1
|
Strack M, Kückelhaus J, Diebold M, Wuchter P, Huber PE, Schnell O, Sankowski R, Prinz M, Grosu AL, Heiland DH, Nicolay NH, Rühle A. Effects of tumor treating fields (TTFields) on human mesenchymal stromal cells. J Neurooncol 2024; 169:329-340. [PMID: 38900237 PMCID: PMC11341748 DOI: 10.1007/s11060-024-04740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.
Collapse
Affiliation(s)
- Maren Strack
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Jan Kückelhaus
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neurology and Medical Oncology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Service Baden- Württemberg- Hessen, Heidelberg University, Mannheim, Germany
| | - Peter E Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Center Heidelberg, Heidelberg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany.
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Xiao T, Zheng H, Zu K, Yue Y, Wang Y. Tumor-treating fields in cancer therapy: advances of cellular and molecular mechanisms. Clin Transl Oncol 2024:10.1007/s12094-024-03551-z. [PMID: 38884919 DOI: 10.1007/s12094-024-03551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.
Collapse
Affiliation(s)
- Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hao Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaiyang Zu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Youjia Yue
- School of Biomedical Engineeringg, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Yu A, Zeng J, Yu J, Cao S, Li A. Theory and application of TTFields in newly diagnosed glioblastoma. CNS Neurosci Ther 2024; 30:e14563. [PMID: 38481068 PMCID: PMC10938032 DOI: 10.1111/cns.14563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.
Collapse
Affiliation(s)
- Ao Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Juan Zeng
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jinhui Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Shuo Cao
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ailin Li
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
| |
Collapse
|
4
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Shi P, Tian J, Mallinger JC, Ling D, Deleyrolle LP, McIntyre JC, Caspary T, Breunig JJ, Sarkisian MR. Increasing Ciliary ARL13B Expression Drives Active and Inhibitor-Resistant Smoothened and GLI into Glioma Primary Cilia. Cells 2023; 12:2354. [PMID: 37830570 PMCID: PMC10571910 DOI: 10.3390/cells12192354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.
Collapse
Affiliation(s)
- Ping Shi
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; (P.S.); (J.T.); (J.C.M.); (D.L.); (J.C.M.)
| | - Jia Tian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; (P.S.); (J.T.); (J.C.M.); (D.L.); (J.C.M.)
| | - Julianne C. Mallinger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; (P.S.); (J.T.); (J.C.M.); (D.L.); (J.C.M.)
| | - Dahao Ling
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; (P.S.); (J.T.); (J.C.M.); (D.L.); (J.C.M.)
| | - Loic P. Deleyrolle
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; (P.S.); (J.T.); (J.C.M.); (D.L.); (J.C.M.)
| | - Tamara Caspary
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew R. Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; (P.S.); (J.T.); (J.C.M.); (D.L.); (J.C.M.)
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| |
Collapse
|
6
|
Li X, Wang J, Yuan G, Pan Y. Efficacy of TTFields in high-grade gliomas: a protocol for systematic review and meta-analysis. BMJ Open 2023; 13:e073753. [PMID: 37730390 PMCID: PMC10514625 DOI: 10.1136/bmjopen-2023-073753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
INTRODUCTION Despite their recent FDA(Food and Drug Administration) approval, tumour treatment fields (TTFields) have not seen acceptance as part of standard of care (SOC) for the treatment of high-grade gliomas (HGGs). Few studies have reported the clinical effect of simultaneous or sequential use of TTFields with the current SOC. However, whether TTFields are beneficial over the standard treatment remains to be established with a meta-analysis. Therefore, we here performed a systematic review and meta-analysis to understand the benefit of TTFields for patients with HGGs. METHODS AND ANALYSIS We registered this systematic review with the PROSPERO network (registration number: CRD42023398972) and aimed to follow the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines in the study. All articles related to TTFields in glioma will be systematically searched for in the following databases since their inception until November 2023: the China National Knowledge Infrastructure, Embase, Cochrane Library, Wanfang Database, China Science Journal Database, China Biomedical Documentation Database, VIP database, Web of Science and PubMed. Article screening and data extraction will be done independently by the authors and cross-checked by two of the authors on completion. The Cochrane risk of bias assessment tool will be used for quality assessment of the included studies. Review Manager V.5.3 (Cochrane Collaboration) will be used to perform the meta-analysis. ETHICS AND DISSEMINATION Ethical approval is not required because the data used will be obtained from published studies, and there will be no concerns about privacy. The results of this study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42023398972.
