U251MG, T98G) by high-performance liquid chromatography. CRISPR/Cas9 was used to knockout SVCT2. Cells were treated with cobalt chloride, desferrioxamine or 5% oxygen, with/without ascorbate, and key hypoxic pathway proteins were measured using Western blot analysis. Ascorbate uptake was cell line dependent, ranging from 1.7 to 11.0 nmol/106 cells. SVCT2-knockout cells accumulated 90%-95% less intracellular ascorbate than parental cells. The hypoxic pathway was induced by all three stimuli, and ascorbate reduced this induction. In the SVCT2-knockout cells, ascorbate had limited effect on the hypoxic pathway. This study verifies that intracellular ascorbate is required to suppress the hypoxic pathway. As patient survival is related to an activated hypoxic pathway, increasing intra-tumoral ascorbate may be of clinical interest.
Collapse
Affiliation(s)
- Eleanor R Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunology (MI3), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Citra Praditi
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C M Vissers
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Canterbury Regional Cancer and Haematology Service, Te Whatu Ora, Waitaha/Canterbury, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
3
|
Caverzan MD, Ibarra LE. Advancing glioblastoma treatment through iron metabolism: A focus on TfR1 and Ferroptosis innovations. Int J Biol Macromol 2024; 278:134777. [PMID: 39153669 DOI: 10.1016/j.ijbiomac.2024.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Collapse
Affiliation(s)
- Matías D Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina; Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina.
| |
Collapse
|
4
|
Petronek MS, Teferi N, Lee CY, Magnotta VA, Allen BG. MRI Detection and Therapeutic Enhancement of Ferumoxytol Internalization in Glioblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:189. [PMID: 38251153 PMCID: PMC10821426 DOI: 10.3390/nano14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Recently, the FDA-approved iron oxide nanoparticle, ferumoxytol, has been found to enhance the efficacy of pharmacological ascorbate (AscH-) in treating glioblastoma, as AscH- reduces the Fe3+ sites in the nanoparticle core. Given the iron oxidation state specificity of T2* relaxation mapping, this study aims to investigate the ability of T2* relaxation to monitor the reduction of ferumoxytol by AscH- with respect to its in vitro therapeutic enhancement. This study employed an in vitro glioblastoma MRI model system to investigate the chemical interaction of ferumoxytol with T2* mapping. Lipofectamine was utilized to facilitate ferumoxytol internalization and assess intracellular versus extracellular chemistry. In vitro T2* mapping successfully detected an AscH--mediated reduction of ferumoxytol (25.6 ms versus 2.8 ms for FMX alone). The T2* relaxation technique identified the release of Fe2+ from ferumoxytol by AscH- in glioblastoma cells. However, the high iron content of ferumoxytol limited T2* ability to differentiate between the external and internal reduction of ferumoxytol by AscH- (ΔT2* = +839% for external FMX and +1112% for internal FMX reduction). Notably, the internalization of ferumoxytol significantly enhances its ability to promote AscH- toxicity (dose enhancement ratio for extracellular FMX = 1.16 versus 1.54 for intracellular FMX). These data provide valuable insights into the MR-based nanotheranostic application of ferumoxytol and AscH- therapy for glioblastoma management. Future developmental efforts, such as FMX surface modifications, may be warranted to enhance this approach further.
Collapse
Affiliation(s)
- Michael S. Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Nahom Teferi
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA;
| | - Chu-Yu Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA (V.A.M.)
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA (V.A.M.)
| | - Bryan G. Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
6
|
Pahwa B, Leskinen S, Didia E, Huda S, D'Amico RS. Role of nutritional adjuncts in the management of gliomas: A systematic review of literature. Clin Neurol Neurosurg 2023; 231:107853. [PMID: 37390567 DOI: 10.1016/j.clineuro.2023.107853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND A variety of dietary adjuncts are known to affect the pathophysiology of glioma, making them a potential therapeutic adjunct to standard of care. We systematically reviewed clinical outcomes in glioma patients treated with one or more nutritional adjunct and/or an antimetabolite drug. METHODOLOGY A systematic review of the literature following PRISMA guidelines was performed using Pubmed from inception till February 2023. In total, 22 manuscripts on nutrition representing 828 patients were included in the review. Statistical analyses were performed to compare the outcomes of various adjuncts. RESULTS The median overall survival (OS) increased for newly diagnosed (21 months) and recurrent cases (10 months) when compared to historical data. For newly diagnosed cases, a ketogenic diet had the highest median OS of all the adjuncts (42.6 months) while in recurrent cases, a low copper diet coupled with 1 g penicillamine had the highest median OS (18.5 months). However, no statistically significant difference was observed in OS or progression-free survival (PFS) of newly diagnosed or recurrent gliomas. CONCLUSION While nutritional adjuncts may offer a therapeutic benefit in the treatment of glioma, more human subject research is needed to derive meaningful conclusions.