Collapse
Affiliation(s)
- Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Juncheng Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
7
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Abed T, Ganser K, Eckert F, Stransky N, Huber SM. Ion channels as molecular targets of glioblastoma electrotherapy. Front Cell Neurosci 2023; 17:1133984. [PMID: 37006466 PMCID: PMC10064067 DOI: 10.3389/fncel.2023.1133984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Therapies with weak, non-ionizing electromagnetic fields comprise FDA-approved treatments such as Tumor Treating Fields (TTFields) that are used for adjuvant therapy of glioblastoma. In vitro data and animal models suggest a variety of biological TTFields effects. In particular, effects ranging from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-inhibiting, up to immunostimulation have been described. Diverse underlying molecular mechanisms, such as dielectrophoresis of cellular compounds during cytokinesis, disturbing the formation of the spindle apparatus during mitosis, and perforating the plasma membrane have been proposed. Little attention, however, has been paid to molecular structures that are predestinated to percept electromagnetic fields-the voltage sensors of voltage-gated ion channels. The present review article briefly summarizes the mode of action of voltage sensing by ion channels. Moreover, it introduces into the perception of ultra-weak electric fields by specific organs of fishes with voltage-gated ion channels as key functional units therein. Finally, this article provides an overview of the published data on modulation of ion channel function by diverse external electromagnetic field protocols. Combined, these data strongly point to a function of voltage-gated ion channels as transducers between electricity and biology and, hence, to voltage-gated ion channels as primary targets of electrotherapy.
Collapse
Affiliation(s)
- Tayeb Abed
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Deleyrolle LP, Sarkisian MR. Cilia at the Crossroads of Tumor Treating Fields and Chemotherapy. Dev Neurosci 2023; 45:139-146. [PMID: 38630257 PMCID: PMC10233696 DOI: 10.1159/000529193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/10/2023] [Indexed: 04/19/2024] Open
Abstract
Glioblastoma (GBM), the most common and lethal primary brain tumor in adults, requires multi-treatment intervention which unfortunately barely shifts the needle in overall survival. The treatment options after diagnosis and surgical resection (if possible) include irradiation, temozolomide (TMZ) chemotherapy, and now tumor treating fields (TTFields). TTFields are electric fields delivered locoregionally to the head/tumor via a wearable medical device (Optune®). Overall, the concomitant treatment of TTFields and TMZ target tumor cells but spare normal cell types in the brain. Here, we examine whether primary cilia, microtubule-based "antennas" found on both normal brain cells and GBM cells, play specific roles in sensitizing tumor cells to treatment. We discuss evidence supporting GBM cilia being exploited by tumor cells to promote their growth and treatment resistance. We review how primary cilia on normal brain and GBM cells are affected by GBM treatments as monotherapy or concomitant modalities. We also focus on latest findings indicating a differential regulation of GBM ciliogenesis by TTFields and TMZ. Future studies await arrival of intracranial TTFields models to determine if GBM cilia carry a prognostic capacity.
Collapse
Affiliation(s)
- Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, Florida, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Lee D, Gimple RC, Wu X, Prager BC, Qiu Z, Wu Q, Daggubati V, Mariappan A, Gopalakrishnan J, Sarkisian MR, Raleigh DR, Rich JN. Superenhancer activation of KLHDC8A drives glioma ciliation and hedgehog signaling. J Clin Invest 2023; 133:e163592. [PMID: 36394953 PMCID: PMC9843063 DOI: 10.1172/jci163592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.
Collapse
Affiliation(s)
- Derrick Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Ryan C. Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xujia Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Briana C. Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Qiulian Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Vikas Daggubati
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matthew R. Sarkisian
- Department of Neuroscience, McKnight Brain Institute and
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - David R. Raleigh
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Jeremy N. Rich
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Shams S, Patel CB. Anti-cancer mechanisms of action of therapeutic alternating electric fields (tumor treating fields [TTFields]). J Mol Cell Biol 2022; 14:mjac047. [PMID: 35973687 PMCID: PMC9912101 DOI: 10.1093/jmcb/mjac047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/11/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Despite improved survival outcomes across many cancer types, the prognosis remains grim for certain solid organ cancers including glioblastoma and pancreatic cancer. Invariably in these cancers, the control achieved by time-limited interventions such as traditional surgical resection, radiation therapy, and chemotherapy is short-lived. A new form of anti-cancer therapy called therapeutic alternating electric fields (AEFs) or tumor treating fields (TTFields) has been shown, either by itself or in combination with chemotherapy, to have anti-cancer effects that translate to improved survival outcomes in patients. Although the pre-clinical and clinical data are promising, the mechanisms of TTFields are not fully elucidated. Many investigations are underway to better understand how and why TTFields is able to selectively kill cancer cells and impede their proliferation. The purpose of this review is to summarize and discuss the reported mechanisms of action of TTFields from pre-clinical studies (both in vitro and in vivo). An improved understanding of how TTFields works will guide strategies focused on the timing and combination of TTFields with other therapies, to further improve survival outcomes in patients with solid organ cancers.
Collapse
Affiliation(s)
- Shadi Shams
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08028, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
12
|
Tanzhu G, Chen L, Xiao G, Shi W, Peng H, Chen D, Zhou R. The schemes, mechanisms and molecular pathway changes of Tumor Treating Fields (TTFields) alone or in combination with radiotherapy and chemotherapy. Cell Death Discov 2022; 8:416. [PMID: 36220835 PMCID: PMC9553876 DOI: 10.1038/s41420-022-01206-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor Treating Fields (TTFields) is a physical therapy that uses moderate frequency (100-300 kHz) and low-intensity (1-3 V/cm) alternating electric fields to inhibit tumors. Currently, the Food and Drug Administration approves TTFields for treating recurrent or newly diagnosed glioblastoma (GBM) and malignant pleural mesothelioma (MPM). The classical mechanism of TTFields is mitotic inhibition by hindering the formation of tubulin and spindle. In addition, TTFields inhibits cell proliferation, invasion, migration and induces cell death, such as apoptosis, autophagy, pyroptosis, and cell cycle arrest. Meanwhile, it regulates immune function and changes the permeability of the nuclear membrane, cell membrane, and blood-brain barrier. Based on the current researches on TTFields in various tumors, this review comprehensively summarizes the in-vitro effects, changes in pathways and molecules corresponding to relevant parameters of TTFields (frequency, intensity, and duration). In addition, radiotherapy and chemotherapy are common tumor treatments. Thus, we also pay attention to the sequence and dose when TTFields combined with radiotherapy or chemotherapy. TTFields has inhibitory effects in a variety of tumors. The study of TTFields mechanism is conducive to subsequent research. How to combine common tumor therapy such as radiotherapy and chemotherapy to obtain the maximum benefit is also a problem that's worthy of our attention.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, China.