Collapse
Affiliation(s)
- Bhavya Pahwa
- Department of Neurosurgery, UCMS and GTB Hospital, Delhi, India
| | - Sandra Leskinen
- State University of New York Downstate Medical School, New York, USA
| | | | - Shayan Huda
- City University of New York School of Medicine, New York, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA.
| |
Collapse
|
7
|
Eliyasi Dashtaki M, Tabibkhooei A, Parvizpour S, Soltani R, Ghasemi S. Isolation of Cells and Exosomes from Glioblastoma Tissue to Investigate the Effects of Ascorbic Acid on the c-Myc, HIF-1α, and Lnc-SNHG16 Genes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:135-143. [PMID: 38313377 PMCID: PMC10837911 DOI: 10.22088/ijmcm.bums.12.2.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 02/06/2024]
Abstract
Glioblastoma multiforme (GBM) is incurable with routine treatments. Ascorbic acid (Asc) has antioxidant and anti-cancer properties. However, its specific anti-cancer mechanisms are only partially understood. In this study, the effect of Asc on the c-Myc, HIF-1α, and lnc-SNHG16 genes in GBM cells and their exosomes was investigated. Cells isolated from the tissue were characterized by the immunocytochemistry method (GFAP+). The cell-doubling time was determined, and FBS-free medium supplemented with Asc (5 mM) was added to the cells. The extracted exosomes in the cell culture medium were scanned by electron microscopy, Zetasizer, and BCA assay. The expression of lnc-SNHG16 in the exosomes and c-Myc and HIF-1α in the treated and control cells was evaluated by real-time PCR. The interactions between Asc and the c-Myc and HIF-1α proteins were studied using the molecular docking method. The cells showed 90-100% GFAP+ in passage 4, with a cell-doubling time of 4.8 days. Exosomal vesicles measuring 98.25-105.9 were observed. Zetasizer results showed a sharp pick at 90 nm. Protein quantitation showed 3.812 µg/ml protein in the exosomes. Lnc-SNHG16 expression was reduced (P = 0.041), and c-Myc was upregulated (P = 0.002). The expression of HIF-1α was not significant in the treated cells. Also, Asc was able to interact and affect c-Myc and HIF-1α. Asc exerts its effect by reducing lnc-SNHG16 expression in exosomes, upregulating c-Myc in GBM cells, and interacting with HIF-1α and c-Myc. Further research is necessary to achieve a full understanding of these findings.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Alireza Tabibkhooei
- Department of Neurosurgery, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Soltani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Ascorbate content of clinical glioma tissues is related to tumour grade and to global levels of 5-hydroxymethyl cytosine. Sci Rep 2022; 12:14845. [PMID: 36050369 PMCID: PMC9436949 DOI: 10.1038/s41598-022-19032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas are incurable brain cancers with poor prognosis, with epigenetic dysregulation being a distinctive feature. 5-hydroxymethylcytosine (5-hmC), an intermediate generated in the demethylation of 5-methylcytosine, is present at reduced levels in glioma tissue compared with normal brain, and that higher levels of 5-hmC are associated with improved patient survival. DNA demethylation is enzymatically driven by the ten–eleven translocation (TET) dioxygenases that require ascorbate as an essential cofactor. There is limited data on ascorbate in gliomas and the relationship between ascorbate and 5-hmC in gliomas has never been reported. Clinical glioma samples (11 low-grade, 26 high-grade) were analysed for ascorbate, global DNA methylation and hydroxymethylation, and methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Low-grade gliomas contained significantly higher levels of ascorbate than high-grade gliomas (p = 0.026). Levels of 5-hmC were significantly higher in low-grade than high-grade glioma (p = 0.0013). There was a strong association between higher ascorbate and higher 5-hmC (p = 0.004). Gliomas with unmethylated and methylated MGMT promoters had similar ascorbate levels (p = 0.96). One mechanism by which epigenetic modifications could occur is through ascorbate-mediated optimisation of TET activity in gliomas. These findings open the door to clinical intervention trials in patients with glioma to provide both mechanistic information and potential avenues for adjuvant ascorbate therapy.
Collapse
|