| |
Collapse
|
13
|
Le HT, Staelens M, Lazzari D, Chan G, Tuszyński JA. Real-Time Monitoring of the Effect of Tumour-Treating Fields on Cell Division Using Live-Cell Imaging. Cells 2022; 11:2712. [PMID: 36078119 PMCID: PMC9454843 DOI: 10.3390/cells11172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of electric fields (EFs) on various cell types have been thoroughly studied, and exhibit a well-known regulatory effect on cell processes, implicating their usage in several medical applications. While the specific effect exerted on cells is highly parameter-dependent, the majority of past research has focused primarily on low-frequency alternating fields (<1 kHz) and high-frequency fields (in the order of MHz). However, in recent years, low-intensity (1-3 V/cm) alternating EFs with intermediate frequencies (100-500 kHz) have been of topical interest as clinical treatments for cancerous tumours through their disruption of cell division and the mitotic spindle, which can lead to cell death. These aptly named tumour-treating fields (TTFields) have been approved by the FDA as a treatment modality for several cancers, such as malignant pleural mesothelioma and glioblastoma multiforme, demonstrating remarkable efficacy and a high safety profile. In this work, we report the results of in vitro experiments with HeLa and MCF-10A cells exposed to TTFields for 18 h, imaged in real time using live-cell imaging. Both studied cell lines were exposed to 100 kHz TTFields with a 1-1 duty cycle, which resulted in significant mitotic and cytokinetic arrest. In the experiments with HeLa cells, the effects of the TTFields' frequency (100 kHz vs. 200 kHz) and duty cycle (1-1 vs. 1-0) were also investigated. Notably, the anti-mitotic effect was stronger in the HeLa cells treated with 100 kHz TTFields. Additionally, it was found that single and two-directional TTFields (oriented orthogonally) exhibit a similar inhibitory effect on HeLa cell division. These results provide real-time evidence of the profound ability of TTFields to hinder the process of cell division by significantly delaying both the mitosis and cytokinesis phases of the cell cycle.
Collapse
Affiliation(s)
- Hoa T. Le
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Davide Lazzari
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gordon Chan
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
14
|
Tumor-Treating Fields in Glioblastomas: Past, Present, and Future. Cancers (Basel) 2022; 14:cancers14153669. [PMID: 35954334 PMCID: PMC9367615 DOI: 10.3390/cancers14153669] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common malignant primary brain tumor. Although the standard of care, including maximal resection, concurrent radiotherapy with temozolomide (TMZ), and adjuvant TMZ, has largely improved the prognosis of these patients, the 5-year survival rate is still < 10%. Tumor-treating fields (TTFields), a noninvasive anticancer therapeutic modality, has been rising as a fourth treatment option for GBMs, as confirmed by recent milestone large-scale phase 3 randomized trials and subsequent real-world data, elongating patient overall survival from 16 months to 21 months. However, the mechanisms of antitumor efficacy, its clinical safety, and potential benefits when combined with other treatment modalities are far from completely elucidated. As an increasing number of studies have recently been published on this topic, we conducted this updated, comprehensive review to establish an objective understanding of the mechanism of action, efficacy, safety, clinical concerns, and future perspectives of TTFields. Abstract Tumor-treating fields (TTFields), a noninvasive and innovative therapeutic approach, has emerged as the fourth most effective treatment option for the management of glioblastomas (GBMs), the most deadly primary brain cancer. According to on recent milestone randomized trials and subsequent observational data, TTFields therapy leads to substantially prolonged patient survival and acceptable adverse events. Clinical trials are ongoing to further evaluate the safety and efficacy of TTFields in treating GBMs and its biological and radiological correlations. TTFields is administered by delivering low-intensity, intermediate-frequency, alternating electric fields to human GBM function through different mechanisms of action, including by disturbing cell mitosis, delaying DNA repair, enhancing autophagy, inhibiting cell metabolism and angiogenesis, and limiting cancer cell migration. The abilities of TTFields to strengthen intratumoral antitumor immunity, increase the permeability of the cell membrane and the blood–brain barrier, and disrupt DNA-damage-repair processes make it a promising therapy when combined with conventional treatment modalities. However, the overall acceptance of TTFields in real-world clinical practice is still low. Given that increasing studies on this promising topic have been published recently, we conducted this updated review on the past, present, and future of TTFields in GBMs.
Collapse
|